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Motivation

Estimating causal effects of multiple treatments/interventions

Common in many studies. For example:

1. Estimating the effects of nutrition label use on body mass index

2. Evaluating treatment programs for adolescent substance abuse

3. Evaluating the cardiovascular safety of multiple drug classes for type 2
diabetes
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Randomized Design

Ideal for estimating causal effects:

I Treatment groups are guaranteed to be similar in terms of
covariates, X.

But...

I Expensive

I Unethical

I Restricted population used in the experiments

Sometimes, we need to rely on observational data!
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The Assignment Mechanism

P(W = w | Y (1), . . . ,Y (Z ),X)

1. Individualistic: Treatment assignment for one unit does not depend
on covariates or potential outcomes of other units

2. Unconfoundedness:
P(W = w | Y (1), . . . ,Y (Z ),X) = P(W = w | X)

3. Positivity: 0 < P(W = w | X) < 1 for all w ∈ W
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Steps in Implementing Matching Methods

Stuart (2010) –

1. Defining “closeness”: Use a distance measure in order to determine
whether an individual is a good match for another.

2. Given the distance measure, implement a matching method.

3. Assessing the quality of the matched cohort.

4. Analysis of the outcome and estimation of the treatment effect.
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1. Defining Closeness

Multiple treatments: Match on the generalized propensity score
(GPS) vector,

R(Xi ) = {P(Wi = 1 | Xi ), . . . ,P(Wi = Z | Xi )}
= {r(1,Xi ), . . . , r(Z ,Xi )} .

I Some possible distance measures:

(i) Exact (usually on X)

(ii) Mahalanobis distance (of R(X), or X)

(iii) Linear GPS: For reference treatment t,

|logit[r(t,Xi )]− logit[r(t,Xj)]|
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2. Implementing a Matching Method

Matching for ATT: E[Y (j)− Y (k) |W = t], (j , k) ∈ W2, j 6= k

1:1:1 nearest-neighbor matching (ex: for Z = 3 treatments)

I Set a reference treatment, say, treatment 1.

I For subject i receiving reference treatment 1, select a subject from
each of treatments 2 and 3 with the smallest distance from subject i .

I Extract the matched triplet only if subject i has a match in each of
treatment groups 2 and 3.

Some considerations:

I Selecting the number of matches per subject

I With or without replacement
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2. Implementing a Matching Method – Vector Matching

Lopez & Gutman (2017) – Match on a vector of generalized
propensity scores (GPS)

Stratify on R(X) = {r(1,X), . . . , r(Z ,X)} using k-means clustering,
match within strata.

I Some possible matches may not be considered by VM because they are
on the boundaries of clusters.

Use the linear GPS, |logit[r(t,Xi )]− logit[r(t,Xj)]| as the distance
measure, where t is the reference treatment.

Vector matching (VM) has been shown to produce matched sets with
low covariate bias for Z = 3 treatments.
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2. Implementing a Matching Method – Proposed Matching

Fuzzy Matching (FM): Matching within fuzzy clusters, using the
Mahalanobis distance of pairs of GPS vector components as the
distance measure

I Fuzzy clustering allows for subjects to belong to multiple clusters

I Ex: A subject belonging to two clusters can be matched to a subject
appearing in either of the two clusters.

I Matching on pairs of components of R(X) may be useful when the
total number of components is large (i.e., large Z )

GPS Matching (GPS): Matching on the Mahalanobis distance of
the GPS vector, R(X)

Covariate Matching (COV): Matching on the Mahalanobis distance
of the covariates, X
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3. Assessing Quality of Matching

How well does a matching method improve covariate balance between
treatment groups?

Calculate the standardized bias at each covariate p for each pair of
treatments j and k ,

SBpjk =
X pj − X pk

δpt
,

where δpt is the standard deviation of Xp among subjects receiving
reference treatment t.

Extract the maximum standardized bias at each covariate,

Max2SBp = max(|SBp12|, |SBp13|, |SBp23|, . . . ).
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Simulations

Performance of VM, FM, GPS, COV

I Looked at Z = 5 and Z = 10

I Number of covariates P ∈ {5, 10, 20}

Simulation factors: covariate distributions, number of covariates,
treatment group sample size, and others

We summarized Max2SBp by averaging over p:

Max2SB =
1

P

P∑
p=1

Max2SBp

I Past literature advocates a cutoff of 0.20–0.25.
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Results: Z = 5 Treatments
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Results: Z = 10 Treatments
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Discussion

Matching on the GPS vector as a novel and effective approach to
generating a well-balanced matched cohort

Importance of study population and causal estimand

Importance of setting

I Number of covariates?

I Number of treatment groups?
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Contact

Email: anthony scotina@brown.edu

Website: scotinastats.github.io

Twitter: @ScotinaStats

Thank you!

Any questions?
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