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Reasons for Missing Data

Rubin (1976) Classifies the reasons for missing data as either

ignorable or nonignorable.

In a dataset where variables X are fully observed and variables Y

have missing values:

• Ignorable Missingness: Missing Y are only randomly different

from observed Y when conditioning on X

• Nonignorable Missingness: Missing Y are systematically

different from observed Y even when conditioning on X

• E.g. Missing Y are typically 20% larger than observed Y with

the same values of X



Hot-deck Imputation

• Hot-deck imputation is an imputation technique that replaces

missing values in a data set (donees) with observed values

(donors)

• Most hot-deck imputation methods attempt to match donors

and donees based on observed covariates

• Predictive mean matching (PMM), Rubin (1986), Little (1988)



Appoximate Bayesian Bootstrap

• Rubin (1987) suggests an Approximate Bayesian Bootstrap

(ABB) to incorporate appropriate uncertainty into hot-deck

procedures

• To incorporate an ABB into a hot-deck imputation model, the

steps are:

1. Draw a bootstrap sample of the observed values

2. Impute missing values by drawing donors from this

bootstrap sample

3. For multiple imputation, repeat steps 1 and 2 m times, so

that m bootstrap samples are drawn

• Applies an improper prior on the donor selection probabilities



Nonignorable ABB

• Rubin and Schenker (1991) discuss how an ABB can be

modified to handle nonignorable missing data. Instead of

drawing nobs cases of Yobs randomly with replacement (i.e.

with equal probability), they suggest

• Draw nobs cases of Yobs with probability proportional to Y c
obs so

that the probability of selection for for yi ∈ Yobs is

yc
i∑nobs

j=1
yc

j

. (1)

• This skews the nonrespondents to have typically larger (when

c > 0 and yj > 0) values of Y than respondents.



Nonignorable ABB Terminology

We refer to ABBs where values of Yobs are drawn with probability

proportional to Y c
obs where

• c = −1: Inverse-to-size ABB

• c = 1: Proportional-to-size ABB

• c = 2: Proportional-to-size-squared ABB

• c = 3: Proportional-to-size-cubed ABB



Additional Nonignorable ABBs

• A nonignorable ABB where nobs cases of Yobs are drawn with

probability proportional to Yobs centered around a quantile of

Yobs.

• E.g. center observed Y around its median. The implication of

drawing with probability proportional to the distance from the

median is to favor values for the non-respondents with either

larger or smaller values than respondents with the same set of

covariates (when c > 0).

• We refer to this approach as a “U-Shaped ABB” because

observations in the extremes of the distribution of Yobs have

greater weight than observations in between that are close to

the median



Additional Nonignorable ABBs cont’d

• We refer to the ABB that centers the donor sizes around the 1st

quantile as a “Fishhook ABB,” because this ABB mostly favors

large values but retains a U-shaped pattern featuring a slight

upturn in the weight given to the smallest observed values.



Nonignorable ABB Illustration

• Simulated n = 1000 observations from a uniform distribution

• Drew a ABB sample and recorded the number of times an

observation was included in the sample

• Histogram using ABB weights

• Six different ABB types
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Prior Distributions

• Histograms can be considered prior distributions on the donor

selection probabilities.

• Ignorable ABB is akin to a flat prior, and gives each donor

equal prior probability of selection

• Other ABB types are informative priors, and give more or less

weight to a donor based on the donor size.

• We will see that inferences are affected by the choice of ABB.



Motivating Example: The WECare Study

• The WECare study was a longitudinal depression treatment

study of low income women

• Women were measured for depression every month for 6

months, every other month for 6 more months

• Here, we focus on the slope of the medication treatment over 6

months

• Missingness in months 1-6 ranges from 24% to 38%



Experiment Based on Motivating Example

• We multiple imputed the WECare data using the predictive

mean matching hot-deck approach of Siddique and Belin

(2008).

• A closeness parameter k determines the size of the donor pool:

As k → ∞ this procedure amounts to a nearest-neighbor

hot-deck where the donor whose predicted mean is closest to

the donee is always chosen. Conversely, when k equals 0, each

donor has equal probability of selection, which is equivalent to

a simple random hot-deck.



Experiment Cont’d

We imputed the WECare data many times with the following

ABBs.

1. An Ignorable ABB that treats donors as a priori equally likely

2. An Inverse-to-size ABB

3. A Proportional-to-size ABB

4. A Proportional-to-size-cubed ABB

5. A U-Shaped ABB

6. A Fishhook ABB

7. A Mixture ABB where a different ABB is implemented for each

of the 5 imputed data sets.

Each ABB was imputed using closeness parameter values 0-10 (we

only show for values of 2)



Mixture ABB

• The mixture ABB implements a different ABB for each dataset.

• Motivation is to average over the uncertainty regarding the

missing data mechanism

• We will see that this approach provides better coverage than

other ABB approaches

• For the WECare Experiment, the following ABBs were used in

the mixture ABB

1. An Inverse-to-size ABB (c=-1)

2. An Ignorable ABB (c=0)

3. A Proportional-to-size ABB (c=1)

4. A Proportional-to-size-squared ABB (c=2)

5. A Proportional-to-size-cubed ABB (c=3)



Table of Medication Intervention Slopes by ABB Type based on

one replication with a closeness parameter value of 2

ABB Type Estimate Std. Error t value Pr(> |t|)

Ignorable -2.18 0.47 -4.66 <0.0001

Inverse-to-size -2.79 0.48 -5.86 <0.0001

Proportional-to-size -1.83 0.45 -4.05 0.0002

Proportional-to-size-cubed -1.42 0.43 -3.30 0.0012

U-Shaped -1.22 0.74 -1.65 0.1319

Fishhook -1.34 0.52 -2.61 0.0141

Mixture -2.13 0.70 -3.04 0.0156



Simulation Study

• Bivariate normal-lognormal (Y1, Y2) data was simulated where

Y1 ∼ N(1.0, 0.13), Y2 ∼ LN(1.7, 4.7), and corr(Y1, Y2) = 0.54.

(Y2 = eZ2 where Z2 ∼ N(0, 1))

• 50% nonignorable missingness was applied to the lognormal

variable (Y2) so that larger values tended to be missing

• N = 100

• Hot-deck of Siddique and Belin (2008) was used to create five

multiply imputed data sets

• Bias, variance, MSE, and coverage were calculated for the

mean of Y2

• 1000 replications



Simulation Study Cont’d

• Data were imputed using closeness parameter values between

0-10

• Investigate the effect of donor pool size on ABB performance

• Four different ABBs

1. Nonignorable ABB

2. Proportional-to-size-squared ABB

3. Mixture ABB

4. Fishhook ABB
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Implementation Guidelines

• Nonignorable ABB proved to be effective, but not all

performed equally well

• Mixture ABB outperformed those that used the same ABB for

each imputed dataset

• Committing to one ABB when the missing data mechanism is

unknown may provide overly precise estimates

• Similarly, avoid strong nonignorability assumptions. I.e. ABB

that chooses donors with probability proportional to donor size

raised to 100 will always choose largest donor value=single

imputation.



Implementation Guidelines Cont’d

• Recommendation is to use Mixture ABB approach

• Accounts for appropriate uncertainly

• Nominal coverage in simulation study

• Large closeness parameter values reduce effectiveness of

Nonignorable ABB, use small values: 1 or 2

• Mixture ABB can be designed to favor larger values:

c = −1, 0, 1, 2, 3, smaller values: c = −3,−2,−1, 0, 1 or just to

add additional uncertainty: c = −2,−1, 0, 1, 2

• Can also incorporate U-Shaped and Fishhook ABBs if deemed

plausible mechanisms



End
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Computation Details

For all nonignorable ABBs described above, when values of Yobs are

less than or equal to 0, the values of Yobs need to be transformed to

ensure that the selection probabilities in the nonignorable ABB are

positive and (in the case where Yobs are drawn with probability

proportional to Y c
obs, c > 0) that the selection probability for

yi ∈ Yobs is greater than the selection probability for yj ∈ Yobs

when yi > yj . Define α and β to be the smallest and second

smallest values of Yobs respectively where α 6= β. Transform

yi ∈ Yobs using yi + |α| + |α − β|. Then Equation 1 is rewritten as

(yi + |α| + |α − β|)c

∑nobs

j=1
(yj + |α| + |α − β|)c

. (2)

Transformation only for calculating the selection probabilities. The

original values of Yobs are used for imputation.




