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Average Treament Effects and Notation

• Observe (Yi, Ti, Xi) iid

• Yi = Yi(Ti) is the observed outcome under treatment Ti

• Ti is a binary treatment indicator

• Xi is a covariate

• Nonparametric model for the potential outcomes

Yi(t) = mt(Xi)
outcome model for treatment t

+ εi(t)
unconfounded mean-zero variation

a.k.a. noise

• Estimand: Effect of treatment averaged over the whole sample

τ̄ =
1

n

n∑
i=1

m1(Xi)

average treatment outcome µ̄1

− 1

n

n∑
i=1

m0(Xi)

average control outcome µ̄0

• For Today: Estimating µ̄1
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Augmented Inverse Probability Weighting: How it works

µ̂1 =
1

n

n∑
i=1

m̂1(Xi)

averaged predictions

− 1

n

∑
i:Ti=1

γi (m̂1(Xi)− Yi)

error estimate

• Start with a regression estimator

• Fit a nonparametric model for the outcome under treatment

• Average its predictions over the complete sample

• Our error is the bias of these predictions, averaged

error = 1
n

∑n
i=1(m̂1 −m1)(Xi)

• Subtract an estimate of our error

• This estimate is a weighted average of the regression residuals

• because residuals are noisy measurements of prediction bias.

• We only have residuals on the treatment subsample

• so we weight so it’s like an average over the complete sample.

êrror = 1
n

∑
i:Ti=1 γi(m̂1 −m1)(Xi)− 1

n

∑
i:Ti=1 γiεi

• The error of our corrected estimator is error − êrror
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Augmented Inverse Probability Weighting: Weighting

• The error of the AIPW estimator arises from ‘imbalance’ between

• Our target population, the whole sample

• Our weighted treatment group

in the unobservable regression error function ξn = m̂1 −m1

µ̂1 − µ̄1 =
1

n

n∑
i=1

ξn(Xi)−
1

n

∑
i:Ti=1

γiξn(Xi)︸ ︷︷ ︸
‘imbalance’ Iξn (γ)

+
1

n

∑
i:Ti=1

γiεi︸ ︷︷ ︸
’noise’

• If the weighted treatment sample is just like our target population,

our regression error ξn gets averaged out to nothing.

• This is too much to hope for.

• We can’t define such weights because we don’t know much about ξn.

• But ensuring that this imbalance is small will be our primary focus.

• And that’s fine. However we weight, the noise term is small.

• it’s an average of mean-zero, conditionally independent terms

noise ∼ 1/
√
n.
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The Gold Standard: True Inverse Propensity Weights

• The inverse propensity weights are the unique weights that

balance any function ξ in mean

E Iξ(1/e) = 0

• The imbalance is not just mean zero; it is small with high probability

Iξ(1/e) ∼
‖ξ‖√
n

• If our regression error ξn → 0,

our imbalance in ξn is neglible relative to noise

Iξn(1/e)

noise
∼ ‖ξn‖

• Therefore:

• This estimator is asymptotically unbiased.

• Its MSE is asymptotically optimal.

• We can’t hope for better.

• We’ll imitate its behavior as well as we can.
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Imitation by Estimation: Estimated Inverse Propensity Weights

• In observational studies, we don’t know the propensity score.

• We can use an estimate: γ̂i = 1/ê(Xi)

• Expand imbalance around the imbalance with the true IPW

Iξn(1/ê)− Iξn(1/e) =
1

n

∑
i:Ti=1

(
1

ê(Xi)
− 1

e(Xi)

)
ξn(Xi)

• Our estimator imitates the gold standard if this perturbation is small.

• Well-known sufficient condition via Cauchy-Schwarz

‖ξn‖‖1/ê− 1/e‖ � 1/
√
n
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Calibration of Estimated Inverse Propensity Weights

‖ξn‖‖1/ê− 1/e‖ � 1/
√
n

• It’s important to think of PS estimation errors on the inverse scale.

• Errors estimating e or logit(e) blow up when mapped to this scale.

• Rule of Thumb: Estimate e(Xi) with error less than e(Xi)
2.

1

ê(X)
− 1

e(X)
=
e(X)− ê(X)

ê(X)e(X)

• This can be a lot to ask for.

• It may not be possible to estimate the propensity score this well.

•
• We will approach the problem from a different direction.

• The resulting estimator will be almost completely insensitive to

the difficulty of estimating the propensity score.

• We’ll need to exploit more of our knowledge about ξn.
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What do we know about ξn?

• Suppose that m is smooth, i.e. bounded partials up to order k

• Use a smooth estimator m̂, e.g. via locally weighted regression
• Then we know two things about ξn.

• it’s smooth

• it converges at some rate

• i.e. ξn is, up to scale, in a set of smooth functions

convergent at that rate

ξn/ ‖ξn‖Fn︸ ︷︷ ︸
scale

∈ Fn

• Smoothness is just one possible assumption.

• What we need is a condition like this where

• the scale of ξn is bounded whp

• the set Fn isn’t too complex

• We could assume, if we preferred:

• m is approximately sparse in some basis

• m has bounded variation
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How to Sidestep PS Estimation

• To balance the regression error ξn, balance the set Fn uniformly

• Define the maximal imbalance over this set

IFn(γ) := max
ξ∈Fn

Iξ(γ).

• Conditional on {Xi, Ti}ni=1, the worst case MSE satisfies

1

2
MSE ≤ IFn(γ)

2E
[
‖ξn‖2Fn | X,T

]
+

1

n2

∑
i:Ti=1

γ2
i var [εi(1) | Xi]

• Minimize assuming the ratio of tuning parameters is the constant σ.

γ̂ := argmin
γ

`(γ), `(γ) := IFn(γ)
2 +

σ2

n2
‖γ‖2

• Remarks

1. This optimization problem is solvable with fast off-the-shelf software

2. Our assumption on the tuning parameter ratio is just for motivation.

We study its behavior for arbitrary scale and heterogeneous variance.
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These Weights are Estimated Inverse Propensity Weights

• Our weights are determined [γ̂i = ĝ(Xi)] by a penalized least

squares estimate of the inverse propensity score

1

n

∑
i:Ti=1

[
g(Xi)−

1

e(Xi)

]2

− 1

n

n∑
i=1

Ui

[
g(Xi)−

1

e(Xi)

]
+
‖g‖2Fn
n

with

• bounded mean-zero noise Ui = 1− Ti
e(Xi)

• a penalty on the scale ‖g‖Fn
• Nice Properties

• We estimate the PS on the inverse scale – the same way we use it

• no error-inflating transformations!

• Our penalty focuses us on balancing the functions we need to, e.g.

• a smooth estimate of a [nonsmooth] inverse PS will balance a

smooth function ξ

• ĝ is universally consistent

• no assumptions on the PS besides overlap
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This Estimator Imitates the Uniform Balance of the True IPW

• Our weights γ̂ minimize the function `

`(γ) := IFn(γ)2 + ‖γ‖2/n2.

• Compare the value of ` at our weights and the true IPW

√
nIFn (γ̂) ≤

√
nIFn (1/e) + σ

√∣∣∣∣ 1n (‖1/e‖2 − ‖γ̂‖2)
∣∣∣∣︸ ︷︷ ︸

op(1)

.

• Because our weights consistently estimate the true IPW,

they balance Fn asymptotically as well as the true IPW.

• Nice Consequence

• the imbalance in the regression error ξn is asymptotically negligible

• therefore our estimator is asymptotically optimal

if

• The maximal imbalance on Fn with the true IPW is op(1/
√
n).

• The scale ‖ξn‖Fn is bounded
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More Formally

Theorem

The AIPW estimator µ̂1 with

γ̂ := argmin
γ

IFn(γ)
2 + ‖γ‖2/n2

is asymptotically normal with optimal variance if

• The propensity score is bounded away from zero.

• Our noise has a third conditional moment

• Fn is convex and symmetric

• The scale of ξn relative to Fn is Op(1)

• The Rademacher complexity of Fn is op(1/
√
n)

• The sequence Fn is dense in the space of square integrable functions
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Range of Asymptotic Efficiency

outcome model smoothness

P
S
sm
oo
th
ne
ss

Plugin-DR IPW
Plugin-DR UBW
Theoretically Possible

AIPW-Estimated
AIPW-Balancing
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Simulation Results

root-mean squared error coverage

BART AIPW TMLE Ours BART AIPW TMLE Ours

se
tu

p
1

0.82 0.18 0.18 0.17 0.00 0.88 0.92 0.93

0.76 0.15 0.15 0.14 0.00 0.86 0.88 0.90

0.99 0.25 0.25 0.24 0.00 0.86 0.90 0.90

0.40 0.12 0.12 0.09 0.07 0.92 0.94 0.94

0.40 0.11 0.11 0.10 0.01 0.90 0.93 0.94

0.65 0.16 0.16 0.13 0.01 0.88 0.88 0.94

se
tu

p
2

0.08 0.08 0.08 0.08 0.92 0.92 0.92 0.93

0.08 0.07 0.07 0.08 0.96 0.96 0.98 0.96

0.07 0.07 0.07 0.07 0.96 0.96 0.97 0.96

0.07 0.08 0.08 0.07 0.96 0.96 0.99 0.98

0.08 0.07 0.07 0.07 0.94 0.94 0.97 0.96

0.07 0.08 0.08 0.08 0.98 0.94 0.96 0.96
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Simulation Results

root-mean squared error coverage

BART AIPW TMLE Ours BART AIPW TMLE Ours

se
tu

p
3

0.38 0.72 0.65 0.31 0.54 0.82 0.80 0.86

0.33 0.65 0.61 0.18 0.60 0.57 0.56 0.96

0.40 0.67 0.61 0.29 0.48 0.84 0.83 0.85

0.32 0.61 0.55 0.18 0.28 0.64 0.55 0.92

0.27 0.61 0.57 0.10 0.38 0.29 0.22 0.98

0.41 0.63 0.56 0.21 0.12 0.64 0.57 0.87

se
tu

p
4

0.30 0.16 0.16 0.10 0.08 0.67 0.65 0.90

0.19 0.15 0.15 0.07 0.31 0.64 0.60 0.96

1.01 0.29 0.30 0.21 0.00 0.22 0.16 0.44

0.37 0.18 0.18 0.11 0.02 0.59 0.58 0.85

0.23 0.17 0.17 0.08 0.16 0.56 0.55 0.94

1.02 0.36 0.35 0.28 0.00 0.04 0.06 0.20
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Variations: Past and Future

1. Athey et al. [2016] studied this estimator with High-Dimensional

Linear Outcome Models. We’ve refined their argument, which we

hope will enable sharper characterization in that that setting.

2. Kallus [2016] studied these weights in the context of linear

estimators, i.e. without regression. He established a rate using a

simplified version of our argument. Proving efficiency will require

some new arguments, which we are working on.

3. Our argument can work with balanced sets Fn that depend on the

complete data {Xi, Yi, Ti}ni=1. Wide Open: How should we base our

balanced set Fn on a selected model?
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Summary

• The AIPW with Uniform Balancing Weights

can compete with top-performing estimators like the TMLE.

• Its insensitivity to the complexity of the PS

can be a big advantage in some problems.

• The essential reason for this difference is that our balancing

approach imitates the balance of the true IPW in a coarser way.

• With EIPW, we try to imitate the imbalance of the true IPW for all

functions

• With UBW, we try to imitate the maximum of this imbalance over

some set. This is easier.

• Paper on Arxiv, Software coming soon.
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