Two-Part Random Effects Models for Longitudinal Cost Data

Matthew L. Maciejewski, PhD^{1,2,3} Andrew Kavee, MA¹ Chuan-Fen Liu, PhD^{4,5} Maren Olsen, PhD^{1,3} ¹Durham VA ²UNC School of Pharmacy ³Duke University Medical Center ⁴Seattle VA ⁵University of Washington School of Public Health

Acknowledgements

Original RxCopay study team

- David K. Blough, PhD
- Chris L. Bryson, MD MS
- John C. Fortney, PhD
- Sarah L. Krein, PhD RN
- Chuan-Fen Liu, PhD
- Mark Perkins, PharmD
- Nancy Sharp, PhD
- Kevin Stroupe, PhD
- Fran Cunningham, PharmD (PBM)
- VA HSR&D funding (IIR 03-200)

Outline of Talk

- Movitation and Purpose
- Cost-sharing studies
- VA System
- Policy change and sample
- Outcome: VA Specialty Expenditures
- Longitudinal two-part modeling
- Results
- Summary

Motivation of the Talk

 Opportunity to apply innovative two-part model to re-examine a VA policy question
 Previously applied uncorrelated longitudinal twopart model

Demonstrate a successful collaboration between biostatistician & health economist

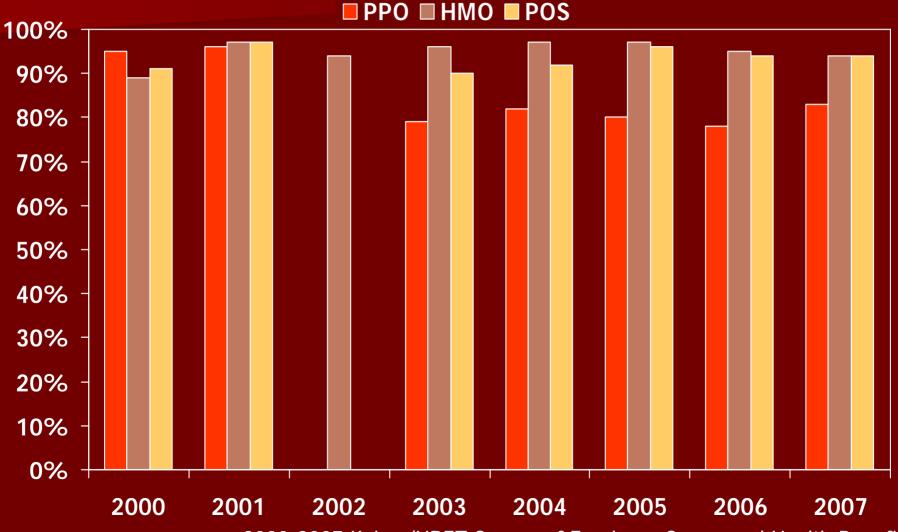
Purpose of Analysis

Policy question: Were specialty expenditures impacted by a specialty visit copay increase from \$15 to \$50?

– Copay increased in November 2001

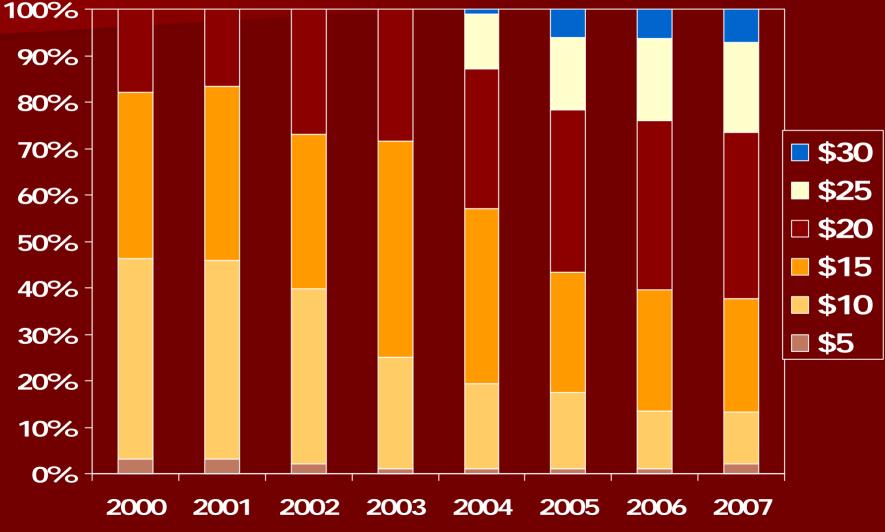
- Methods question: Is the probability of positive specialty expenditures related to the level of expenditures over time?
 - Does "naïve" longitudinal two-part model generate different results than correlated twopart model?

RAND HIE: Coinsurance Effects & Outpatient Use and Expenditures


- Compared to free plan, individuals in plans with coinsurance had lower likelihood of use
 - Mental health & medical care
 - Emergency care
 - Preventive care

Compared to free plan, users in plans with coinsurance had lower expenditures

- Mental health care (per episode)
- Medical care (annual)


O'Grady, et al., 1985; Manning, et al., 1986, 1987; Keeler, Manning, Wells 1986

PPO, HMO & POS Enrollees with Outpatient Visit Copays

2000-2007 Kaiser/HRET Survey of Employer-Sponsored Health Benefits

Primary Care Visit Copays of PPO Enrollees with Copays

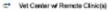
2000-2007 Kaiser/HRET Survey of Employer-Sponsored Health Benefits

Copay Association w/ Outpatient Services, Visits & Expenditures

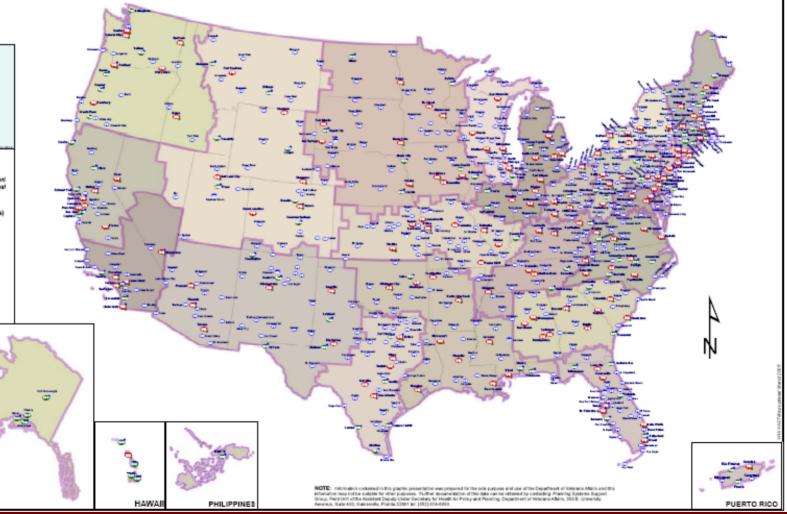
Emergency department: Negative - Selby, 1996; Magid, 1997; Reed, 2005; Hsu, 2006 Primary care: Negative (Cherkin, 1989) Mental health/Substance abuse - Pr(use): NS (Simon, 1996), negative (Stein, 2000) - Level: Negative (Simon, 1996; Lo Sasso, 2004,06) Preventive services: NS or negative - Cherkin, 1990; Solanki, 1999 & 2000 Specialty care: NS (Cherkin, 1989)

Veterans Health Administration

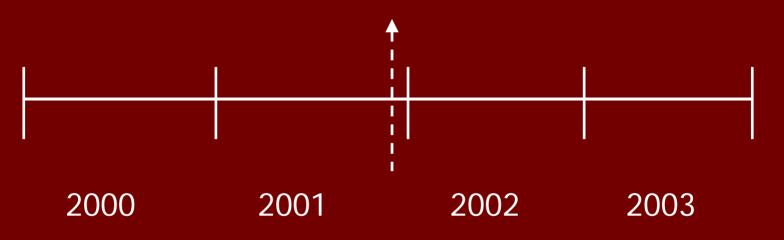
Largest vertically and horizontally integrated health care system in US (2006) – 155 hospitals in 50 states, DC and Puerto Rico - 800+ outpatient clinics & 135 nursing homes 46 residential rehabilitation treatment centers - Over 200 readjustment counseling centers - 5 million users & 54 million outpatient visits Annual budget of \$35 billion in 2007 Divided into 21 regional networks



Hospital



VISN Boundary State

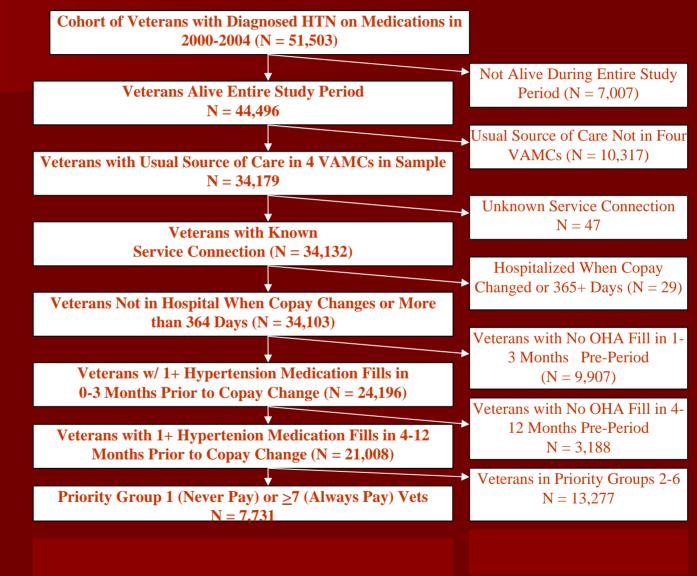


DEPARTMENT OF VETERANS AFFAIRS Veterans Health Administration Facilities

Timeline of Copay Change

<u>December 6, 2001</u> *Specialty Care up from \$15 to \$50* Primary Care copay (\$15) introduced

Study Design and Data


Study Design

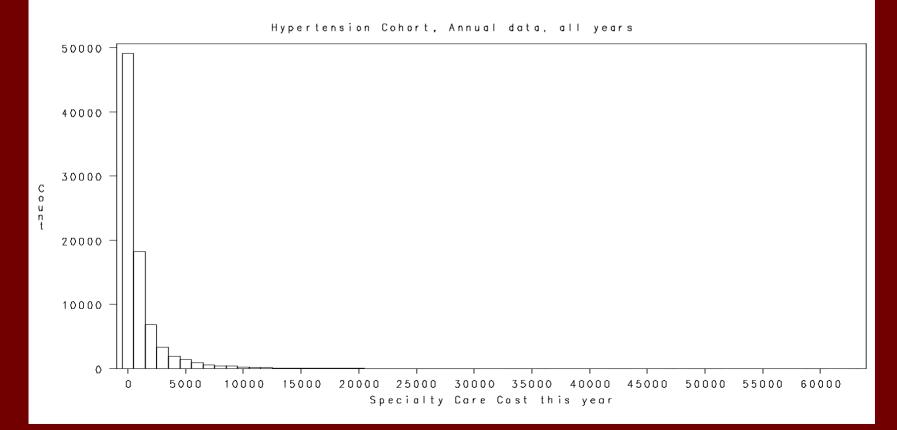
- Retrospective longitudinal cohort (2000-2004) in 4 VAMCs in NW, N & S Central US
- -Non-equivalent, co-located control group

Administrative data

- -Outcomes: VA utilization & expenditures
- Covariates: Demographics, diagnoses
- Census: Median income in zip code (2000)

Hypertension Cohort Inclusion

Copayment Status Groups

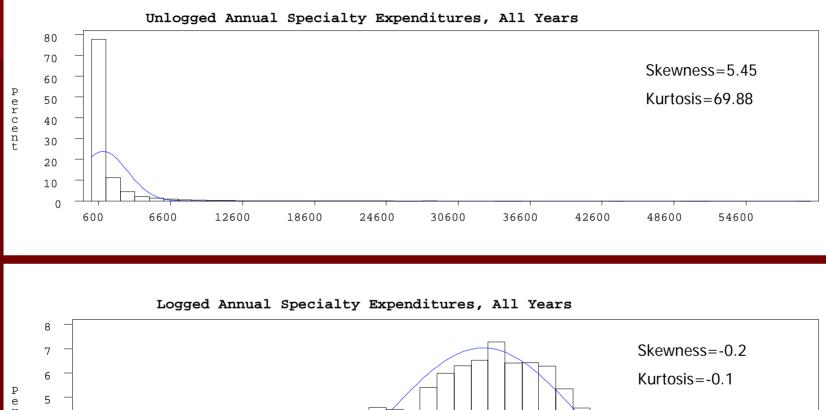

Group	Copay Status
Control	Priority Group 1: Exempt from VA copays for life
	VA copays for me
?	Priority Groups 2-6: Not clear
	what meds are free (excluded)
Treat-	Priority Group 7 & 8: Must
ment	pay all copays

Descriptive Statistics At Baseline

Hypertension Cohort	All	Exempt	Must Pay	
	N=7,731	N=4,307	N=3,424	p
VA Medical Center				
#1	979	534	445	
#2	2217	512	1705	
#3	2538	1712	826	
#4	1997	1549	448	<.0001
Marital Status				
Not married (%)	30.3	33.4	26.4	<.0001
Male (%)	97.1	96.8	97.6	
Race				
White (%)	61.0	68.4	51.7	
Non-White (%)	15.4	21.2	8.2	
Unknown (%)	23.5	10.3	40.1	<.0001
	mean (s.d.)	mean (s.d.)	mean (s.d.)	р
Age (2000)	64.5 (11.4)	61.5 (12.0)	68.3 (9.4)	<.0001
DCG (2000)	0.85 (1.22)	1.09 (1.30)	0.55 (1.03)	<.0001
Total num. Rx	8.3 (6.1)	9.8 (6.5)	6.6 (4.9)	<.0001
Total Num. HTN Rx	1.6 (.97)	1.6 (.95)	1.5 (.99)	<.0001

Characteristics of Specialty Expenditures, 2000-03

Semicontinuous, longitudinal response variable that is a mixture of zeros and positive values at each year


Proportion of Veterans with Specialty Expenditures, 2000-03

Mean Specialty Expenditures of Users by Copay Status, 2000-03

Distribution of Specialty Expenditures for Users

4.5

5.5

6.5

7.5

8.5

9.5

10.5

Percent

4 3


2 1 0

0.5

1.5

2.5

3.5

 Possible solution: fit separate longitudinal models (GEE or mixed effects models) to model each process separately

 "Naïve" or uncorrelated model

Issue: This <u>does not</u> allow presence/absence of expenditure and amount of expenditure to influence one another

Possible Reasons for Correlation between Probability and Level

Cost-related visit avoidance can exacerbate a condition that will require even more care next year, leading to higher mean costs among users and <u>negative</u> correlation

Specialists may find additional issues that need addressing leading to higher mean costs among users and <u>positive</u> correlation

Two-part random effects model

- Let Y_{ij} = specialty expenditure for patient i, year j
- Recode as
 - $-U_{ij} = 1 \text{ if } Y_{ij} > 0 \text{ or } U_{ij} = 0 \text{ if } Y_{ij} = 0$ $-V_{ii} = \log Y_{ii} \text{ if } Y_{ij} > 0$
- Fit correlated random effects models for
 - Logit probability of $U_{ij} = 1$
 - Mean response $E(V_{ij})$ for years where Uij = 1
 - Olsen & Schafer (2001), Tooze (2002)

Estimation Methods

Computational approaches similar to those available for generalized linear mixed models First part involved intractable likelihood Bayesian estimation via MCMC - Computationally intensive (Cooper et al, 2007) Penalized quasi-likelihood - Biased results in GLMM with binary outcome Likelihood approximation – Laplace (Olsen & Schafer, 2001) - Adaptive quadrature (Tooze et al 2002)

Two-part random effects model: software implementation

Olsen & Schafer (2001)

- Uses Laplace approximation to the likelihood
- Fast & flexible (specify>1 random effect per part)
- Stand alone Fortran executable

Tooze (2002)

- Adaptive quadrature within PROC NLMIXED
- Only allows 1 random effect for each part

Cooper et al (2007) – provides WinBUGS code

 Two-part random effects model of VA specialty expenditures
 1st part: Binary outcome of Pr(U_{ij} = 1)
 Logistic mixed effects model (PROC NLMIXED)

2nd part: Continuous outcome of E(V_{ij}|Uij =1)
 – Mixed effect model (PROC MIXED)
 – Log-transformed expenditures

Correlated random intercepts
 – Bivariate normality assumed

Model Specification Copay status Main effect (MUSTPAY) Interaction between year * MUSTPAY Year fixed effect dummies (2000=reference) Demographics - Age, Race (white=reference), Marital status Median income in county (2000 Census) Health status at baseline – DCG, Number of medications, Baseline Dx of depression Site fixed effects

Impact of Specialty Visit Copay on Odds of Specialty Use

	Uncorrelated Model	Correlated Model
Must pay copay	-1.15 (0.09)***	-1.16 (0.09)***
Must pay * 2001	0.05 (0.10)	0.06 (0.10)
Must pay * 2002	-0.01 (0.10)	-0.02 (0.10)
Must pay * 2003	0.03 (0.10)	0.04 (0.10)
Year dummy (2001)	0.30 (0.07)***	0.31 (0.07)***
Year dummy (2002)	0.50 (0.07)***	0.49 (0.07)***
Year dummy (2003)	0.27 (0.07)***	0.27 (0.07)***
DCG score in 2000	0.39 (0.04)***	0.37 (0.03)***
# medications in 2000	0.18 (0.01)***	0.17 (0.01)***
Var(Random intercept)	3.11 (0.12)***	3.08 (0.13)***
Log-Likelihood	28182.2	30976.6
AIC	28222.2	30976.6

Impact of Specialty Visit Copay on Level of Log(Cost) by Users

	Uncorrelated Model	Correlated Model	
Must pay copay	-0.17 (0.04)***	-0.23 (0.04)***	
Must pay * 2001	-0.016 (0.04)	-0.030 (0.04)	
Must pay * 2002	-0.256 (0.04)***	-0.272 (0.04)***	
Must pay * 2003	-0.191 (0.04)***	-0.200 (0.04)***	
Year dummy (2001)	0.05 (0.03)***	0.05 (0.03)	
Year dummy (2002)	0.10 (0.03)***	0.11 (0.03)***	
Year dummy (2003)	0.15 (0.03)***	0.15 (0.03)***	
DCG score in 2000	0.12 (0.01)***	0.14 (0.01)***	
# medications in 2000	0.06 (0.001)***	0.07 (0.001)***	
Var(Random intercept)	0.57 (0.02)***	0.63 (0.02)***	
Covariance		0.96 (0.03)***	
Log-Likelihood	368236.5	78708.4	
AIC	368194.5	78708.4	

Limitations

Random intercepts only

- Other correlation structures may be more appropriate
- Log transformation: distribution fit here
- Non-equivalent control group
 - Observed variables imbalanced
- Copay effect embeds cross-price effects
 - Same time: Primary care visit copay up from \$0 to \$15
 - 3 months later: Rx copay up from \$2 to \$7
- Limited adjustment of covariates
 - Likely to be unobserved confounding
- For last two reasons, policy implication must be interpreted cautiously

Policy Conclusion

Specialty visit copay increase had

- No impact on whether to seek specialty care
- Significant impact on specialty expenditures for those who used specialty care <u>and</u> had to pay the copay in two years following copay increase

Appears to be driven by fewer visits, not lower cost per visit

Methods Conclusion

 With random intercepts, the probability is related to the level of expenditures over time
 – Covariance of 0.96 = correlation of 0.68

Correlated two-part model results were fairly similar to point estimates of uncorrelated model

 Not necessarily a general result given limited number of covariates **Questions?**