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Background

Inpatient hospital services account for a small share of health care
utilization but the majority of total health care spending.

• What are the driving forces of inpatient health care spending?
(inference, interpretation)

• How can we account for different patient characteristics (subgroup
analysis, clustering)



Background

Mixture distributions are good way to model health care utilization

A mixture distribution fmix is a weighted sum, Σci = 1, of a finite set of
probability density functions p1(x); :::; pk(x)

fmix(x) =
KX
i=1

ci pi (x):

They can account for zero-inflation, over-dispersion, and skewness.



Background

Mixture models can be extended to regression
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Background

The are two ways to specify the number of mixture components
(= clusters)

• Specify the number of components before the analysis (ex-ante).
• Calculate different models with different clusters and select the

"best" (ex-post).

Both methods introduce a decision-bias and modelselection-bias.



Methods

Bayesian nonparametric models allow to estimate the number of
components K from the data.

• avoids over- and underfitting
• model only as complex as the data require
• in theory, model complexity is unbounded (infinite number of

clusters)



Methods

We developed a Dirichlet Process mixture regression model for
counts (hospital days), DP-NB

y |X|{z}
days

∼
KX

k=1

ck |X| {z }
weights

·NegBin(—k ;  k)| {z }
regression model

;

with
—k = exp(X˛k):

We also extend this model to a zero-inflated version (DP-ZINB).



Simulation Study

The DP-NB finds the true number of components more accurately
than AIC and BIC selection methods

high overlap medium overlap low overlap

Truth AIC BIC DP-NB AIC BIC DP-NB AIC BIC DP-NB

2 5 1 4 3 3 2 1 1 3
3 1 1 4 4 4 4 1 1 4
4 1 1 4 1 1 3 1 1 5
5 1 1 3 5 1 6 1 1 6



AOK data set

• AOK claims data set with incident lung cancer in 2009 (Schwarzkopf
et al., 2015)

• AOK is the largest health insurance company in Germany and
covers around a third of the German population

• outcome: total number of inpatient hospital days (1 year period)
• only patients who survived the full year where included (N=7118)



Results

The posterior predictive distribution of replicated outcome y rep is
close to the true outcome
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Results

The DP-NB finds three components for the AOK data set
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Results

Biggest differences are in treatment coefficients
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Results

Component 1 gets the most chemotherapy and the least surgery
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Discussion

Component 1 has patients in more advanced stages of lung cancer

• less hospital days 6= healthy
• less surgery, but more chemotherapy and radiation therapy



Discussion

Component 2 and 3 have more cases with good prospect

• more surgery
• more surgery + chemotherapy + radiation therapy
• Component 3 is very similar to Component 2 but has individuals

with more comorbidities and who are older.



Conclusion

• the presented Bayesian clustering and inference method for count
data can be used to find subgroups of patients while still being fully
interpretable

• because of its non-parametric nature it avoids over- and underfitting
of the cluster components.

• on the AOK data set, it can find subgroups with specific properties
that correspond well to the different number of hospital days in each
component



Thank you



Simulation
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