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Motivation

Efficient design of cancer screening is not available until now: at
what age to start screening? and how frequently?

For an individual who has gone through a few screening exams in
the past and get negative results so far, when should s/he come
back for the next exam?

Some research has been done to study the problem of a fixed
budget that allows only n exams in a fixed age interval, using some
utility functions (Zelen 1993, Lee and Zelen 1998). The problem:
utility functions are subjective, and the methods cannot be applied
directly by diagnostic radiologists.

We will use conditional probability of incidence before the next
exam, to control the risk of incidence.

The method can be applied to any kinds of screening; it will be
applied to the women’s breast cancer using the Health Insurance
Plan for Greater New York (HIP) data.
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The HIP data

The Health Insurance Plan of Greater New York (HIP) study,
which began at the end of 1963, was the first randomized
clinical trial to examine mammogram screenings for breast
cancer.

Asymptomatic women without a history of breast cancer, with
initial age: 40−64, average age = 51.2, and with 15 years of
follow-up.

About 60,000 participants were equally randomized into 2
arms: Study and Control.

Study group: mammogram + clinical exam in each screening,
and 4 annual screenings.

Control group: usual care without screening.
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The HIP Study Group Data

s1
r1 s2

r2 s3
r3 s4

r4

t0

ni 20166

t1

15936

t2

13679

t3

11971

T

t0 < t1 < · · · < tk−1 < tk : k ordered screening exam times.

ni : the number of individuals examined at ti−1

si : screening detected cases at the exam given at ti−1

ri : interval cases, the number of cases found in the clinical
state (Sc) within (ti−1, ti ).

(ni , si , ri ): data stratified by initial age in the i-th interval.
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The HIP Data

Table 1. HIP study group data: 4 annual screenings

Age n1 s1 r1 n2 s2 r2 n3 s3 r3 n4 s4 r4
· · · · · ·

45 985 1 0 850 1 0 782 2 2 687 3 1
46 1014 3 0 887 2 1 833 1 0 744 0 0
47 933 2 1 808 2 0 747 0 2 658 1 0
48 978 1 0 849 0 0 777 0 0 683 2 0
49 915 1 0 817 0 0 765 1 0 677 2 1
· · · · · ·

Note: a characteristic of periodic cancer screening is that data were

collected repeatedly.
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The progressive model

The progressive disease model assumes that all clinical cancer
will go through three states (Zelen and Feinleib in 1969):

S0

disease free

Sp

t1

preclinical

Sc

t2

clinical

t

6
- -

S0 is the disease-free state or the state in which the disease
can not be detected.
Sp is the preclinical state, in which an asymptomatic
individual unknowingly has the disease that a screening exam
can detect.
Sc is the clinical state at which the disease manifests itself in
clinical symptoms.
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Sojourn time, transition probability and lead time

Illustration of disease progression and the lead time:

0
6

S0
� � Sp

� � Sc
�

t1

6
t
6

t2

6
-

Let ti represent a person’s age.

sojourn time: (t2 − t1), the time duration in the preclinical
state.

transition probability density: measures the time duration
in the disease free state, ie. the distribution of t1.

lead time: (t2 − t), the time interval between the diagnosis
time t and the onset of Sc if not screened, ie. the length of
time the diagnosis is advanced by screening.
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The three key parameters

sensitivity at age t: β(t) = P(X = 1|D = 1, t).

0
6

t1

6

T1 ∼ w(t)� �T2 ∼ q(x)� � Sc�
t
6

t2

6
-

w(t): Probabilty Density Function (PDF) of the time spent in the
disease-free state S0.

q(x): PDF of the sojourn time (time duration in the preclinical
state Sp).

Q(z) = Pr(T > z) =
∫∞
z

q(x)dx , survivor function of the sojourn
time.

The three key parameters: sensitivity β(t), transition density w(t),
and sojourn time distribution q(x). Any other term/probability is a
function of the three key parameters.
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Define events

0 t0

History �
t1 · · · tK−1

↑
Current age

r
(tK−1 + tx)

Suppose one has taken K = exams at ages t0 < t1 < · · · < tK−1 and is
asymptomatic at current age tK−1. Define events:

HK =

{
one is asymptomatic in [0, tK−1] after
taking K exams at ages t0 < t1 < · · · < tK−1

}
,

IK = { one will be a clinical incident case first time in (tK−1, tK−1 + tx)},
DK = { one will be diagnosed at (tK−1 + tx) for the first time}.
AK = { one will be asymptomatic in (tK−1, tK−1 + tx ]},

The mutually exclusive events (IK ,DK ,AK ) is a partition of the whole sample
space:

IK ∪ DK ∪ AK = Ω.
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Probability of incidence

Let tK = tK−1 + tx , the probability of incidence before the next
screening exam among people at risk (IK or DK ) is:

P(IK |IK ∪ DK ,HK ) =
P(IK |HK )

P(IK ∪ DK |HK )
=

P(IK |HK )

1− P(AK |HK )
(1)

=
P(IK ∩ HK )/P(HK )

1− P(AK ∩ HK )/P(HK )
=

P(IK ∩ HK )

P(HK )− P(AK ∩ HK )

We need to calculate the probabilities: P(HK ),P(IK ∩ HK ) and

P(AK ∩ HK ).

Wu Optimal Scheduling



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Motivation
The method
Simulation
Application
Conclusion

Probability calculation

0 t0

History �
t1 · · · tK−1

↑
Current age

r
tK−1 + tx

Let t−1 = 0, then

P(HK ) = P( remained in S0 in (0, tK−1))

+ P( entered and remained in Sp and not being detected )

= 1−
∫ tK−1

0

w(x)dx (2)

+
K−1∑
i=0

(1− βi ) · · · (1− βK−1)

∫ ti

ti−1

w(x)Q(tK−1 − x)dx
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Probability calculation - cont.

P(IK ∩ HK ) =
K−1∑
i=0

(1− βi ) · · · (1− βK−1)

∫ ti

ti−1

w(x)[Q(tK−1 − x)− Q(tK − x)]dx

+

∫ tK

tK−1

w(x)[1− Q(tK − x)]dx , (3)

And

P(AK ∩ HK ) = 1−
∫ tK

0

w(x)dx

+
K∑
j=0

(1− βj) · · · (1− βK )

∫ tj

tj−1

w(x)Q(tK − x)dx , (4)

And in fact P(AK ∩ HK ) = P(HK+1).
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Find the optimal scheduling time

This probability of incidence, P(IK |IK ∪ DK ,HK ), is monotonically
increasing as the upcoming screening time interval tx increases.
Therefore, for any pre-selected small value α, there exists a unique
numerical solution t∗, that satisfies

P(IK |IK ∪ DK ,HK ) = α. (5)

That is, with probability (1− α), she will NOT be a clinical cancer
case before her next screening exam at her age (tK−1 + t∗), where
tK−1 is her current age.
One may choose α at a risk level that she is comfortable with,
such as 0.05 or 0.10 (5% or 10%).
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Lead time and overdiagnosis

After t∗ is found (based on one’s screenig history and other
parameters), we can make more inferences if one were diagnosed
with cancer at (tK−1 + t∗):

Calculate the conditional distribution of the lead time at
(tK−1 + t∗).

Calculate the probability of overdiagnosis (and
true-early-detection) at (tK−1 + t∗).

These provide predictive information.
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Lead time distribution

We let L be the lead time (the time diagnosis is advanced by screening),
and let tK = tK−1 + t∗, then the conditional probability density function
(PDF) of the lead time given the event DK (i.e., one will be diagnosed at
tK for the first time) is

fL(z |DK ) =
fL(z ,DK )

P(DK )
, for z ∈ (0,∞). (6)

Where the denominator

P(DK ) = βK

{
K−1∑
i=0

(1− βi ) · · · (1− βK−1)

∫ ti

ti−1

w(x)Q(tK − x)dx

+

∫ tK

tK−1

w(x)Q(tK − x)dx

}
. (7)
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Lead time distribution - cont.

And the numerator

fL(z ,DK ) =
K∑
i=0

fL(z ,DK , and she is from the i-th generation)

= βK

{
K−1∑
i=0

(1− βi ) · · · (1− βK−1)

∫ ti

ti−1

w(x)q(tK + z − x)dx

+

∫ tK

tK−1

w(x)q(tK + z − x)dx

}
. (8)

This is a valid probability density function (pdf), since∫ ∞
0

fL(z |DK )dz = 1. (9)

Wu Optimal Scheduling



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Motivation
The method
Simulation
Application
Conclusion

Probability of overdiagnosis and true-early-detection

To calculate the probability, We first let the lifetime T to be a fixed
value, then let it to be random. Given one would be diagnosed at
tK = tk−1 + t∗ and one’s fixed lifetime T = t(> tK ), the
probability of overdiagnosis and true-early-detection can be derived:

P(OverD|DK ,T = t) =
P(OverD,DK |T = t)

P(DK |T = t)
,

P(TrueED|DK ,T = t) =
P(TrueED,DK |T = t)

P(DK |T = t)
.

where P(DK |T = t) = P(DK ) as in equation (7).
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Probability of overD and trueED

P(OverD,DK |T = t)

= βK

{
K−1∑
i=0

(1− βi ) · · · (1− βK−1)

∫ ti

ti−1

w(x)Q(t − x)dx

+

∫ tK

tK−1

w(x)Q(t − x)dx

}
. (10)

P(TrueED,DK |T = t)

= βK

{
K−1∑
i=0

(1− βi ) · · · (1− βK−1)

∫ ti

ti−1

w(x)[Q(tK − x)− Q(t − x)]dx

+

∫ tK

tK−1

w(x)[Q(tK − x)− Q(t − x)]dx

}
. (11)

And it can be verified that

P(TrueED|DK ,T = t) + P(OverD|DK ,T = t) = 1.
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Probability of Overdiagnosis - cont.

Now we allow human lifetime T to be random, and let
fT (t|T > tk) be the conditional PDF of the lifetime T , derived
from the actuarial life table (US Social Security Administration,
http://www.ssa.gov/OACT/STATS/table4c6.html), then

P(OverD|DK ,T > tK ) =

∫ ∞
tK

P(OverD|DK ,T = t)fT (t|T > tK )dt,

P(TrueED|DK ,T > tK ) =

∫ ∞
tK

P(TrueED|DK ,T = t)fT (t|T > tK )dt.

Where

fT (t|T ≥ tK ) =

{
fT (t)

P(T>tK ) = fT (t)
1−FT (tK ) , if t ≥ tK ,

0, otherwise.
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The Official Website of the U.S. Social Security Administration
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Life Tables A period life table is based on the mortality experience of a population during a relatively short period 

of time. Here we present the 2007 period life table for the Social Security area population. For this 

table, the period life expectancy at a given age represents the average number of years of life 

remaining if a group of persons at that age were to experience the mortality rates for 2007 over the 

course of their remaining life. 

Exact 
age

Male Female

Death  
probability 

Number of 
lives 

Life 
expectancy

Death 
probability 

Number of 
lives 

Life 
expectancy

0 0.007379 100,000 75.38 0.006096 100,000 80.43

1 0.000494 99,262 74.94 0.000434 99,390 79.92

2 0.000317 99,213 73.98 0.000256 99,347 78.95

3 0.000241 99,182 73.00 0.000192 99,322 77.97

4 0.000200 99,158 72.02 0.000148 99,303 76.99

5 0.000179 99,138 71.03 0.000136 99,288 76.00

6 0.000166 99,120 70.04 0.000128 99,275 75.01

7 0.000152 99,104 69.05 0.000122 99,262 74.02

8 0.000133 99,089 68.06 0.000115 99,250 73.03

9 0.000108 99,075 67.07 0.000106 99,238 72.04

Period Life Table, 2007

Office of the Chief Actuary 

a b a b

Page 1 of 3Actuarial Life Table
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Figure 1: The conditional PDF of lifetime for females
when tK = 60, 70, 80
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Simulation set up

Historic screening interval ∆ = 1, 1.5, 2 years, from t0 = 50 to
currrent age tK−1 = 62.
Screening sensitivity β = 0.7, 0.8, 0.9.
Sojourn time: Log logistic distribution

Q(x) = [1 + (xρ)κ]−1, κ > 0, ρ > 0.

Let mean sojourn time be 2, 5, 10 and 15 years, i.e.,
κ = 2.5, ρ = 0.661, 0.264, 0.132, 0.088.
Transition density

w(t|µ, σ2) =
0.2√
2πσt

exp
{
−(log t − µ)2/(2σ2)

}
, σ > 0.

with mode around 60 years old, i.e. µ = 4.2, σ2 = 0.1.
Probability (risk) of incidence before next screening:
α = 0.05, 0.1, 0.15, 0.2.
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Table 2: Simulated optimal screening time t∗

MST = 2 years 

  Beta = 0.7  Beta = 0.8  Beta = 0.9 

α       a∆  1.0  1.5  2.0  1.0  1.5  2.0  1.0  1.5  2.0 

0.05  0.13  0.10  0.09  0.21  0.14  0.11  0.47  0.31  0.23 

0.1  0.33  0.24  0.21  0.56  0.40  0.33  0.84  0.75  0.69 

0.15  0.58  0.45  0.39  0.86  0.72  0.64  1.12  1.05  1.01 

0.2  0.83  0.69  0.62  1.11  1.01  0.94  1.36  1.31  1.28 

MST = 5 years 

  Beta = 0.7  Beta = 0.8  Beta = 0.9 

α       a∆  1.0  1.5  2.0  1.0  1.5  2.0  1.0  1.5  2.0 

0.05  0.87  0.53  0.38  1.31  0.98  0.69  1.67  1.52  1.35 

0.1  1.65  1.28  1.00  2.07  1.84  1.61  2.42  2.31  2.21 

0.15  2.25  1.94  1.67  2.67  2.48  2.30  3.03  2.95  2.86 

0.2  2.78  2.52  2.28  3.22  3.06  2.91  3.60  3.53  3.46 

MST = 10 years 

  Beta = 0.7  Beta = 0.8  Beta = 0.9 

α       a∆  1.0  1.5  2.0  1.0  1.5  2.0  1.0  1.5  2.0 

0.05  2.69  2.22  1.74  3.19  2.92  2.61  3.59  3.47  3.34 

0.1  4.03  3.66  3.29  4.56  4.35  4.13  5.00  4.91  4.82 

0.15  5.11  4.79  4.47  5.69  5.51  5.32  6.18  6.10  6.02 

0.2  6.09  5.81  5.53  6.73  6.57  6.40  7.29  7.21  7.14 

MST=15 years 

  Beta = 0.7  Beta = 0.8  Beta = 0.9 

α       a∆  1.0  1.5  2.0  1.0  1.5  2.0  1.0  1.5  2.0 

0.05  4.43  4.02  3.56  5.00  4.77  4.50  5.46  5.36  5.25 

0.1  6.35  6.02  5.66  6.99  6.81  6.61  7.54  7.47  7.38 

0.15  7.91  7.61  7.30  8.63  8.46  8.29  9.27  9.20  9.12 

0.2  9.33  9.06  8.78  10.14  9.99  9.83  10.87  10.81  10.74 
a∆ is the historical screening interval (in years) in the corresponding row. 
α = probability of incidence before the next screening exam in the 1st column. 
MST = mean sojourn time.  
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Summary of the simulated optimal scheduling time

Sensitivity will affect the next screening time interval in a
positive way: higher sensitivity means longer time interval to
maintain the same incidence risk α.

Mean Sojourn Time (MST) affects the next screening interval
in a positive way: long MST (slow growing cancer or low risk
people) means she can wait longer time to carry out the next
screening.

Screening history plays an important role: shorter screening
interval in the past means longer screening interval for the
upcoming test, and vise versa.

Lower probability of incidence α, means shorter screening
interval.
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Figure 2: Lead time distribution using t∗ under the four factors: α, β,∆
and MST.
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Summary of the lead time distribution under the optimal t∗

The density curve of the lead time changes MORE with the risk α
and the mean sojurn time (MST), and it changes LESS with the
screening sensitivity β and the past screening interval ∆ if the
optimal scheduling time t∗ is adopted.

Smaller α means larger mean/median/mode of the lead time,
and smalller standard deviation of the lead time.

Longer MST means larger mean/median/mode, and larger
standard deviation of the lead time.

Wu Optimal Scheduling



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Motivation
The method
Simulation
Application
Conclusion

Table 3: Estimated probability of overdiagnosis (in percentage) using the t∗
aMST = 2 yrs

β = 0.7 β = 0.8 β = 0.9
bα\∆ 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
0.05 1.55 1.55 1.57 1.58 1.57 1.57 1.62 1.62 1.63
0.10 1.58 1.58 1.60 1.60 1.60 1.62 1.61 1.61 1.62
0.15 1.59 1.60 1.62 1.61 1.61 1.63 1.62 1.62 1.63
0.20 1.59 1.62 1.64 1.62 1.63 1.64 1.64 1.64 1.64

MST = 5 yrs
β = 0.7 β = 0.8 β = 0.9

α\∆ 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
0.05 5.17 5.01 4.90 5.29 5.21 5.11 5.38 5.34 5.31
0.10 5.31 5.21 5.13 5.43 5.37 5.31 5.53 5.50 5.48
0.15 5.46 5.38 5.31 5.60 5.54 5.49 5.73 5.71 5.68
0.20 5.63 5.55 5.49 5.80 5.75 5.70 5.96 5.93 5.91

MST = 10 yrs
β = 0.7 β = 0.8 β = 0.9

α\∆ 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
0.05 14.27 13.91 13.54 14.61 14.41 14.19 14.88 14.79 14.70
0.10 15.03 14.72 14.44 15.43 15.26 15.08 15.80 15.71 15.63
0.15 15.80 15.52 15.25 16.31 16.14 15.97 16.76 16.69 16.62
0.20 16.64 16.37 16.11 17.27 17.10 16.94 17.86 17.77 17.70

MST = 15 yrs
β = 0.7 β = 0.8 β = 0.9

α\∆ 1.0 1.5 2.0 1.0 1.5 2.0 1.0 1.5 2.0
0.05 25.90 25.41 24.86 26.51 26.22 25.90 27.00 26.87 26.74
0.10 27.67 27.24 26.77 28.45 28.19 27.92 29.12 29.02 28.90
0.15 29.45 29.01 28.57 30.42 30.16 29.90 31.32 31.21 31.09
0.20 31.31 30.90 30.47 32.53 32.29 32.03 33.67 33.56 33.44
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Figure 3: Percentage of overdiagnosis vs. next screening
time t
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Summary of the over-diagnosis under the t∗

Mean sojourn time (MST) plays the most important role in
overdiagnosis: longer MST means larger probability of overdiagnosis.

Probability of overdiagnosis will slightly increase as the screening
sensitivity β increases.

For the same fixed MST, the probability of overdiagnosis won’t
change much as the risk α increases.

We plot the probability of overdiagnosis versus future scheduling
time in Figure 3. It shows that the probability of overdiagnosis is
monotonic increasing as t∗ increases, and it won’t change much
with sensitivity β and past screening interval ∆ for a fixed MST.

Wu Optimal Scheduling



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Motivation
The method
Simulation
Application
Conclusion

Application to the HIP Data

All methods that we derived before, are functions of the three key
parameters: β(t), q(x),w(t), so we need to extract these
information from the HIP data first.

Wu, Rosner & Broemeling (2005) developed statistical inference
procedures to estimate the sojourn time q(x), the age-dependent
sensitivity β(t), and the age-dependent transition density w(t)
using parametric link and likelihood function.

Sensitivity: β(t) = [1 + exp(−b0 − b1 ∗ (t −m))]−1.

Transition density S0 → Sp: 0.2 * lognormal pdf

w(t|µ, σ2) =
0.2√
2πσt

exp
{
−(log t − µ)2/(2σ2)

}
, σ > 0.

Sojourn time: Log logistic distribution

q(t) =
κtκ−1ρκ

[1 + (tρ)κ]2
, κ > 0, ρ > 0.
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Application to the HIP Data

Let HIP = HIP data, and θ = (b0, b1, µ, σ
2, κ, ρ). Using the

likelihood function and Markov Chain Monte Carlo (MCMC), 2000
Bayesian posterior samples (θ∗j ) were generated; for details, see Wu
et al. (2005).
Using each θ∗j , and P(IK |IK ∪ DK ,HK , θ

∗
j ) = α, we conducted

Bayesian inference on hypothetical cohorts of asymptomatic
women with current age tK−1 = 62 (or 72), assuming that they
have started their first screening at age t0 = 50 (or 60), and with
different screening intervals ∆ = 1, 2 and 3 years in the 12 years.

Wu Optimal Scheduling



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Motivation
The method
Simulation
Application
Conclusion

Table 4: Optimal scheduling time using the HIP data

α ∆ = 1.0 ∆ = 2.0 ∆ = 3.0

t0 = 50, tK−1 = 62

0.05 0.30 (0.19) 0.23 (0.15) 0.22 (0.15)
0.10 0.56 (0.31) 0.45 (0.19) 0.43 (0.19)
0.15 0.78 (0.42) 0.67 (0.24) 0.64 (0.21)
0.20 0.99 (0.52) 0.88 (0.32) 0.85 (0.25)

t0 = 60, tK−1 = 72

0.05 0.42 (0.40) 0.32 (0.25) 0.30 (0.20)
0.10 0.68 (0.55) 0.59 (0.40) 0.55 (0.31)
0.15 0.91 (0.67) 0.82 (0.53) 0.78 (0.43)
0.20 1.11 (0.79) 1.04 (0.65) 1.00 (0.55)
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Table 5: Estimated mean/median/mode/standard
deviation of the lead time at t∗ using HIP data

α ∆ = 1.0 ∆ = 2.0 ∆ = 3.0
t0 = 50, tK−1 = 62

0.05 1.84,0.97,0.49(3.42) 1.88,0.95,0.47(3.61) 1.92,0.95,0.46(3.77)
0.10 1.80,0.92,0.42(3.42) 1.85,0.93,0.41(3.58) 1.89,0.93,0.41(3.72)
0.15 1.78,0.89,0.35(3.43) 1.83,0.90,0.35(3.58) 1.87,0.91,0.35(3.70)
0.20 1.77,0.87,0.30(3.46) 1.82,0.88,0.30(3.59) 1.85,0.89,0.30(3.70)

t0 = 60, tK−1 = 72
0.05 1.83,0.96,0.48(3.38) 1.87,0.96,0.47(3.53) 1.90,0.96,0.46(3.67)
0.10 1.78,0.91,0.40(3.39) 1.83,0.92,0.40(3.52) 1.86,0.93,0.40(3.63)
0.15 1.77,0.88,0.34(3.41) 1.81,0.89,0.34(3.52) 1.84,0.90,0.34(3.62)
0.20 1.76,0.86,0.28(3.44) 1.79,0.87,0.29(3.54) 1.82,0.88,0.29(3.63)
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Table 6: Estimated mean probability of overdiagnosis with
95% CI(in percentage) at t∗ using HIP data

α ∆ = 1.0 ∆ = 2.0 ∆ = 3.0
t0 = 50, tK−1 = 62

0.05 2.25(0.57,10.97) 2.38(0.56,12.47) 2.52(0.56,13.80)
0.10 2.26(0.53,11.35) 2.37(0.54,12.61) 2.49(0.54,13.65)
0.15 2.29(0.52,11.37) 2.39(0.52,12.84) 2.50(0.52,13.67)
0.20 2.34(0.51,11.54) 2.43(0.51,12.91) 2.52(0.51,13.80)

t0 = 60, tK−1 = 72
0.05 4.65(1.40,19.98) 4.76(1.40,20.48) 4.89(1.40,21.45)
0.10 4.68(1.33,20.37) 4.78(1.33,21.39) 4.89(1.33,21.42)
0.15 4.76(1.30,20.76) 4.84(1.31,21.86) 4.94(1.31,21.73)
0.20 4.87(1.30,21.49) 4.93(1.30,22.07) 5.02(1.31,22.57)
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Summary

The next screening time is slightly decreasing if the past
screening interval increases from 1 year to 3 years; it follows
the same pattern as in our simulation study.

The mean/median/mode of the lead time is decreasing as the
risk α increases.

The mean/median/mode of the lead time is increasing as the
past screening interval ∆ increases if other factors are the
same.

The probability of overdiagnosis is low in the HIP study
(2-5%), although it slightly increasing with age, past
screening interval ∆.
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Conclusion

We developed a probability method to dynamically schedule one’s
upcoming screening exam, based on one’s past screen history, risk
tolerance α, screening sensitivity, sojourn time distribution, etc.

The method can handle any screening history t0 < t1 < ...tK−1, including
unequally-spaced screening intervals.

Simulations show that longer screening interval in the past means shorter
interval for the upcoming test.

We provide predictive information on the lead time and overdiagnosis if
one were diagnosed with cancer at the future time. This may be the first
step towards personalized screening schedule in the near future.

The modeling approach is just one way of thinking about the problem.
Other models and approaches are possible. The important point is to
recognize that screening has outcomes & consequences that one should
consider, especially for policy purposes.
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Thank You!!

Any questions or comments??
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The actuarial life table of SSA

The distribution of the lifetime fT (t) was derived from the
actuarial life table, Social Security Administration.
http://www.ssa.gov/OACT/STATS/table4c6.html

The period life table is based on population mortality from all
Social Security area, including 50 states, DC, and surrounding
islands of the US.

It provides the conditional probability of death within one year
given one’s current age P(T < N + 1|T ≥ N), from age
N = 0 to 119.

LetaN = P(T ≥ N + 1|T ≥ N) = 1− P(T < N + 1|T ≥ N).
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Transfer the life table to a valid pdf

For any integer age t0,

P(T ≥ t0 + N|T ≥ t0) =
N∏
i=1

at0+i−1, ∀N = 1, 2, . . . , 120− t0.

Using a density approximation, we have

fT (t0 + N|T ≥ t0) = lim
ε→0

P(t0 + N < T ≤ t0 + N + ε|T ≥ t0)

ε

≈ P(t0 + N < T ≤ t0 + N + 1|T ≥ t0) = (1− at0+N)
N∏
i=1

at0+i−1.

Finally, for any t ∈ (N,N + 1) (N < 120), we use a step function to
approximate: fT (t|T ≥ t0) ≈ fT (N|T ≥ t0).

It is a valid pdf because
∑120−t0

N=0 fT (t0 + N|T ≥ t0) = 1.
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Likelihood function and probability of detection at kth
exam

L =
64∏

t0=40

4∏
k=1

D
sk,t0
k,t0

I
rk,t0
k,t0

(1− Dk,t0 − Ik,t0)nk,t0−sk,t0−rk,t0

D1,t0 = β(t0)

∫ t0

0
w(x)Q(t0 − x)dx .

Dk,t0 = β(tk−1)

{
k−2∑
i=0

[1− β(ti )] · · · [1− β(tk−2)]

∫ ti

ti−1

w(x)Q(tk−1 − x)dx

+

∫ tk−1

tk−2

w(x)Q(tk−1 − x)dx

}
, for ∀k = 2, · · · ,K .
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Probability of incidence within the kth interval

Ik,t0 =
k−1∑
i=0

[1− β(ti )] · · · [1− β(tk−1)]

×
∫ ti

ti−1

w(x)[Q(tk−1 − x)− Q(tk − x)]dx

+

∫ tk

tk−1

w(x)[1− Q(tk − x)]dx ,

for ∀k = 1, · · · ,K .

Wu Optimal Scheduling


	Motivation
	The method
	Simulation
	Application
	Conclusion

