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Air Quality Regulations

m Regulations
m Clean Air Interstate Rule (CAIR)
m Cross-State Air Pollution Rule (CSAPR)
m 1990 Clear Air Act

m Acid Rain Program
m Power plants followed various compliance strategies

m Comparative effectiveness of NO, emission control
technologies on ambient ozone levels

NOg: Nitric oxide and nitrogen dioxides



Motivation

m Ozone is a secondary pollutant (Allen, 2002)
m Created from chemical reactions in the atmosphere

= Sunlight, Higher temperature

m Selective Catalytic Reduction (SCR) and Selective
Non-Catalytic Reduction (SNCR) are the most effective in
reducing NO,

m Reductions in NO, emissions — reduction in ozone
concentrations

Effect of SCR/SNCR on ambient ozone



Data

m Coal and natural gas power plants during June-August 2004

m A =1 if at least half of facility heat input is used by units
with installed SCR/SNCR technologies, A = 0 otherwise

m 152 treated facilities, 321 controls

m Y: NO, emissions / 4" maximum ambient ozone
concentration
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Notation

For unit ¢
m Treatment 4; € {0,1}
m Potential outcomes Y;(1),Y;(0) (SUTVA)
m Covariates C; = (Cj1,Ciz, - .., Cip)

Average Treatment Effect on the Treated:
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P(A=1|C) € (0,1)
Y(1),Y(0) IL A|C

Propensity score matching
m PS model P(A =1|C)

m Match treated units to controls with similar PS estimates



Unmeasured spatial confounding

m Confounders C = (X, U)

m X are observed, U are unobserved

m If U varies spatially, can we adjust for it?



Unmeasured spatial confounding

m Confounders C = (X, U)

m X are observed, U are unobserved

m If U varies spatially, can we adjust for it?

m Temperature, and weather conditions may confound the
relationship of NO, control strategies and ambient ozone.

m Temperature, barometric pressure, humidity

m Weather and atmospheric covariate information varies
spatially



Unmeasured Spatial Confounding

m Observed variables X:

m Use the propensity score to adjust for the observed
confounders

s P(A; = 1|X;) = f(X;) = expit (X7 3)

m Unmeasured spatial confounders U
m The correlation of U is high for small enough distances

m If a matched pair is sufficiently close, the treated and control
units will have similar values of U

Rosenbaum and Rubin (1983)



Distance Adjusted Propensity Score Matching

m For a treated unit ¢ and a control unit j define
DAPSZ'j = w\PSz - PSJ’ + (1 — w) * Distij, w e [0, 1]
where PSS propensity score estimates, and Dist spatial
proximity.

m w expresses our belief of the relative importance of the
observed and unobserved confounders

m Dist is the measure the expresses our belief of similarity of U
as a function of distance



Choosing w

DAPSU = w|PSZ - PSJ| + (1 — ’LU) * Distij, w e [0, 1]

m Interplay between distance of observed covariates and
distance of matched pairs

m w can be specified using subject-matter knowledge on an
unmeasured spatial confounder

m Automated procedure

m Re-calculates DAPS and performs matching for many values of
w

m Balance of the observed covariates is assessed

m The smallest value that acheives covariate balance is chosen



Checking covariate balance

m Absolute standardized difference of means as a function of w
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Matches

Naive pairs

DAPSmM pairs

i\

m Average distance of matched pairs
m Naive: 1066 miles

m DAPSm: 141 miles
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Results

SCR/SNCR on NOx emissions SCR/SNCR on 4th maximum ozone
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m 205 NO,, tons (95% CI: 4 — 406)
m —0.27 parts per billion (95% CI: —2.1 — 1.56)

The national ozone air quality standard of 70 parts per billion.
Keele et al. (2015)



DAPSm results as a function of w

Estimates with 95% confidence intervals for NOx analysis Estimates with 95% confidence intervals for Ozone analysis
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Conclusions

m SCR/SNCR control technologies seem to be associated with
reduced NO, emissions

m Their effect on ozone is not significant

m Unobserved confounding can lead to severe bias of estimates
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