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1. Background
√

Two-phase designs are common in epidemiological studies

of dementia
√

In theFirst phase- all subjects are screened using common

screening test(s)
√

In theSecond phase- only a subset of these subjects is

tested using a more definitive verification assessment (gold

standard)
√

We are interested in comparing the accuracy of two

screening tests in a two-phase study of dementia
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Background
√

Inferences are commonly made using only the verified

sample
√

It is well documented that in that case, there is a risk for

bias, called verification bias.
√

For a two-level tests we estimate the differences of

sensitivities, specificities and their confidence intervals (CI)
√

This is equivalent to estimating CI for the difference of

binomial proportions of paired data
√

This is not a trivial problem even in complete-data scenarios
√

Wald-type test showed to have many disadvantages
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Background
√

Alzheimer studies are often done using two-phase designs
√

In Alzheimer research the common test is a clinical test
√

While the verification is done using autopsy
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2. Data set-up

Let T1 andT2 be the two test indicators,D be the true status,

which is known only for the subjects that have been verifiedV .

All these variables are indicators. The data can be summarized

into:

Table 1: Aggregated data
T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

V = 1 D = 1 xA
111 xA

101 xA
011 xA

001

D = 0 xA
110 xA

100 xA
010 xA

000

V = 0 xB
11+ xB

10+ xB
01+ xB

00+

Total n11+ n10+ n01+ n00+
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Data set-up

Consider we have a complete data set. In this case the data can

be summarized into:

Table 2: Complete data
T1 = 1 T1 = 0

T2 = 1 T2 = 0 T2 = 1 T2 = 0

D = 1 x111 x101 x011 x001

D = 0 x110 x100 x010 x000

Total n11+ n10+ n01+ n00+

where the sensitivity is the test ability to detect the condition

when it is present. While, the specificity is the test abilityto

exclude the condition to those with out the condition.
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Notations
√

Let (X0k, X1k), k = 1, 2, . . . , n, be an iid sample of pairs
√

(X0, X1) are correlated Bernoulli RV with proportionsp0

andp1

√

We are interested in the differencep = p1 − p0
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Existing methods for complete data

McNemar’s interval:

p̂±z1−α/2n
−1/2

√

p̂1(1 − p̂1) + p̂0(1 − p̂0) + 2(p̂0p̂1 − p̂11),

where
√

p̂i =
Σn

k=1
Xik

n
√

p̂ = p̂1 − p̂0
√

p̂11 =
Σn

k=1
X0kX1k

n
,

√

zα is theα-th quantile of the standard normal

distribution.

McNemar’s interval with continuity correction:

p̂ ± (z1−α/2SE + 1/n)
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Existing methods for complete data

Newcombe Hybrid (NH) Interval: Newcombe (1998)

reviewed and compared several existing intervals for the

difference between two binomial proportions based on

paired data.

He recommended a score interval with continuity

correction called Newcombe Hybrid (NH).

[p̂ − (δ2
1 − 2φ̂δ1ǫ2 + ǫ2

2)
1/2, p̂ − (ǫ2

1 − 2φ̂ǫ1δ2 + δ2
2)

1/2]

Function of some quadratic equations ofx
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Existing methods for complete data

May and Johnson (MJ) interval: This interval was

studied by May and Johnson (1997)
The CI is
[

Max{0,
−B − (B2 − 4AC)1/2

2A
}, Min{1,

−B + (B2 − 4AC)1/2

2A
}
]

whereA = (1 +
z2

α/2

n
), B = −2Σk(1−X0k)X1k−ΣkX0k(1−X1k)

n
,

andC = (Σk(1−X0k)X1k

n
− ΣkX0k(1−X1k)

n
)2 −

z2
α/2

Σk(1−X0k)X1k+ΣkX0k(1−X1k)
n2 .
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Existing methods for complete data

Zhou and Qin (ZQ) interval: Zhou and Qin (2005) used

the Edgeworth expansion to correct for the skewness of the

Wald statistics

[

Max(−1, p̂ − σ̂√
n

g−1(z1 − α/2)), Min(1, p̂ − σ̂√
n

g−1(z1 − α/2))

]

,

where

g−1(y) =







√

n

b̂σ̂

[

(1 + 3(b̂σ̂)( y
√

n
− âσ̂

n
))1/3 − 1

]

b̂σ̂ 6= 0

y − âσ̂
n

b̂σ̂ = 0
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Existing methods for incomplete data

Maximum Likelihood interval: The only method

available to date to deal with verification bias in paired

comparisons of sensitivity and specificity was introduced

by Zhou (1998).
√

The estimators for the sensitivities of two tests are as

follows:

π̂1ML =

∑1
j=0(x

A
1j1n1j+)/(xA

1j1 + xA
1j0)

∑1
i=0

∑1
j=0(x

A
ij1nij+)(xA

ij1 + xA
ij0)

,

and

π̂2ML =

∑1
i=0(x

A
i11ni1+)/(xA

i11 + xA
i10)

∑1
i=0

∑1
j=0(x

A
ij1nij+)(xA

ij1 + xA
ij0)

.

√

Similarly there are estimates for the specificity – p. 13/28



Existing methods for incomplete data

Maximum Likelihood interval: Zhou (1998) also

provided estimates for the covariance matrices
√

The CI for the sensitivities will be

π̂2−π̂1±z1−α/2

√

{ ˆV ar(π̂1) + ˆV ar(π̂2) − 2 ˆCov(π̂1, π̂2)}

and for the specificities

τ̂2− τ̂1±z1−α/2

√

{ ˆV ar(τ̂1) + ˆV ar(τ̂2) − 2 ˆCov(τ̂1, τ̂2)}
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3. The use of MI
MI is separated into 3 stages: Imputation stage, Analysis stage,

and Combining Results stage.

Observed Data

?

?

?

?

Im putation
1 2 m

…

…

…

…
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The use of MI - Cont.

Imputation: P (Ymis|Yobs) in our case is

(xB
ij0, x

B
ij1)|Yobs, θ ∼ M(xB

ij+, (θij1/θij+, θij0/θij+)).

Hence, We can use the following distributions in order to

draw the missing values

x|θ ∼ M(n, θ) likelihood

θ ∼ D(α) prior

θ|Y ∼ D(α + x) posterior

Analysis: Given the complete data sets we can use any of the

complete-data procedures mentioned before.
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The use of MI - Cont.

Combining rules: Calculate and store the estimatesQ̂(j) and

SEU (j) for j = 1, . . . ,m and combine:

Q̄ = m−1

m
∑

j=1

Q̂(j)

Ū = m−1

m
∑

j=1

U (j)

B = (m − 1)−1

m
∑

j=1

(

Q̂(j) − Q̄
)2

T = Ū + (1 + m−1)B
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The use of MI - Cont.
Which leads to an approximate 95% interval forQ

Q̄ ± tν
√

T ,

where the degrees of freedom are

ν = (m − 1)

[

(1 + m−1)B

T

]

−2

.

– p. 18/28



4. Simulations
we simulate data as follows:
√

sample size(588, 1000)
√

sensitivitiesSek = P (Tk = 1|D = 1)
√

specificitySpl = P (Tl = 0|D = 0)
√

verification probabilitiesλij = P (V = 1|T1 = i, T2 = j)
√

λ11 = λ10 = 0.7, λ01 = 0.25 andλ00 = 0.14
√

prevalence is0.35
√

we run simulations10000 times
√

for methods required complete data we usedm = 10

imputations.
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Results
(a)N = 588 Se1 = Se2 = 0.9, Sp1 = Sp2 = 0.95, and95% coverage

Sensitivity

Est MSE lower upper length Coverage

MI -0.0012 0.0016 -0.0792 0.0767 0.1559 93.0

MI+Correction -0.0012 0.0016 -0.0840 0.0816 0.1656 95.0

NH -0.0012 0.0016 -0.3342 0.3293 0.6635 100

MJ -0.0012 0.0016 0.0252 0.0841 0.0589 0

ZQ -0.0012 0.0016 -0.0561 0.0536 0.1096 81.3

ML -0.0013 0.0018 -0.0818 0.0769 0.1587 49.7

Specificity

Est MSE lower upper length Coverage

MI 0.0004 0.0005 -0.0421 0.0429 0.0850 93.6

MI+Correction 0.0004 0.0005 -0.0447 0.0456 0.0903 95.0

NH 0.0004 0.0005 -0.1584 0.1605 0.3189 100

MJ 0.0004 0.0005 0.0130 0.0456 0.0325 0

ZQ 0.0004 0.0005 -0.0299 0.0307 0.0606 85.5

ML 0.0000 0.0005 -0.0449 0.0408 0.0857 48.3
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Results
(a)N = 1000 Se1 = Se2 = 0.9, Sp1 = Sp2 = 0.95, and95% coverage

Sensitivity

Est MSE lower upper length Coverage

MI -0.0016 0.0010 -0.0626 0.0594 0.1220 94.1

MI+Correction -0.0016 0.0010 -0.0654 0.0623 0.1277 95.1

NH -0.0016 0.0010 -0.3194 0.3145 0.6339 100

MJ -0.0015 0.0010 0.0243 0.0654 0.0412 0

ZQ -0.0016 0.0010 -0.0444 0.0412 0.0856 83.1

ML -0.0014 0.0010 -0.0605 0.0571 0.1176 63.7

Specificity

Est MSE lower upper length Coverage

MI 0.0006 0.0003 -0.0324 0.0337 0.0661 94.9

MI+Correction 0.0006 0.0003 -0.0340 0.0353 0.0692 95.8

NH 0.0006 0.0003 -0.1512 0.1535 0.3047 100

MJ 0.0006 0.0003 0.0116 0.0333 0.0217 0

ZQ 0.0006 0.0003 -0.0227 0.0240 0.0468 84.2

ML 0.0006 0.0003 -0.0323 0.0322 0.0645 64.3
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5. Data Example
√

An epidemiological study of dementia which investigated

the role of environmental risk factors in the development of

Alzheimer’s disease
√

The goal is to compare the existing (standard) screening

test to a new one.
√

The new test is based on information from a cognitive test

given to a person and from a relative test given to someone

who knows the subject.
√

The standard test uses only the information from the

subject’s test
√

Postmortem data available only for those who died and

underwent autopsy
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Data Example

Table 3: Data from an Alzheimer study(Age > 75)

T1 positive negative

T2 positive negative positive negative

Verified

Disease 31 5 3 1

Non-disease 25 10 19 55

Not verified 22 6 65 346

Total 78 21 87 402

– p. 23/28



Imputation

Imputation: P (Ymis|Yobs) in our case is

(xB
110, x

B
111)|Yobs, θ ∼ M(xB

11+, (θ111/θ11+, θ110/θ11+))

(xB
100, x

B
101)|Yobs, θ ∼ M(xB

10+, (θ101/θ10+, θ100/θ10+))

(xB
010, x

B
011)|Yobs, θ ∼ M(xB

01+, (θ011/θ01+, θ010/θ01+))

(xB
000, x

B
001)|Yobs, θ ∼ M(xB

00+, (θ001/θ00+, θ000/θ00+)).

Hence, We can use the following distributions in order to

draw the missing values

x|θ ∼ M(n, θ) likelihood

θ ∼ D(α) prior

θ|Y ∼ D(α + x) posterior
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Imputation

Analysis: Given the complete data sets we can use any of the

complete-data procedures mentioned before.

Combinations: After havingm sets of estimates and their

standards errors (for each method), we would need to use

Rubin’s ruled to combine these estimates.
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Results

Multiple Imputation

NHCI MJCI ZQCI MI MI+Correction ML

Sensitivity est 0.1082 0.1054 0.1082 0.1082 0.1082 0.0703

SE 0.0928 0.0928 0.0929

up 0.9542 0.1870 0.2195 0.2982 0.3121 0.2524

low -0.6600 0.0433 -0.0032 -0.0819 -0.0957 -0.1118

Specificity est -0.1122 -0.1118 -0.1122 -0.1122 -0.1122 -0.1178

SE 0.0201 0.0201 0.0201

up 0.3325 -0.0804 -0.0725 -0.0706 -0.0785

low -0.5993 -0.1440 -0.1519 -0.1538 -0.1572
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Results
√

Sensitivity:

⋆ All the MI estimates are quite close to each other

⋆ The ML estimate is smaller, but still very close to the

other estimates (less then a half of SE)

⋆ The confidence intervals are similar (except MJCI)

⋆ There is no difference between the sensitivities of the

two tests
√

Specificity:

⋆ The specificity estimates are all close to each other

⋆ It seems that all tests find significant differences

between the two tests (except the NHCI)

– p. 27/28



6. Discussion
√

We use a well accepted missing data procedure to correct

for verification bias
√

We showed that MI performs much better then the existing

procedures
√

For the scenario in which the missing values are not

ignorable, it is simple to still use the MI procedure, with

only slight modifications
√

Using MI allows us to do sensitivity analysis by using

several different analyses
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