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Causal Inference in Observational Studies with Clustered Data

Introduction

Overall Goal

Study causal inference under the framework of potential outcome in non-randomized
settings such as administrative or survey data, with complex structures due to
correlated observational units. Our overall research goal is motivated by:

Challenges:

Association does not imply causation

While causal inference has been increasingly popular in observational studies, its
comprehensive treatment in clustered data is somewhat lacking

Further complications occur due to measurement error as well as missing data
(not this presentation)
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Introduction

Outline

Previous work

Causal inference in clustered data

Our methods

- ACE estimated by random intercept linear mixed model and IPW by
standard logistic regression.

- ACE estimated by random intercept linear mixed model and IPWby
random intercept logistic regression.

Simulation study

Application

Discussion
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Previous work

Potential outcome framework

Potential outcome framework describes the nature of causal effect. If exposure or
treatment A is not present, what outcome B would have been.

Originally proposed by Neyman (1923), then extended by Rubin (1974) to more
general settings with implication for observational data.

The framework is known as Neyman-Rubin Causal Model or Rubin Causal Model
(RCM) .

Causal effect under RCM

Given a dichotomous treatment, each subject has two potential outcomes. One
is potentially realized under treatment and the other one is under control.

Individual causal effect is the difference between the two potential outcomes.

Fundamental issue of causal inference: only one potential outcome can be
observed at a time for the same subject.

The missing potential outcome makes it impossible to identify individual causal
effect.

Solution: average causal effect (ACE) at the population level.
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Previous work

Dual-modeling strategy (Robins and Rotnitzky, 1995)

When treatment is not assigned randomly, estimates of potential outcomes are
affected by selection bias.

Probability of treatment assignment given confounders (known as the propensity
scores) can be used to remove selection bias.

Robin and Rotnitzky developed a dual-modeling strategy using propensity scores
and showed double robustness in the estimation of outcome.

This method adjusted residuals in the potential outcome model by inverse
probability weighting (IPW).

Other dual-modeling methods

Coefficient adjustment by IPW.

Use of inverse propensity as a predictor in the regression models (Bang and
Robins, 2005).

Classification of propensities to create dummy variables and include the dummy
variables into the regression models (Schafer, 2008).
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Previous work

Estimation of ACE variance (Schafer and Kang, 2008)

A simple data setting: let y1 denote the potential outcome under treatment and y0
denote the potential outcome under control

ˆACE = µ̂1 − µ̂0 = aT θ

where µ̂1 = E(y1) = xTβ1 ,µ̂0 = E(y0) = xTβ0 , a = (0, 0,−1, 1)T and
θ = (β0, β1, µ0, µ1)T .

The OLS estimates θ̂ = (β̂0, β̂1, µ̂0, µ̂1) from the linear regression can be treated as a

solution of a set of joint estimation equations
N∑
i=1

ϕ(θ) = 0.

By the central limiting theory and Taylor approximation,

θ̂ ≈ N(θ, Ĵ(φ(θ̂))−1V (φ(θ̂))(Ĵ(φ(θ̂))−1)T ), (1)

where Ĵ(ϕ(θ̂)) = E
(
∂ϕ(θ)
∂θ

)
,V (ϕ(θ)) = E(ϕ(θ)ϕ(θ)T ). Variance of ˆACE can then be

estimated by:

V̂ ( ˆACE) =
1

N
aT Â−1B̂(A−1)T a (2)

where B = E(ϕϕT ),A = Ĵ(ϕ(θ̂)).
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Causal inference in clustered data

Notations and settings

Data Structure
Tij1 - Treatment assignment for subject j in cluster i .
Tij0 - Control group assignment for subject j in cluster i .
xij - Observed covariates for subject j in cluster i .
yij1 - Potential outcome for subject j in cluster i had the subject been

assigned to treatment group.
yij0 - Potential outcome for subject j in cluster i had the subject been

assigned to control group.
i = 1, 2, . . . ,m and j = 1, 2, . . . , ni

Units within the same cluster are correlated, but observations from different
clusters are independent.
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Causal inference in clustered data

Definitions

Individual Causal Effect.

CEij = yij1 − yij0

Average Causl Effect (ACE)

ACE =
1

N

m∑
i

ni∑
j

(yij1 − yij0) (3)

Fundamental problem: CEij can not be obtained as only one potential outcome
can be observed at a time.

While it is impossible to compute individual causal effect directly, we can
conduct inference on ACE.
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Causal inference in clustered data

Assumptions

Exchangeability: treatment groups are comparable and outcome is independent

of the treatment assignment.

- This assumption does not hold in observational studies due to
confounding effect.

- Conditional exchangeability: the outcome is independent of treatment
assignment conditional on confounding variables.

- Treatment assignment needs to be modeled.

Positivity: no unobserved confounders for each treatment group.

Stable Unit Treatment Value Assumption (SUTVA)

- Consistency: the treatment effect is the same for all the units.
- No interference: the potential outcomes of an unit are not affected by

the treatment assignment of other units.
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Causal inference in clustered data

Models

Potential outcome: linear mixed-effects model with random intercept

yij = αi + xT
ij β + εij , (4)

where αi is the cluster effect and assumed to be distributed as N(0, σ2
α )

Treatment assignment

- Standard logistic regression: no clustering effect on treatment
assingment

πij = (1 + exp(−zTij γ))−1 (5)

where zij is the covariates that are associated with treatment
assignment.

- Random intercept logistic regression: with clustering effect

πij = (1 + exp(−zTij γ − ζi ))−1 (6)

where ζi is the random intercept with an independent and identical
distribution N(0, σ2).
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Our methods

Method 1: ACE estimated by random-intercept linear mixed model and IPW by
standard logistic regression

Potential outcome models:

yij0 = αi0 + xT
ij0β0 + εij0, yij1 = αi1 + xT

ij1β1 + εij1 (7)

Coefficients in equation (7) are estimated using data from control group and
treatment group, respectively.

ˆACE = E(yij1)− E(yij0) = µ̂1 − µ̂0 + α̂1 − α̂0 + ε̂1 − ε̂0 (8)

where

µ̂1 =
1

N

m∑
i

ni∑
j

{xT
ij β̂1}, µ̂0 =

1

N

m∑
i

ni∑
j

{xT
ij β̂0}, α̂1 =

1

N

m∑
i

ni∑
j

{α̂i1}, α̂0 =
1

N

m∑
i

ni∑
j

{α̂i0},

ε̂1 =

m∑
i

ni∑
j

Tij π̂
−1
ij (yij − xT

ij β̂1 − α̂i1)

m∑
i

ni∑
j

Tij π̂
−1
ij

, ε̂0 =

m∑
i

ni∑
j

(1− Tij )(1− π̂ij )
−1(yij − xT

ij β̂0 − α̂i0)

m∑
i

ni∑
j

(1− Tij )(1− π̂ij )−1

.
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Our methods

Method 1: ACE estimated by Random intercept linear mixed model and IPW by
standard logistic regression

Note that
ˆACE = µ̂1 − µ̂0 + α̂1 − α̂0 + ε̂1 − ε̂0 = aTθ (9)

where aT = (0, 0, 0,−1, 1,−1, 1,−1, 1), θ̂ = (γ̂, β̂0, β̂1, µ̂0, µ̂1, α̂0, α̂1, ε̂0, ε̂1)T .

θ̂ can be thought as the solution of a set of joint estimation equations
m∑
i

ni∑
j

ϕij(θ) = 0, where

ϕijγ = (Tij − πij)zij , ϕijβ0 = (1− Tij)x
T
ij (ȳi0 − xT

ij0β0),

ϕijβ1 = Tijx
T
ij (ȳi1 − xT

ij1β1), ϕijµ0 = xT
ij0β0 − µ0,

ϕijµ1 = xT
ij1β1 − µ1, ϕijα0 = ȳij0 − x̄T

i0β0 − α0,

ϕijα1 = ȳij1 − x̄T
i1β1 − α1, ϕijε0 = (1− Tij)(1− πij)

−1(yij − xT
ij β0 − αi0 − ε0),

ϕijε1 = Tijπ
−1
ij (yij − xT

ij β1 − αi1 − ε1).

ACE variance can be estimated by equation (2).
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Our methods

Method 1: ACE estimated by Random intercept linear mixed model and IPW by
standard logistic regression

Jacobian matrix A is a 9 by 9 lower triangle matrix:

A11 0 0 0 0 0 0 0 0
0 A22 0 0 0 0 0 0 0
0 0 A33 0 0 0 0 0 0
0 A42 0 A44 0 0 0 0 0
0 0 A53 0 A55 0 0 0 0
0 A62 0 0 0 A66 0 0 0
0 0 A73 0 0 0 A77 0 0
A81 A82 0 0 0 A86 0 A88 0
A91 0 A93 0 0 0 A97 0 A99


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Our methods

Method 1: ACE estimated by Random intercept linear mixed model and IPW by
standard logistic regression

We derive the elements in Jacobian matrix A as:

Â11 = −
1

N

m∑
i

ni∑
j

p̂i ij (1 − p̂i ij )zij z
T
ij
, Â22 = −

1

N

m∑
i

ni∑
j

(1 − Tij )x
T
ij
xij , Â33 = −

1

N

m∑
i

ni∑
j

Tij x
T
ij
xij ,

Â42 = −
1

N

m∑
i

ni∑
j

xij , Â44 = −1, Â53 =
1

N

m∑
i

ni∑
j

xij , Â55 = −1, Â62 = −
1

N

m∑
i

ni∑
j

x̄i0, Â66 = −1,

Â73 = −
1

N

m∑
i

ni∑
j

x̄i1, Â77 = −1, Â81 =
1

N

m∑
i

ni∑
j

(1 − Tij )p̂i ij (1 − p̂i ij )
−1(yij − xij β̂0 − α0 − ε0)zT

ij
,

Â91 =
1

N

m∑
i

ni∑
j

Tij p̂i
−1
ij

(1 − p̂i ij )(yij − xij β̂1 − α1 − ε1)zT
ij
, Â82 = −

1

N

m∑
i

ni∑
j

(1 − Tij )(1 − p̂i ij )
−1xij ,

Â93 = −
1

N

m∑
i

ni∑
j

Tij p̂i
−1
ij

xij , Â86 = −
1

N

m∑
i

ni∑
j

(1 − Tij )(1 − p̂i ij )
−1
,

Â97 = Tij p̂i
−1
ij
, Â88 = −

1

N

m∑
i

ni∑
j

(1 − Tij )(1 − p̂i ij )
−1
, Â99 = Tij p̂i

−1
ij
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

Cluster-specific effects are explicitly allowed in the model for the probability of
treatment assignment as described in equation (6)

The formula for ˆACE is the same as equation (8), but with different parameters
in the re-written equation ˆACE = aTθ :

ˆACE = µ̂1 − µ̂0 + α̂1 − α̂0 + ε̂1 − ε̂0 = aTθ (10)

where
aT = (0, 0, 0, 0,−1, 1,−1, 1,−1, 1), θ̂ = (γ̂, σ̂2, β̂0, β̂1, µ̂0, µ̂1, α̂0, α̂1, ε̂0, ε̂1)T .

θ̂ can be thought as the solution of a set of joint estimation equations
m∑
i

ni∑
j

ϕij(θ) = 0, where the added parameters γ and σ2 are from treatment

assignment model.
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

Accordingly, the ϕ is expressed as:

ϕijγ = Tijzij −
1

ni

∫∞
−∞

ni∑
j

zij
e
zTij γ+ζi

1+e
zT
ij
γ+ζi

ehi (γ,ζ)dζ∫∞
−∞ ehi (γ,ζ)dζ

,

ϕijσ2 = − 1

2σ2ni
+

1

2σ4ni

∫∞
−∞ α

2ehi (γ,ζ)dζ∫∞
−∞ ehi (γ,ζ)dζ

,

ϕijβ0 = (1− Tij)x
T
ij (ȳi0 − xT

ij0β0)

ϕijβ1 = Tijx
T
ij (ȳi1 − xT

ij1β1), ϕijµ0 = xT
ij0β0 − µ0, ϕijµ1 = xT

ij1β1 − µ1,

ϕijα0 = ȳij0 − x̄T
i0 β̂0 − α0, ϕijα1 = ȳij1 − x̄T

i1β1 − α1,

ϕijε0 = (1− Tij)(1− πij)
−1(yij − xT

ij β0 − αi0 − ε0,

ϕijε1 = Tijπ
−1
ij (yij − xT

ij β1 − αi1 − ε1).

ACE variance is estimated using equation (2).
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

Jacobian matrix A in this method is a 10 by 10 lower triangle matrix:

A11 A12 0 0 0 0 0 0 0 0
A21 A22 0 0 0 0 0 0 0 0
0 0 A33 0 0 0 0 0 0 0
0 0 0 A44 0 0 0 0 0 0
0 0 A53 0 A55 0 0 0 0 0
0 0 0 A64 0 A66 0 0 0 0
0 0 A73 0 0 0 A77 0 0 0
0 0 0 A84 0 0 0 A88 0 0
A91 A92 A93 0 0 0 A97 0 A99 0
A101 A102 0 A104 0 0 0 A108 0 A1010


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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

We derive the elements in Jacobian matrix A as:

Â11 =
1

N

m∑
i

ni∑
j

{−
1∫∞

−∞ ehi (γ,ζ)dζ

∫ ∞
−∞

ni∑
j=1

Zij z
T
ij

e
z
T

ij
γ+ζi

(1 + e
zT
ij
γ+ζi )2

ehi (γ,ζ)dζ

+ (

∫∞
−∞

ni∑
j=1

Zij
e
z
T

ij
γ+ζi

1+e
z
T
ij
γ+ζi

ehi (γ,ζ)dζ

∫∞
−∞ ehi (γ,ζ)dζ

)2},

Â21 =
1

N

m∑
i

ni∑
j

1

2σ4
{−

∫∞
−∞

ni∑
j=1

Zij
e
z
T

ij
γ+ζi

1+e
z
T
ij
γ+ζi

ehi (γ,ζ)ζ2dζ

∫∞
−∞ ehi (γ,ζ)dζ

+

∫∞
−∞ ζ2ehi (γ,ζ)dζ

∫∞
−∞

ni∑
j=1

Zij
e
z
T

ij
γ+ζi

1+e
z
T
ij
γ+ζi

ehi (γ,ζ)dζ

∫∞
−∞ ehi (γ,ζ)dζ

∫∞
−∞ ehi (γ,ζ)dζ

},

Â91 =
1

N

m∑
i

ni∑
j

Tij π̂ij (1 − p̂i ij )
−1(yij − xij β̂1 − α1 − ε1)zT

ij
,
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

We derive the elements in Jacobian matrix A as:

Â101 =
1

N

m∑
i

ni∑
j

Tij π̂
−1
ij

(1 − p̂i ij )(yij − xij β̂1 − α1 − ε1)zT
ij
,

Â12 =
1

N

m∑
i

ni∑
j

{−

∫∞
−∞

ni∑
j=1

Zij
e
z
T

ij
γ+ζi

1+e
z
T
ij
γ+ζi

ehi (γ,ζ) ζ
2

2σ4 dζ

∫∞
−∞ ehi (γ,ζ)dζ

,

+

∫∞
−∞

ζ2

2σ4 ehi (γ,ζ)dζ
∫∞
−∞

ni∑
j=1

Zij
e
z
T

ij
γ+ζi

1+e
z
T
ij
γ+ζi

ehi (γ,ζ)dζ

∫∞
−∞ ehi (γ,ζ)dζ

∫∞
−∞ ehi (γ,ζ)dζ

},

Â22 =
1

N

m∑
i

ni∑
j

{
1

2σ4
−

1

σ6

∫∞
−∞ ζ2ehi (γ,ζ)dζ∫∞
−∞ ehi (γ,ζ)dζ

+
1

2σ4
(

∫∞
−∞

ζ4

2σ4 ehi (γ,ζ)dζ∫∞
−∞ ehi (γ,ζ)dζ

,

−

∫∞
−∞ ζ2ehi (γ,ζ)dζ

∫∞
−∞

ζ2

2ζ4 ehi (γ,ζ)dζ∫∞
−∞ ehi (γ,ζ)dζ

∫∞
−∞ ehi (γ,ζ)dζ

)},
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

We derive the elements in Jacobian matrix A as:

Â92 = 0, Â102 = 0, Â33 = −
1

N

m∑
i

ni∑
j

(1 − Tij )x
T
ij
xij , Â53 =

1

N

m∑
i

ni∑
j

xij ,

Â73 =
1

N

m∑
i

ni∑
j

x̄i0, Â93 = −
1

N

m∑
i

ni∑
j

(1 − Tij )(1 − π̂ij )
−1xij ,

Â44 = −
1

N

m∑
i

ni∑
j

Tij )x
T
ij
xij , Â64 =

1

N

m∑
i

ni∑
j

xij ,

Â84 = −
1

N

m∑
i

ni∑
j

x̄i1, Â104 = −
1

N

m∑
i

ni∑
j

Tij π̂
−1
ij

xij , Â55 = −1, Â66 = −1, Â77 = −1,

Â97 = −
1

N

m∑
i

ni∑
j

(1 − Tij )(1 − π̂ij )
−1
, Â88 = −1, Â108 = −

1

N

m∑
i

ni∑
j

Tij π̂ij )
−1
,

Â99 = −
1

N

m∑
i

ni∑
j

(1 − Tij )(1 − π̂ij )
−1
, Â1010 = −

1

N

m∑
i

ni∑
j

Tij π̂
−1
ij
,
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

Approximation of integrals in the computation of ACE variance

fi (1) =

∫ ∞
−∞

ehi (γ,ζ)dζ, fi (2) =

∫ ∞
−∞

ζ
2ehi (γ,ζ)dζ, fi (3) =

∫ ∞
−∞

ni∑
j=1

Zij

ez
T
ij
γ+ζi

1 + ez
T
ij
γ+ζi

ehi (γ,ζ)dζ,

fi (4) =

∫ ∞
−∞

ζ2

2σ4
ehi (γ,ζ)dζ, fi (5) =

∫ ∞
−∞

ni∑
j=1

Zij z
T
ij

ez
T
ij
γ+ζi

(1 + ez
T
ij
γ+ζi )2

ehi (γ,ζ)dζ,

fi (6) =

∫ ∞
−∞

ζ4

2σ4
ehi (γ,ζ)dζ, fi (7) =

∫ ∞
−∞

ni∑
j=1

Zij

ez
T
ij
γ+ζi

1 + ez
T
ij
γ+ζi

ehi (γ,ζ) ζ
4

2σ4
dζ,

fi (8) =

∫ ∞
−∞

ni∑
j=1

Zij

ez
T
ij
γ+ζi

1 + ez
T
ij
γ+ζi

ehi (γ,ζ)
ζ

2dζ

where ki =
ni∑
j=1

Tij and hi (γ, ζ) = kiζ − ζ2

2σ2 −
ni∑
j=1

ln(1 + eγzij +ζ ).
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

For example, to approximate fi (1), we need to minimum

hi (γ, ζ) = −kiζ + ζ2

2σ2 +
ni∑
j=1

ln(1 + eγzij+ζ).

dhi
dζ

= −ki +
ζ

σ2
+ eζ

ni∑
j=1

Bj

1 + Bjeζ
,
d2hi
dζ2

=
1

σ2
+ eζ

ni∑
j=1

Bj

(1 + Bjeζ)2
,

where Bj = eγzij .

The second derivative is positive,the function has a unique minimum.

Newton-Raphson algorithm can be used to solve dhi
dζ

= 0.

ζs+1 = ζs − (
dhi
dζ

)(
d2hi
dζ2

)−1 (11)
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Our methods

Method 2: ACE estimated by Random intercept linear mixed model and IPW by
random intercept logistic regression

Starting from zero, if ζmax is the limiting point of the iterations, the integral fi (1)
can be approximated by

∫ ∞
−∞

eh(ζ)dζ ≈
√

2ν̂h

K∑
k=1

wkexp[ζ2
k + h(ζmax +

√
2ν̂hζk)] (12)

where ν̂h = (− d2hi
dζ2 |ζ=ζmax )−

1
2 , K and αk are Gauss-Hermite abscissas and

weights.

Note: integral fi (2) and fi (8) are not a unimodal function, approximation needs
to be split into two intervals (-1, 0) and (0,1).

All the integrals can be approximated by this algorithm.
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Simulation study

Simulation

Performance criteria

The performance of our methods over 1000 samples from a population described in
the next slide the following criteria:

Average bias

Root-Mean-Square error (RMSE)

Standard deviation of ACE estimates

Average of standard error estimates

The percent coverage rate of nominal 95% confidence intervals.
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Simulation study

Data generation

First, simulate a set of three covariates from independent normal distributions
with varying means and variances: x1 ∼ N(4, 4), x2 ∼ N(4, 4) and x3 ∼ N(12, 4).

Next, treatment membership T is simulated from a binomial distribution with
membership probability

πij = (1 + exp(−(−3 + x1ij + 3x2ij − x3ij + ζi )
−1,

where ζi is a cluster random-effect assumed to follow a normal distribution
N(0, σ2), independently across the clusters i = 1, 2, . . . ,m. In the first scenario,
we work with a fixed value of σ2 which is varied in Scenario 2.

Based on the covariates as well as the treatment assignment,we simulate outcome

yij = 18 + 2x1ij + 3x2ij + 0.8x3ij + 4tij + εij + αi ,

where εij and αi refer to residual error term and random-effects, respectively.
They are further assumed to be independent and normally distributed:

εij ∼ N(0, σ2), αi ∼ N(0, σ2
1),∀i , j .
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Simulation study

Data generation

We simulated a population of 3,000,000 observational units that are grouped
under 3000 clusters.

Scenario 1: clusters between 50 and 150, and number observations within
clusters between 40 and 100 (σ2=0.5 and σ2

1=0.59).

Scenario 2: ICC ranged from 0.12 to 0.85 for the outcome model and 0.08 to 0.3
for the treatment assignment (100 clusters and 60 units within each cluster).

Scenario 3: replace x2 and x3 with asymmetric covariates distributed as x2
k and

lnN(2, 0.36), same ICC settings as scenario 2.
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Simulation study

Table 1: Performance of Methods for Estimating ACE and Standard Error from Data with Various Sample Size: Average Bias
(Bias), Root-Mean-Square Error(RMSE), Standard Deviation of ACE Estimates (SD), Average of SE Estimates (SE), Percent
Coverage Rate of Nominal 95% Confidence Intervals (CR)

n
i

Method 1. IPW by Logistic Model
(ACE=4.0)

Method 2. IPW by Mixed Logistic Model
(ACE=4.0)

Bias RMSE SD SE CR Bias RMSE SD SE CR

m = 150
100 2.67 2.99 1.35 1.28 33 2.60 2.90 1.28 3.10 76

90 2.57 3.05 1.65 1.37 38 1.81 2.18 1.21 1.53 69
80 2.39 3.42 2.45 1.44 36 2.08 2.38 1.16 2.04 72
70 2.85 3.39 1.84 1.34 32 1.63 2.43 1.81 2.02 77
60 2.68 3.55 2.32 1.48 28 2.06 2.47 1.37 1.67 65
50 2.88 3.60 2.16 1.54 35 1.71 2.86 2.28 2.16 68
40 2.92 3.63 2.15 1.69 36 2.18 2.77 1.70 1.84 59

m = 100
100 2.48 3.30 2.17 1.53 38 2.60 2.90 1.28 3.11 76

90 2.45 3.11 1.92 1.57 44 1.48 2.24 2.48 2.24 75
80 2.84 3.42 1.90 1.54 33 2.06 2.47 1.37 1.67 65
70 2.80 3.27 1.70 1.62 41 2.11 2.62 1.56 2.62 79
60 2.52 3.49 2.42 1.75 43 1.73 2.61 1.98 2.45 75
50 2.84 3.54 2.12 1.82 46 2.21 2.67 1.50 2.69 74
40 3.10 3.84 2.27 1.87 39 2.22 2.88 1.83 3.04 74

m = 50
100 2.61 3.30 2.02 1.87 50 2.21 2.67 1.50 2.69 74

90 2.86 3.78 2.47 1.80 42 2.11 2.62 1.56 2.56 79
80 3.04 3.41 1.55 1.88 44 1.73 2.61 1.98 2.45 75
70 3.14 3.69 1.94 1.89 42 1.60 2.68 2.14 5.23 92
60 2.95 4.13 2.89 2.06 46 2.11 2.62 1.56 2.56 79
50 3.33 3.86 1.94 2.22 48 2.45 2.93 1.61 4.71 88
40 3.18 3.95 2.34 2.44 56 2.71 3.05 1.40 4.87 93
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Simulation study

Table 2: Performance of Methods for Estimating ACE and Standard Error Based on Various Intra Class Correlations: Average
Bias (AB), Root-Mean-Square Error(RMSE), Standard Deviation of ACE Estimates (SD), Average of SE Estimates (SE),
Percent Coverage Rate of Nominal 95% Confidence Intervals (CR)

Method 1. IPW by Logistic Model (ACE=4.0) Method 2. IPW by Mixed Logistic Model (ACE=4.0)
ICC1 Bias RMSE SD SE CR Bias RMSE SD SE CR

ICC.2=0.08
0.12 2.68 3.19 1.72 1.74 53 2.42 2.78 1.36 5.35 86
0.40 2.95 3.44 1.77 1.65 41 2.00 2.76 1.90 8.93 92
0.59 3.01 3.49 1.77 1.66 39 1.84 2.70 1.99 7.62 92
0.85 3.16 3.60 1.73 1.55 34 2.05 2.62 1.63 4.45 90

ICC.2=0.30
0.12 3.13 3.40 1.32 1.45 32 1.60 2.73 2.21 2.79 85
0.40 3.52 3.68 1.06 1.34 21 2.08 2.60 1.57 2.96 87
0.59 3.52 3.68 1.06 1.35 21 2.21 2.81 1.74 3.23 87
0.85 3.26 3.59 1.52 1.42 30 1.67 2.74 2.17 3.57 86
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Simulation study

Table 3: Performance of Methods for Estimating ACE and Standard Error from Samples with Asymmetric Covariates: Average
Bias (Bias), Root-Mean-Square Error(RMSE), Standard Deviation of ACE Estimates (SD), Average of SE Estimates (SE),
Percent Coverage Rate of Nominal 95% Confidence Intervals (CR)

Method 1. IPW by Logistic Model (ACE=4.0) Method 2. IPW by Mixed Logistic Model (ACE=4.0)
ICC1 Bias RMSE SD SE CR Bias RMSE SD SE CR

ICC.2=0.08
0.12 1.41 2.38 1.91 1.61 83 1.23 2.00 1.58 1.64 79
0.40 0.97 2.34 2.12 1.70 85 0.98 1.86 1.58 1.70 80
0.59 1.41 2.03 1.46 1.66 87 0.26 2.18 2.19 1.68 95
0.85 1.50 2.27 1.70 1.66 82 -0.25 2.42 2.43 1.63 93

ICC.2=0.30
0.12 1.37 1.73 1.05 1.38 82 1.22 1.79 1.31 1.40 87
0.40 1.24 1.82 1.32 1.46 85 -0.04 2.05 2.06 1.68 92
0.59 1.48 1.83 1.09 1.37 86 -0.06 1.49 1.49 1.47 95
0.85 1.37 2.21 1.74 1.52 82 -0.21 2.51 2.52 1.77 94
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Application: ACE of inadequate prenatal care on birth weight among low income women in New York State

Prenatal care

Prenatal care plays an important role for the well-being of pregnant women and
their babies

Studies have shown that inadequate prenatal care is significantly associated with
low birth weight (Donaldson, 1984; Scholl, 1987; Hueston, 1995; Pedraza 2013;
Loftus, 2015)

Although the benefit of adequate care on reduction of incidents of low birth
weight has been widely discussed in literature, the explicit quantitative effect of
inadequate care on birth weight for those full term babies has rarely been
reported

Our goal is to investigate to what extent the inadequate prenatal care affects
birth weight
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Application: ACE of inadequate prenatal care on birth weight among low income women in New York State

Data source

New York State 2009 vital records, collected separately from the five boroughs of
New York City and the rest of state

54,880 birth records with gestational age greater than 37 weeks

Mothers are covered by New York State Medicaid program

120 hospitals considered as clusters

Less than 9 visits are grouped as inadequate care based on Kessner index
(Kessner, 1973)
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Table 4: Descriptive Statistics for Confounding Variables

Binary Variable Inadequate Care Adequate Care
N % N %

Previous Low Birth Weight∗ ∗ ∗ 177 0.6% 201 0.8%
Preexisting Hypertension 252 0.8% 205 0.8%
pregnancy Induced Diabetes 1,094 3.6% 846 3.4%
Adverse Event 718 2.4% 612 2.5%
less than HS Education∗ ∗ ∗ 9,804 32.4% 9,563 38.9%
SSI Eiligible 366 1.2% 342 1.4%
Black∗ ∗ ∗ 6,233 20.6% 6,644 27.0%
Hispanic 10,376 34.3% 8,559 34.8%
White∗ ∗ ∗ 10,270 33.9% 6,877 28.0%
No Previous Live Births∗ ∗ ∗ 14,853 49.0% 11,190 45.5%
Smoking Status 3,942 13.0% 3,250 13.2%

Continous Variable Mean SD Mean SD
Gestational Age 39.4 0.93 39.4 0.97
Mother’s BMI∗ ∗ ∗ 35.6 26.2 33.6 21
Mother’s Age 26.1 5.7 25.6 5.9
† Note: adverse event includes abruptio placenta or Eclampsia or infection or pregnancy induced hypertension
† *** Significantly different between two groups.
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Results

Our simulation experiments show that method 2 is a preferable choice when the
clustering effect on treatment assignment is not ignorable.

Receiving inadequate care would reduce birth weight of 24.1 gram on average.
The estimated standard error of the ACE is 4.7.
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Discussion

The dual model strategy in our methods has potential to address selection bias
into the treatment group

Ignoring the unobservable cluster-specific effect on treatment assignment leads to
dismal performance

Correct specification of both models is ideal but not realistic

We have found that both methods may fail under some circumstances such as
extreme large ICCs or small sample size. This may be caused by the outliers in
the predicted propensity scores. These outliers can lead to extreme values in the
estimation equations as well as integral approximation.

We recommend the estimation of ACE should be within each cluster if the
clustering effect is large.
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