Adjusting for Unmeasured Spatial Confounding with Distance Adjusted Propensity Scores

Georgia Papadogeorgou

Harvard Chan School of Public Health

1.12.2018

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

Air Quality Regulations

Regulations

- Clean Air Interstate Rule (CAIR)
- Cross-State Air Pollution Rule (CSAPR)
- 1990 Clear Air Act
- Acid Rain Program
- Power plants followed various compliance strategies
- Comparative effectiveness of NO_x emission control technologies on ambient ozone levels

NO_x : Nitric oxide and nitrogen dioxides

Motivation

■ Ozone is a secondary pollutant (Allen, 2002)

- Created from chemical reactions in the atmosphere
- Sunlight, Higher temperature
- Selective Catalytic Reduction (SCR) and Selective Non-Catalytic Reduction (SNCR) are the most effective in reducing NO_x

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q ↔ 3/15

- Reductions in NO_x emissions → reduction in ozone concentrations
- Effect of SCR/SNCR on ambient ozone

Data

- Coal and natural gas power plants during June-August 2004
- A = 1 if at least half of facility heat input is used by units with installed SCR/SNCR technologies, A = 0 otherwise
- 152 treated facilities, 321 controls
- Y: NO_x emissions / 4^{th} maximum ambient ozone concentration

For unit i

- Treatment $A_i \in \{0, 1\}$
- Potential outcomes $Y_i(1), Y_i(0)$ (SUTVA)
- Covariates $C_i = (C_{i1}, C_{i2}, \dots, C_{ip})$

For unit i

- Treatment $A_i \in \{0, 1\}$
- Potential outcomes $Y_i(1), Y_i(0)$ (SUTVA)
- Covariates $C_i = (C_{i1}, C_{i2}, \dots, C_{ip})$
- Average Treatment Effect on the Treated:

$$ATT = E[Y(1) - Y(0)|A = 1]$$

< □ > < @ > < ≧ > < ≧ > ≧ の Q @ 5/15

For unit i

- Treatment $A_i \in \{0, 1\}$
- Potential outcomes $Y_i(1), Y_i(0)$ (SUTVA)
- Covariates $C_i = (C_{i1}, C_{i2}, \dots, C_{ip})$
- Average Treatment Effect on the Treated:

$$ATT = E[Y(1) - Y(0)|A = 1]$$

<□ > < @ > < E > < E > E のQで 5/15

•
$$P(A = 1 | \mathbf{C}) \in (0, 1)$$

 $\bullet \ Y(1), Y(0) \amalg A | {\bf C}$

- For unit i
 - Treatment $A_i \in \{0, 1\}$
 - Potential outcomes $Y_i(1), Y_i(0)$ (SUTVA)
 - Covariates $C_i = (C_{i1}, C_{i2}, \dots, C_{ip})$
- Average Treatment Effect on the Treated:

$$ATT = E[Y(1) - Y(0)|A = 1]$$

- $P(A = 1 | \mathbf{C}) \in (0, 1)$
- $\bullet \ Y(1), Y(0) \amalg A | {\bf C}$
- Propensity score matching
 - PS model $P(A = 1 | \mathbf{C})$
 - Match treated units to controls with similar PS estimates

Unmeasured spatial confounding

• Confounders $\mathbf{C} = (\mathbf{X}, \mathbf{U})$

- **X** are observed, **U** are unobserved
- If U varies spatially, can we adjust for it?

Unmeasured spatial confounding

- Confounders $\mathbf{C} = (\mathbf{X}, \mathbf{U})$
 - \blacksquare X are observed, U are unobserved
- If **U** varies spatially, can we adjust for it?
- Temperature, and weather conditions may confound the relationship of NO_x control strategies and ambient ozone.
 - Temperature, barometric pressure, humidity
- Weather and atmospheric covariate information varies spatially

<□ > < @ > < E > < E > E の < C 6/15

Unmeasured Spatial Confounding

- Observed variables **X**:
 - Use the propensity score to adjust for the observed confounders
 - $P(A_i = 1|X_i) = f(X_i) = \operatorname{expit} (X_i^T \beta)$
- \blacksquare Unmeasured spatial confounders ${\bf U}$
 - The correlation of **U** is high for small enough distances
 - If a matched pair is sufficiently close, the treated and control units will have similar values of **U**

Distance Adjusted Propensity Score Matching

 \blacksquare For a treated unit i and a control unit j define

$$DAPS_{ij} = w|PS_i - PS_j| + (1 - w) * Dist_{ij}, w \in [0, 1]$$

where PS propensity score estimates, and Dist spatial proximity.

- *w* expresses our belief of the relative importance of the observed and unobserved confounders
- *Dist* is the measure the expresses our belief of similarity of *U* as a function of distance

<□ > < @ > < E > < E > E のQで 8/15

Choosing w

 $DAPS_{ij} = w|PS_i - PS_j| + (1 - w) * Dist_{ij}, w \in [0, 1]$

- Interplay between distance of observed covariates and distance of matched pairs
- *w* can be specified using subject-matter knowledge on an unmeasured spatial confounder
- Automated procedure
 - Re-calculates DAPS and performs matching for many values of w
 - Balance of the observed covariates is assessed
 - The smallest value that acheives covariate balance is chosen

Checking covariate balance

\blacksquare Absolute standardized difference of means as a function of w

Matches

• Average distance of matched pairs

- Naïve: 1066 miles
- DAPSm: 141 miles

Results

205 NO_x tons (95% CI: 4 − 406)
−0.27 parts per billion (95% CI: −2.1 − 1.56)

DAPSm results as a function of w

Estimates with 95% confidence intervals for Ozone analysis

・ロト ・個ト ・モト ・モト E 996

Conclusions

- SCR/SNCR control technologies seem to be associated with reduced NO $_x$ emissions
- Their effect on ozone is not significant
- Unobserved confounding can lead to severe bias of estimates

References

- Allen, J. (2002). Chemistry in the Sunlight. Earth Observatory NASA.
- Keele, L., Titiunik, R., and Zubizarreta, J. (2015). Enhancing a Geographic Regression Discontinuity Design Through Matching to Estimate the Effect of Ballot Initiatives on Voter Turnout. *Journal of Royal Statistical Society A* 178, 223–239.
- Rosenbaum, P. R. and Rubin, D. B. (1983). The Central Role of the Propensity Score in Observational Studies for Causal Effects. *Biometrika* 70, 41–55.