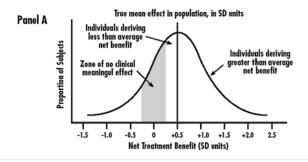
Hierarchical models for combining N-of-1 trials

Christopher Schmid

Brown University School of Public Health Department of Biostatistics ICHPS

11 January 2018


Grants Funding this Work

- N-of-1 Trials Using mHealth in Chronic Pain National Institute of Nursing Research R01 NR13938
- Using Single Subject (N-of-1) Designs to Answer Patient-Identified Research Questions PCORI ME-16
- Combining N-of-1 Trials to Assess Fibromyalgia Therapies National Institute of Arthritis and Musculoskelatal and Skin Diseases R01 AR45416

Joint work with Youdan Wang and members of the PREEMPT study

- Motivation for N-of-1 trials
- Design
- Analysis
- Combining N-of-1 trials
- Networks of N-of-1 Trials
- Example
- Ongoing Work

- Center based RCTs give average effects but
- Average effects may not (and in some cases, demonstrably do not) apply to the individual patient

- Crossover trial with 19 patients treated for fibromyalgia (Goldenberg, 1996)
- $\bullet\,$ Patients treated with combination of AM $+\,$ FL did better than on either treatment alone
- But not all patients responded
- Improvement of > 25% compared to baseline in:
 - 5% Placebo
 - 24% AM
 - 32% FL
 - 62% AM+FL

N-of-1 Trials

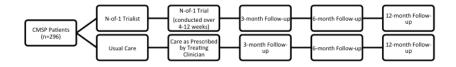
- Single patient multiple period blocked crossover trials to estimate individual treatment effects
- Personalized protocol (personalized medicine)
 - Clinician and patient can design own study
 - Can select own (multiple) outcomes
 - Patients have more control over study design

- Multiple measurements per period
- Potential missing data
- Compare measurements in A periods with those in B periods

- Substantial therapeutic uncertainty about treatment
- Measureable, easily collected outcomes
- Heterogeneous treatment effects
- Stable chronic condition
- Short-acting treatments with rapid ramp-up
- Negligible persistence of treatment effect (no carryover)
- Outcome expected to return to baseline after each period

Kravitz and Duan (2014), AHRQ

- Pairing within patient
- Randomization or systematic counterbalanced design (AB/BA)
 - Usually each treatment once in each block
- Blinding
- Replication to assess within and between period variability
 - Number of study periods, number of measurements per period
 - Patients may not finish their protocol
- Washout period to control for carryover effects
 - May not be practical or ethical and may compromise design
 - Carryover hard to estimate unless many crossovers
 - Can downweight first measurements after each crossover


Schmid and Duan (2014), AHRQ

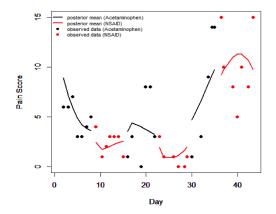
Condition	Sponsor	Outcome	Comparison
Fibromyalgia	NIH	Impact scale	AM vs. $AM + FL$
ADHD	Australia	Sleep (kids)	Melatonin vs. None
Chronic Pain	NIH	Various	Various
IBD	PCORI	Various	Strict vs. relaxed diet
Atrial Fibrillation	PCORI	Episodes	Trigger vs. no trigger
Behavioral	WNYC	Various	Various

イロン イヨン イヨン イ

э

PREEMPT Study: Design

- Compares N-of-1 trials versus usual care for treating adults with chronic musculoskeletal pain
- 215 patients equally randomized
- Outcomes: Pain, Quality of life, Participatory decision making, Satisfaction, Trust, Adherence


Barr et al 2015, Trials

- Develop mobile application to conduct N-of-1 trials (108 patients)
- Compare 2 interventions within each patient
 - 1-2 week treatment periods
 - Cycle of 2 periods (2 to 4 weeks long, AB or BA)
 - Study of 2-4 cycles (4-16 weeks)
- Outcomes examined: pain, fatigue, drowsiness, sleep problems, cognitive function, constipation
- Choice of treatments by patient/clinician
- Measured daily by self-report
- Most are categorical, but pain treated as continuous

- No treatment
- Tylenol (acetaminophen)
- NSAID (e.g., ibuprofen, naproxen, sulindac)
- Opiates
 - Codeine, tramadol, hydrocodone, oxycodone
 - Often in combination pill form with NSAID
- Non-pharmaceutical (self and professionally administered)
 - Complementary and alternative (e.g., yoga, massage)
 - Physical therapy
 - Exercise

Many patients also already on treatments that continue

N-of-1 Data Structure

- Structured time series with treatment factor
- Time trends and time-varying treatment effects
- Carryover
- Correlation

Christopher Schmid

< A

Treatment Effect Model

$$y_j = \mu + \delta z_j + \epsilon_j; j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

y_j: measurement j for outcome y z_j: treatment indicator; $z_j = 1$ if tx B and 0 if tx A

< + **----** < - **-**

E 5 4

Treatment Effect Model

$$y_j = \mu + \delta z_j + \epsilon_j; j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

Treatment and Linear Time Trend Model

$$y_j = \mu + \delta z_j + eta t_j + \epsilon_j; j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

 t_j : time of *j*th measurement

Image: A matrix of the second seco

Basic N-of-1 Models

Treatment Effect Model

$$y_j = \mu + \delta z_j + \epsilon_j; j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

Treatment and Linear Time Trend Model

$$y_j = \mu + \delta z_j + eta t_j + \epsilon_j; j = 1, 2, \dots, J$$

 $\epsilon_j \sim N(0, \sigma^2)$

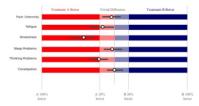
Treatment and Linear Time Trend and Correlated Error Model

$$y_j = \mu + \delta z_j + \beta t_j + \epsilon_j; j = 1, 2, \dots, J$$
$$\epsilon_j = \rho \epsilon_{j-1} + u_j$$
$$u_j \sim N(0, \sigma^2)$$

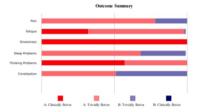
Image: A matrix and a matrix

Model for Single N-of-1 Trial

$$y_j = \mu + \delta z_j + F(t_j) + \epsilon_j; j = 1, 2, \dots, J$$
$$\epsilon_j = \epsilon_{j-1} + u_j$$
$$u_j \sim N(0, \sigma^2)$$


 $F(t_j)$: Time trend e.g. $F(t_j) = \boldsymbol{B}(t_j)\boldsymbol{\gamma} = \sum_{m=1}^M \gamma_m B_m(t_j)$ is spline

イロト イポト イヨト イヨト


3

- Personalized nature of decision
- Need to incorporate external information (patient, clinician)
- Interpretation of probability that one treatment better than other
- Lack of sufficient data for standard methods to return 'significant' result
- Joint posterior distribution for composite statements about multiple outcomes
- Can also combine multiple N-of-1 studies together to get both average treatment effect and better individual treatment effects through borrowing of strength

Graphs

Outcomes and Margins of Error

11 January 2018

Christopher Schmid

$$y_{ij} = \mu_i + \delta_i z_{ij} + F(t_{ij}) + \pi_{z_{i(j-u)}, z_{ij}} + \epsilon_{ij}$$
$$\epsilon_{ij} = \rho \epsilon_{i(j-1)} + u_{ij}$$
$$u_{ij} \sim N(0, \sigma^2)$$
$$i = 1, \dots, N; j = 1, 2, \dots, J_i$$

メロト メポト メヨト メヨト

э

$$y_{ij} = \mu_i + \delta_i z_{ij} + F(t_{ij}) + \pi_{z_{i(j-u)}, z_{ij}} + \epsilon_{ij}$$
$$\epsilon_{ij} = \rho \epsilon_{i(j-1)} + u_{ij}$$
$$u_{ij} \sim N(0, \sigma^2)$$
$$i = 1, \dots, N; j = 1, 2, \dots, J_i$$

 π_{Z_{j-U},Z_j} : Carryover lasts for U time units after changing treatment $F(t_j)$: Time trend e.g. $F(t_j) = \mathbf{B}(t_j) \boldsymbol{\gamma} = \sum_{m=1}^{M} \gamma_m B_m(t_j)$ is spline

Extension to Multiple N-of-1 Trials

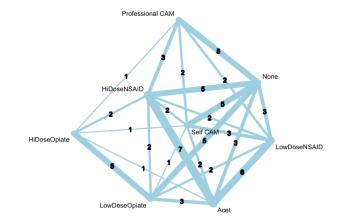
$$y_{ij} = \mu_i + \delta_i z_{ij} + F(t_{ij}) + \pi_{z_{i(j-u)}, z_{ij}} + \epsilon_{ij}$$
$$\epsilon_{ij} = \rho \epsilon_{i(j-1)} + u_{ij}$$
$$u_{ij} \sim N(0, \sigma^2)$$
$$i = 1, \dots, N; j = 1, 2, \dots, J_i$$

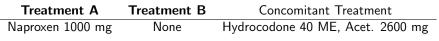
 π_{Z_{j-U},Z_j} : Carryover lasts for U time units after changing treatment $F(t_j)$: Time trend e.g. $F(t_j) = \mathbf{B}(t_j)\gamma = \sum_{m=1}^{M} \gamma_m B_m(t_j)$ is spline

- Random effect for δ_i , e.g., $\delta_i \sim N(d, \sigma_{\delta}^2)$
- Fixed or random effect for μ_i
- $\pi_{\mathbf{z}_{i(j-u)}, \mathbf{z}_{ij}}$, ρ constant across patients
- Can estimate carryover effect across patients
- May want to use common within-patient variance $\sigma_i^2 = \sigma^2$

Multilevel Model Combining N-of-1 Studies

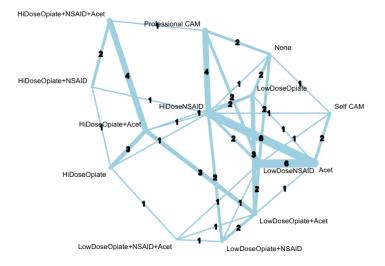
- Consider each N-of-1 trial as a study and combine via meta-analysis
- Population estimate of treatment efficacy, d
- Improved estimates for individuals by borrowing strength δ_i
- Including covariates enables subgroup estimates
- Compromise between population estimate (complete pooling) and individual's observed results (no pooling)
 - Weighted to observed if low variation or many crossovers
 - Weighted to pooled (or subgroup) if little information for individual


11 January 2018


23 / 37

- Helps make treatment decision if individual outcomes equivocal
- May also permit more complex modeling of short series

Zucker, Schmid, et al (1997), J Clin Epi


Network With Patient Chosen Treatment Comparisons

Christopher Schmid

Expanded Network Using Concomitant Treatments

- Combine direct + indirect estimates of multiple treatment effects
- Internally consistent set of estimates that respects randomization
- Estimate effect of each intervention relative to every other whether or not there is direct comparison in studies
- Calculate probability that each treatment is most effective
- Compared to conventional pair-wise meta-analysis:
 - Greater precision in summary estimates
 - Ranking of treatments according to effectiveness or safety

11 January 2018

26 / 37

Lu and Ades (2006, JASA)

N-of-1 Network Data Structure

•• ••••	• •••••	•••• •	•••••	• • • •	•••••
A	В	В	А	А	В

•• ••••	• • •••	••••• •	••• •••
В	А	В	А

••• •••	••••••	••••••	•••• ••	••••••	••••••
B	A		B	B	A
		, ,			

••••	•••••	•••••	••••••
В	С	С	В

•

••••••	•••••	•• ••••	•••••	•••••	•••••
С	А	A	С	С	А

э

- $\mathcal{R} = \{1, 2, ..., K\}$: complete treatment set
- $\mathcal{R}_i = \{r_{i1}, ..., r_{ik_i}\}$: treatment set for patient *i*
- r_{i1}: base treatment for patient i
- k_i: total number of treatments for patient i

$$y_{ij} = G(Z_{ij}) + F(t_{ij}) + \pi_{z_{i(j-u)}, z_{ij}} + \alpha y_{i(j-1)} + \epsilon_{ij}, i = 1, \dots, N; j = 1, 2, \dots, J$$

where

$$G(Z_{ij}) = \begin{cases} \mu_i \text{ if } z_{ij} = r_{i1}, \\ \mu_i + \delta_{i,r_{i1}z_{ij}} \text{ if } z_{ij} \succ r_{i1}, \end{cases}$$
$$\delta_i = \left(\delta_{i,r_{i1}r_{i2}}, \dots, \delta_{i,r_{i1}r_{ik_i}}\right) \sim N\left(P_i\Delta, P_i\Sigma P_i^T\right)$$
$$\Delta = \left(d_{r_1r_2}, \dots, d_{r_1r_K}\right)$$

Under consistency,

$$d_{r_{ij}r_{jj'}} = d_{1r_{ij'}} - d_{1r_{ij}}$$

with $d_{11} = 0$ and Σ is a matrix often simplified to have constant variances on the diagonal and a correlation of 0.5 satisfying the consistency equations

Results: Network Meta-Analysis Basic Treatment Effects

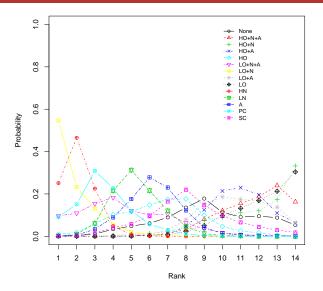
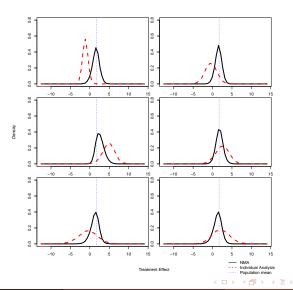

	Posterior Percentile						
Treatment	2.5	50	97.5				
2	-1.56	0.83	3.66				
3	-1.87	1.06	4.41				
4	-1.66	0.56	2.98				
5	-3.56	-0.95	1.87				
6	-4.64	-1.76	1.25				
7	-5.60	-3.08	-0.59				
8	-1.82	0.51	2.92				
9	-1.16	1.08	3.38				
10	-5.09	-2.78	-0.61				
11	-3.40	-1.46	0.64				
12	-3.33	-1.10	1.17				
13	-4.58	-2.14	0.18				
14	-2.99	-0.51	2.40				

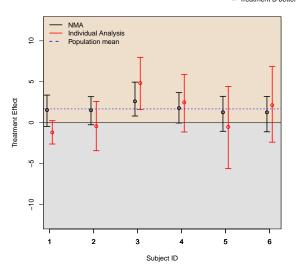
Image: A matrix


Results: Network Meta-Analysis Treatment Effects

1 2 3 4 5 6 7 8 9 10 11	2 0.91	3 1.10 0.18	4 0.60 -0.31 -0.50	5 -0.90 -1.81 -2.00 -1.50	6 -1.74 -2.66 -2.84 -2.35 -0.85	7 -3.09 -4.00 -4.19 -3.69 -2.19 -1.35	8 0.54 -0.37 -0.56 -0.06 1.44 2.29 3.63	9 1.10 0.18 0.00 0.49 1.99 2.84 4.18 0.55	10 -2.78 -3.70 -3.88 -3.39 -1.89 -1.04 0.31 -3.33 -3.88	$\begin{array}{c} 11 \\ -1.41 \\ -2.33 \\ -2.51 \\ -2.02 \\ -0.52 \\ 0.33 \\ 1.68 \\ -1.96 \\ -2.51 \\ 1.37 \end{array}$	$\begin{array}{c} 12 \\ -1.10 \\ -2.01 \\ -2.19 \\ -1.70 \\ -0.20 \\ 0.65 \\ 1.99 \\ -1.64 \\ -2.19 \\ 1.69 \\ 0.32 \end{array}$	13 -2.16 -3.08 -3.26 -2.77 -1.27 -0.42 0.93 -2.71 -3.26 0.62 -0.75	$\begin{array}{c} 14 \\ -0.42 \\ -1.33 \\ -1.51 \\ -1.02 \\ 0.48 \\ 1.33 \\ 2.67 \\ -0.96 \\ -1.51 \\ 2.37 \\ 1.00 \end{array}$
										1.37			
12 13											0.52	-1.07	0.68 1.75

Network Meta-Analysis Treatment Rankings

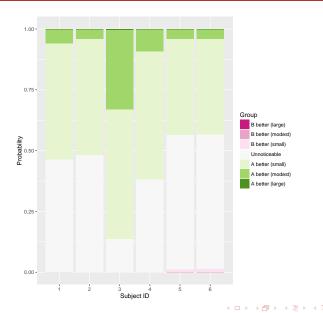
Density Plots for Six Patients who compared high dose NSAIDs vs. acetominophen



Christopher Schmid

11 January 2018 33 / 37

Meta-Analysis vs Individual Analysis


Treatment A better
Treatment B better

-

э

Posterior Probabilities of Six Patients from Meta-Analysis

Christopher Schmid

11 January 2018 35 / 37

- Categorical outcomes
- Inconsistency models
- Missing data
- Simulations
- Improved computing
- Software

-47 ▶

Thank you!

 $\exists \rightarrow$

Image: A image: A

3