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¢ Air pollution is a leading cause of global disease burden

e U.S. regulations to limit exposure to air pollution

e 58% to 80% of monetized benefits of all federal regulations
o 44% to 54% of monetized costs
e ~ $65 billion annually

Statistical methods for causal inference have emerged at
the center of a very current and contentious debate about how
maintain air quality policies
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EPA Science Panel Considering Guidelines That Upend Basic Air Pollution Science « 3:38

"[Committee] members have varying opinions on the adequacy of the evidence
supporting the EPA's conclusion that there is a causal relationship between
[particulate matter] exposure and mortality," said Cox, reading from the committee's
draft recommendations before explaining that he is "actually appalled” at the lack of

scientific evidence connecting particulate pollution to premature death.
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"If we don't know that X causes Y, then we should say we don't know," said Cox, who
consults and lectures about various risk-related topics. He expressed concern that the
EPA would move to reduce air pollution under the erroneous assumption that it would
result in fewer premature deaths.
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explains, because no one study captures everything about a given pollutant.

"You can't randomize millions of [people] around the world to breathe higher

pollution or lower pollution, so we have to rely on observational data," Dominici says.
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Air pollution kills—scientists have known this for many years. But how do they
know? The global scientific community has developed and agreed upon a
framework that draws on multiple lines of evidence across different scientific
disciplines to assess the existence and strength of links between air pollution and
health. In the United States, federal policies require use of this science-based
framework to ensure that air pollution standards protect the public's health. But
now this science-based policy process—and public health—are at risk. Recent
developments at the U.S. Environmental Protection Agency (EPA) stand to quietly
upend the time-tested and scientifically backed process the agency relies on to
protect the public from ambient air pollution (7). One of these developments—
changes in how the EPA handles causality between air pollutants and health
effects—has received less attention but, if enacted, would alter the approach that
the EPA has used for more than a decade to set health-based air pollutant
standards. At the March meeting of the EPA's Clean Air Scientific Advisory




SCICIICE tume vers sounss opie s

Quality-Assured Hepatocytes

Fully-Characterized Primary S S
Human Hepatocyte Lots ==

SHARE POLICY FORUM  SCIENCE AND REGULATION “
\ ) ’ cience
() Don't abandon evidence and process on air e e

Table o Contents
Print Table of Contents
Adverising (PDF)
Classified (PDF)
Masthead (PDF)

o pollution policy

Gretchen T. Goldman', Francesca Dominici?

+See allauthors and afflations

ARTICLE TOOLS

= email 8 pint
Article Figures & Data Info & Metrics eletters PDF B savetomyfolders 0

© Request Permissions @

* Share

Air pollution kills—scientists have known this for many years. But how do they
know? The global scientific community has developed and agreed upon a
framework that draws on multiple lines of evidence across different scientific
disciplines to assess the existence and strength of links between air pollution and
health. In the United States, federal policies require use of this science-based
framework to ensure that air pollution standards protect the public's health. But
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Air Quality Policy

The Role of Data and Statistics



Major Themes of Statistical Methods
Development

for air pollution policies and beyond

© Importance of “causal inference”
® Distinguishing between types of questions
o “Health effects” of pollution exposure
¢ “Health effects” of policy
® Intersecting statistics with physical/mechanistic process
models
¢ E.g., atmospheric science/engineering

O Methods for interference/networks for interventions that
“spillover” or diffuse in time and space
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“Chain of Accountability”
(from the Health Effects Institute)

Statistical Methods with Atmospheric Science
(have historically been kept separate)
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Existing Policy Evaluations Underuse
Data and Statistics

lots of engineering, chemistry, exposure science etc.

Heavy reliance on deterministic physical/chemical model
output
e E.g.,, CMAQ, GEOS-Chem, etc.

Focus on prospective predictions
Not empirically verified using observed data following
implementation

Opportunities for marrying the physical/mechanistic
understanding with empirical data and statistics
e Health and environmental data becoming increasingly rich
and available
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Two Types of “Policy” Questions



Two Important Questions for Policy

Causal inference important for both!

Question #1
What are the “health effects” of pollution exposure?

e |l.e., exposure-response estimation
e Most epidemiology focuses here

Question #2
What are the “health effects” of a specific policy or intervention?

e |.e., effectiveness of interventions
e Less focus here
e Particular lack of appropriate statistical methods

Different questions <« Different challenges <> Different methods



Important Question #1

for informing policies

What is the causal effect of exposure to pollution on health?
(i.e.,exposure-response function)
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Important Question #1

for informing policies

What is the causal effect of exposure to pollution on health?
(i.e.,exposure-response estimation)

o Essentially the focus of air pollution epidemiology for
decades
e Many open statistical problems
e Multipollutant mixture exposure-response functions
o Health effects at low exposures
e Spatial confounding, overlap, effect heterogeneity, etc.
e Broadly familiar “causal inference” problems
¢ Ongoing work in statistics, epidemiology, econometrics, etc.



Important Question #2

for informing policies

Did a specific policy causally affect health?
(i.e., effectiveness of a policy)
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Important Question #2

for informing policies

Did a specific policy causally affect health?
(i.e., effectiveness of a policy)

To what extent does a particular action cause health
improvements?

Which effects can be attributed to which policies?

Which policies are most (cost) effective?

Comparatively less focus from statisticians/epidemiologists

¢ More opportunities for new statistical methods
development



Statistical Challenges for Estimating Air
Pollution Policy Effectiveness

Example: Scrubbers on Coal Power Plants



Two Fundamental Features

Generic question: What are the (causal) health effects of an
intervention taken to reduce pollution?

Two fundamental features:
© /nterventions occur at sources of air pollution

o E.g., installing emissions controls on power plant
smokestacks or enacting new vehicle emissions standards

@® Pollution moves from its originating source
e Long-range pollution transport



Major Pollution Source: Power Plants

= Many regulations to reduce emissions

e Some install “scrubbers” in
response to regulations

— Reduce SO, emissions
— Reduce ambient pollution
— Improve health

Example Question: Do scrubbers on coal-fired power plants
causally affect health among Medicare beneficiaries?
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( ) move

e Long distances towards conversion to
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e Lots of mechanistic knowledge of the
physics/chemistry from atmospheric
science fields



Long-range Pollution Transport

Movement of pollution from sources — populations

e Emissions originating at a power plant
( ) move

e Long distances towards conversion to
harmful pollution

e Lots of mechanistic knowledge of the
physics/chemistry from atmospheric
science fields

e Intervening at a power plant impacts
health at many zip codes (black dots)

e = inference on a “network” of
interconnected power plants/population
locations (interference)
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Y;(Aj) = Health outcome that
would be observed...

if the most influential (or
closest) power plant were
intervened upon



Potential Outcomes amid Long-Range
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Zip Code j = 02138 (red dot)
Yi(A1,...,Aq) = Health
outcome that would be
observed...

if the10 most influential power
plants were intervened upon



Potential Outcomes amid Long-Range
Pollution Transport

Y = health, A = treatment

Zip Code j = 02138 (red dot)
Yi(A1,...,As7s) = Health
outcome that would be
observed...

under a particular intervention
allocation to all 278 plants that
influence this location

Treating at any of these 278
plants affects health at 02138
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Pollution Transport

Y = health, A = treatment

Zip Code j = 02138 (red dot)
Yi(A1,...,As7s) = Health
outcome that would be
observed...

under a particular scrubber
allocation to all 278 plants that
influence this location

Treating any of these 278
plants affects health at 02138
48 observed to have
intervention
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a Network

Network of 100s of power plants and 10Ks of population
locations

Interventions at Power Plants:
“Scrubber” Installation




Intervention Effects Propagate Across
a Network

Network of 100s of power plants and 10Ks of population
locations

Interventions at Power Plants: Health at Population Locations
“Scrubber” Installation (Zip Codes)

Affect




Interference Due to Treatment Diffusion

Interference introduces new causal quantities of interest:

e More than just accounting for or addressing structure of
variability (e.g., spatial correlation)
e Budding research on interference in specialized settings

e Infectious diseases
e Social networks

e Here, interference arises due to treatment diffusion
resulting in complex exposure dependencies

o Governed by atmospheric transport of pollution
o Treatment diffuses across a network
¢ New methods that are statistical/empirical, but make use
of extant knowledge from atmospheric engineering



Statistical Challenges for Estimating Air
Pollution Policy Effectiveness

Some Specific Statistical Methods Areas
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Statistical Methods Challenges

Causal inference with interference

¢ Health outcomes depend on treatments applied at many
different units

Treatment diffusion across spatial networks
Mechanistic understanding of pollution transport

o Leverage knowledge from atmospheric science
Causal inference + spatial statistics
Disentangling effects of multiple concurrent/overlapping
policies
Interventions impacting multiple pollutants (mixtures)
simultaneously
Complex mixtures of exposures
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Summary and Conclusions



Summary: Data Science for Evaluating
Environmental Policies

Policies of enormous consequence (huge costs and

benefits)

High quality data are increasingly available

Particular focus on the role of causal inference methods

Significant challenges that are unique(?) to air pollution
e E.g., long-range pollution transport

Key opportunities for statistical methods development:
e Causal inference + spatial statistics
o Statistics + mechanistic atmospheric models
o Networks/interference
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