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Joint Longitudinal and Survival Modeling

Many clinical trials generate both longitudinal (repeated mea-

surement) and survival (time to event) data.

Ex: In AIDS clinical trials, one measures

• the number of CD4 cells per ml3 of blood (longitudinal)

• time until death or disease progression (survival)

The two are obviously correlated (low CD4 is prognostic of poor

survival outcome)

Several approaches for joint modeling:

• Henderson, Diggle, and Dobson (2000): connect the longi-

tudinal and survival processes with bivariate random effects

following a latent bivariate Gaussian process.

• Wang and Taylor (2001): include the longitudinal marker

as a time-dependent covariate in the (proportional hazards)

survival model.

• Lin et al. (2002): employ a latent class model

– logistic model for each subject’s class membership

– longitudinal and survival processes are independent given

this membership (tho marginally dependent)
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Longitudinal model

For data yi1, yi2, . . . , yini
from the ith subject at times

si1, si2, . . . , si,ni
, let

yij = µi(sij) + W1i(sij) + εij , (1)

where

• µi(s) = xT
1i(s)β1 is the mean response

• W1i(s) = dT
1i(s)Ui incorporates subject-specific random

effects (adjusting the main trajectory for any subject)

• εij ∼ N(0, σ2
ε ) is a sequence of mutually independent mea-

surement errors.

Typically we assume the random effects are distributed as

Ui
iid∼ N(0,Σ)

• dates at least to Laird and Ware (1982)

• There are some identifiability issues with σ2
ε and Σ (can’t

choose “flat” priors for both)

• Often called “mixed” models, since contain both fixed (β1)

and random (Ui) effects – SAS Proc MIXED, which does

ML/REML and some EB fitting

• Full Bayes-MCMC fitting straightforward in WinBUGS
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Survival model

Both parametric and nonparametric (Cox) possibilities...

For the former, typically a Weibull or gamma model is as-

sumed, e.g.

ti ∼ Weibull (p, µi(t)) ,

where ti is time to event for subject i, p > 0, and

log(µi(t)) = xT
2i(t)β2 + W2i(t) .

Here,

• β2 are the fixed effects corresponding to the (possibly time-

dependent) explanatory variables x2i(t) (which may have

elements in common with x1i)

• W2i(t) is similar to W1i(s), including subject-specific covari-

ate effects and an intercept (often called a frailty). The

event intensity (or hazard) at time t is given as

λi(t) = ptp−1µi(t) = ptp−1 exp
(
xT

2i(t)β2 + W2i(t)
)

, (2)

which is monotone in t (decreasing if p < 1, increasing

if p > 1) and reduces to the exponential (constant in t)

hazard if p = 1.

• Fittable in either SAS (Proc LIFEREG) or WinBUGS
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Joint model

Link the two models by specifying latent zero-mean bivariate

Gaussian process for (W1i,W2i)
T , independent across subjects:

W1i(s) = U1i + U2i s , and (3)

W2i(t) = γ1U1i + γ2U2i + γ3(U1i + U2i t) + U3i . (4)

• the longitudinal model (3) need not be linear in s

• γ1, γ2, and γ3 in the survival model (4) measure the asso-

ciation between the two submodels induced by the random

intercepts, slopes, and fitted longitudinal value at the event

time W1i(t), respectively.

• as before we let

(U1i, U2i)
T iid∼ N(0,Σ)

while the U3i are independent frailty terms, i.e., modeled as

U3i
iid∼ N(0, σ2

3),

independent of the (U1i, U2i)
T .

• Fittable in SAS (Proc NLMIXED) or WinBUGS
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Application to ddI/ddC data

• Trial randomized m = 467 eligible HIV-infected patients to

receive either didanosine (ddI) or zalcitabine (ddC).

• Data collected: times to death, and CD4 counts at study

entry, and again at the 2, 6, 12, and 18 month visits (so

that ni ≤ 5).

• Boxplots of the CD4 counts over time (Figures 1(a) and (b))

show a high degree of skewness toward high CD4 counts,

suggesting a square root transformation.

• Sample sizes at the five time points: (230, 182, 153, 102,

22) for the ddI group and (236, 186, 157, 123, 14) for the

ddC group→ sharply increasing degree of missing data over

time due to deaths, dropouts, and missed clinic visits

• Empirical survival curves (Kaplan-Meier estimates; Figure 1(c))

are very similar during the first six months after random-

ization. Afterwards, survival in the ddC group is somewhat

higher than that in the ddI group through the 18-month

visit.
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(a) CD4 count over time, ddI group
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(b) CD 4 count over time, ddC group
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Figure 1: Exploratory plots of longitudinal data and survival data for the ddI/ddc trial.
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SAS Proc NLMIXED code:

title1 ’Two Random Effects Joint Model with u1+u2*t term - NLMIXED’;

proc nlmixed data=alldata;

parameters bl0= 8.01 bl1=-0.167 bl2=0.0299 bl3=-0.158

bl4=-2.31 bl5=-0.131

a11= 2.0 a12= 0 a22=0.4

bs0= 4.02 bs1=-0.267 bs2=0.14 bs3=-0.77

bs4=-0.08 r1 = 0.207 r2 =2.51 r3=0;

if (last) then do;

linpsurv = bs0 + bs1*randgrp1 + bs2*gender1 + bs3*prevoi1 +

bs4*stratum1 + r1*u1 + r2*u2 + r3*(u1+u2*t2death);

alpha = exp(-linpsurv);

G_t = exp(-alpha*t2death);

g = alpha*G_t;

llsurv = (death=1)*log(g) + (death=0)*log(G_t);

end; else llsurv=0;

v11 = a11*a11;

v12 = a11*a12;

v22 = a12*a12 + a22*a22;

linplong = (bl0 + u1) + (bl1 + u2)*obstime +

bl2*obstime*randgrp1 + bl3*gender1 +

bl4*prevoi1 + bl5*stratum1;

resid = (cd4-linplong);

if (abs(resid) > 1.3E100) or (s2 < 1e-12) then do;

lllong = -1e20;

end; else do;

lllong = -0.5*(1.837876 + resid**2 / s2 + log(s2));

end;

model last ~ general(lllong + llsurv);

random u1 u2 ~ normal([0, 0],[v11,v12,v22]) subject=patient;

run;

title1;
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WinBUGS code:

# WinBUGS 1.4 code for joint time-varying model (Model XII in Guo and Carlin paper)

# Written by Xu Guo, 6/26/03

model{

for (i in 1:N) {

for (j in 1:M) {

Y[i, j] ~ dnorm(muy[i, j], tauz)

muy[i, j]<-beta1[1]+beta1[2]*t[j]+beta1[3]*t[j]*randgrp1[i]+

beta1[4]*gender1[i]+beta1[5]*prevoi1[i]+beta1[6]*stratum1[i]+U[i,1]+U[i,2]*t[j]

}

surt[i] ~ dweib(1,mut[i]) I(surt.cen[i],)

log(mut[i])<-beta2[1]+beta2[2]*randgrp1[i]+beta2[3]*gender1[i]+

beta2[4]*prevoi1[i]+beta2[5]*stratum1[i]+r1*U[i, 1]+r2*U[i, 2]+r3*(U[i,1]+U[i,2]*tee[i])

U[i,1:2] ~ dmnorm(U0[],tau[,])

}

tau[1:2,1:2] ~ dwish(R[,], 23)

beta1[1:6]~dmnorm(betamu1[],Sigma1[,])

tauz~dgamma(0.1, 0.1)

beta2[1:5]~dmnorm(betamu2[],Sigma2[,])

r1~dnorm(0, 0.01)

r2~dnorm(0, 0.01)

r3~dnorm(0,0.01)

}
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model W1(s) W2(t) D pD DICtotal

no random effects

I 0 0 9565.5 8.53 9574.0

II 0 U3 9561.1 15.60 9576.7

random intercepts

III U1 0 7261.2 429.5 7690.7

IV U1 U3 7256.3 435.6 7691.9

V U1 γ1U1 7222.5 425.8 7648.3

VI U1 γ1U1 + U3 7223.1 433.2 7656.2

random intercepts

and random slopes

VII U1 + U2 s 0 6866.6 731.9 7598.5

VIII U1 + U2 s γ1U1 6839.5 728.9 7568.4

IX U1 + U2 s γ2U2 6859.3 736.4 7595.6

X U1 + U2 s γ(U1 + U2) 6838.6 728.9 7567.4

XI U1 + U2 s γ1U1 + γ2U2 6803.8 744.5 7548.3

XII U1 + U2 s γ1U1 + γ2U2 + γ3W1(t) 6959.1 666.1 7625.2

• extra frailty term (U3) is not worth it

• Model XI (with random intercepts and slopes and two dif-

ferent association parameters) is best

• Model XII (adds time-varying component W1(t) to the sur-

vival model) is not worth it: higher DIC, and γ3 is insignif-

icant (95% posterior credible interval (–0.43, .26)).

Consistent with earlier finding: exponential model (time-constant

baseline hazard) is adequate for this very ill population.
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Comparison of separate and joint models

• In both cases, in the longitudinal submodel only Time and

PrevOI are “Bayesianly significant” at level 0.05, while

only PrevOI is significant in the survival submodel.

• Posterior estimates of the association parameters in the

joint analysis are negative and significantly different from

zero→ strong evidence of association between the two sub-

models, and both the initial level and slope of CD4 count

is negatively associated with the hazard of death.

• Figure 2 plots the estimated posterior density of the median

survival time of this hypothetical male patient who is AIDS-

negative at study entry and intolerant of AZT. In both the

separate (panel a) and joint (panel b) analyses, this pa-

tient’s survival is clearly better if he receives ddC instead

of ddI. However, the joint analysis increases the estimated

median survival times by roughly 50% in both groups.
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Figure 2: Median survival time for a hypothetical patient (male, negative AIDS diagnosis at study

entry, intolerant of AZT): (a) estimated posterior density of median survival time of the patient

from separate analysis; (b) estimated posterior density of median survival time of the patient from

joint analysis.
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Comparison of separate and joint models (cont’d)

Figure 3 compares the estimated posterior median survival

time distributions for two hypothetical patients:

1. Patient 450: ddI group, male, AIDS positive at baseline,

previously failed AZT (poor prognosis)

2. Patient 454: ddI group, male, AIDS negative at baseline,

intolerant of AZT (better prognosis)

Both were still alive at the end of the study, censored at days

571 and 591, respectively. Figures 3(b) and (c) compare the

posterior median survival time distributions of the joint model

with two separate models (with and without frailty terms U3)

• Again, no need to include U3; separate analysis curves are

virtually identical

• Joint and separate results differ much more markedly than

in Figure 2, significantly increasing the survival time for

Patient 450, and decreasing it for Patient 454.

• Joint model also reverses the separate conclusion: Patient

450, with the “good” CD4 trajectory but “bad” covariates

(AIDS positive, AZT failure) now predicted to survive much

longer (and vice-versa for Patient 454)!
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Figure 3: Observed data and estimated posteriors of median survival time for two patients, ddI/ddC

study: a) observed longitudinal data for Patients 450 and 454; b) estimated posterior densities for

Patient 450; c) estimated posterior densities for Patient 454.
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Comparison with SAS Proc NLMIXED

• Estimation of the random effects is via empirical Bayes, with

associated standard errors obtained by the delta method.

Approximate 95% prediction intervals can then be obtained

by assuming asymptotic normality.

• For the median survival times of Patients 450 and 454,

under Model XI we obtained point estimates of roughly 72.3

and 22.4, respectively, in rough agreement with Figure 3.

• However, the asymmetry of the posteriors in this figure

(which are similar to the likelihood, due to our vague priors)

suggests traditional confidence intervals based on asymp-

totic normality and approximate standard errors will not be

very accurate.

• Exact results (and corresponding full posterior inference)

as available from Figures 3 and 2 still require the fully

Bayesian-MCMC (WinBUGS) approach.

Thus the joint Bayesian approach appears to offer signifi-

cantly improved and enhanced estimation of median survival

times and other parameters of interest, as well as simpler cod-

ing and comparable runtimes!
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Discussion

? Bayesian approach seems both simpler and easier here!

? Extension to semiparametric (i.e. Cox) survival models is

not so obvious in WinBUGS: fittable via counting process

approach (the “Luek” example), but connection to the lon-

gitudinal frailties requires some thought.

? DIC is a convenient model choice tool here (already stan-

dard in WinBUGS) and properly accounts for shrinkage of

parameters in the hierarchical model. BUT

1. just a “score”; differences in DIC can not be compared

to a chi square table

2. Monte Carlo variability in DIC not easy to estimate (delta

method approximation is poor); just replicate a few times?

3. see discussion of Spiegelhalter et al. (2002, JRSS-B) or

recent work of Celeux et al. (2006, Bayesian Analysis)

for alternate, perhaps more robust definitions of DIC.

For more info and references:

http://www.biostat.umn.edu/~brad/
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