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Survival data
X: time from “zero” to event (death)
right-censoring at C: observe X = min(X,C), D = I(X = X)
(delayed entry)

basic quantity:
— hazard function (= death intensity = mortality rate)

— = a(t) ~ Prob(die before ¢t + A | alive t)/A
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Survival data

Survival function:
S(t) = Prob(alive time t) = exp(— fo = exp(—A(t)).

Likelihood based on independent (X, Dz-,z' =1,...,n):

11 S(Xi)a()zz’)Di-

Models for a(?):
e non-parametric: estimate A(t) by Nelson-Aalen estimator
e parametric models: Weibull, piecewise exponential, ...
e regression: Cox, Poisson (piecewise exponential),

Simple one-to-one correspondance between the “local” parameter, the

hazard, a(t), and the “global” parameter, the survival probability,
S(t).



Survival data as a two-state model.

Alive

Y

Dead

Transition intensity
a(t) ~ Prob(state 1 time t+ A |state 0 time t)/A

State occupation probabilities
S(t) = Prob(state 0 time t), F(t) =1— S(%).



Competing risks as a multi-state model.
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Parameters.

Transition intensities: Cause-specific hazards, j =1,...,k:

a;(t) ~ Prob(state j time ¢+ A |state 0 time t)/A,

State occupation probabilities:

S(t) = Prob(state 0 time t),

F;(t) = Prob(state j time t),j =1,...,k.



Radiation-exposed male mice, Hoel and Walburg (1972).
e 95 male mice in conventional lab. environment
e and 82 in germ-free lab. environment
e were exposed to 300 rad. at age 5-6 weeks

e and followed to death (NB: no censoring), classified (by
Nnecropsy) as

— thymic lymphoma (cancer, solid line on figure, later)

— reticulum cell sarcoma (also cancer, dashed line on figure,
later)

— other causes (dotted-dashed line on figure, later)

e Purpose: study temporal patterns of failure causes and compare

between environments.



Bone marrow transplantation.

1715 leukemia patients with BMT: (Szydlo et al., 1997)

e 537 ALL, 340 AML, 838 CML
e 1026 early stage, 410 intermediate stage, 279 advanced stage

e 1224 HLA-identical sibling, 383 HLA-matched unrelated donor,
108 HLA-mismatched unrelated donor

e 311 patients relapsed, 557 died in remission.

Purpose:

e Study risk factors for relapse and death in remission



Register-based studies in psychiatric epidemiology.
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Data.

Study [1]: [2-3]: [4]:

Outcome depression affective disorders antidepressants

Index Control Index Controll Control2 Index Control

Diagnosis Diabetes Osteo. Hyper- Non-toxic Osteo. Dementia Osteo.

thyr. goitre

Number 91507 108487 28190 32687 122770 24137 100378
Median age 63.1 68.5 57.7 45.2 68.0 81.0 65.0
% females 48.1 59.7 84.2 85.3 58.8 60.6 58.8
Event (%) 0.38 0.46 1.2 0.8 0.6 43.2 16.0
Death (%) 50.7 32.8 27.7 11.3 34.4 30.7 6.7

Osteo.=osteoarthritis, Hyper-thyr.=hyper-thyroidism
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Common features for psychiatric studies.

Purpose: compare risk of outcome between index and control groups.

e Large samples
e Death competing event
e Death rates high

e Death rates may differ between index and control groups
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Mathematical formulation (1).

X, survival time, D cause of failure, joint distribution:

P(X <t,D =j).

Cause-specific hazards:

. P(X<t+A,D=j|X >1)
ozj(t):ilino A :

Marginal distribution of X: survival function

S(t) = P(X > t) = exp(— Z /O a;(uw)du).
Total hazard is a(t) = Z?:l a;(t).
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Mathematical formulation (2).

Latent failure times
Xt XE

observe min{X7{, ..., X%} and corresponding D.

Joint survival distribution:

Qtr,...,ty) = P(X{ > t,..., XE > t).

Relations between the two formulations:
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Parameter identification.

Which parameters may be identified from the competing risks data
(XZ,DZ),’L = 1,...,?7,?

(or from similar right-censored data ()?Z, D;),i=1,...,n where

either X,; = 55@ and D, € {1, Ceey ]{7} or X; > 55@ and D; = O)
Likelihood: [; S(X;) IT;(c(X;)) P=9).
From this we may identify the cause specific hazards «;(¢) but not the

whole joint distribution Q(-) of the “latent failure times” X{, ..., XL

For instance NOT the “marginal distribution” of X JL
P(XJ > tj) = Q(O,...,O,tj,O,...,O) = Sj(tj)

with (“net”) hazard function h;(t) = —0log S,;(t)/0t.
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“Independent” competing risks.

Definition: X}, ... ,XkL are independent, i.e.

Q(t1,...,te) =1, S;(t;)

or (weaker): marginal (or “net”) and cause-specific (“crude”) hazards
are identical: «;(t) = h;(t).

Since S;(t) and h;(t) cannot be identified from the data (without

further, unidentifiable conditions) these assumptions are unverifiable.

Likewise: the question of “what would happen if certain causes were
removed” (“partial crude hazards”) is quite hypothetical in most

biological settings.
(Sensitivity analysis?)

Possible exception: failure of technical systems due to components in

“unrelated parts” of the system.

15



“Counterexample”.

Kalbfleisch and Prentice (2002). Let k = 2 and:
Q(t1,t2) = exp(l — a1ty — aaty — exp(arz(onts + aata))).

Cause-specific hazards: a;(t) = a;(1 + a2 exp(aia(ar + az)t)).

If av15 = 0 then risks 1 and 2 are “independent”. However, likelihood

would be the same if the model was

Q" (t1,12) = exp(l — a1ty — aata)

a16a12(061+042)t1 + a26a12(a1+a2)t2

X exp(— oo )

risks are independent (also for a;o # 0); cause-specific hazards are

the same (but marginal hazards are different).
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Identifiable probabilities.

These are the state occupation probabilities in the competing risks
multi-state model. That is,

the overall survival function:

S(t) = eXp(—Z /O a; (u)du),

and the cumulative incidences:

F;(t) = /0 S(u—)aj(u)du,j =1,... k.

—o oo o—» fime

0 u u~+ du t
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Inference for cause-specific hazards.

Likelihood: k
[T 5 [T (X P
= [T(exp(= 3 4;(X) T 0y (X)) 2=
— TT(IT exp(=4;(X)) (ay (X)) Pe=).
Note:

e Product over causes, j,

e The jth factor is what we would get if only that cause was

studied and all other causes were right-censorings
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Inference for cause-specific hazards.

e This has nothing to do with “independence” of causes - it is solely
a consequence of the definition of cause-specific hazards as

hazards of exclusive events.
e It means that all standard hazard-based models for survival data
apply when analyzing cause—speciﬁc hazards

— non-parametric: estimate A;( fo aj(u)du,j=1,...,k by

Nelson-Aalen estimator, compare using, e.g. logrank tests
— parametric models

— Cox regression, Poisson regression
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Radiation-exposed male mice, Hoel and Walburg (1972).
e 95 male mice in conventional lab. environment
e and 82 in germ-free lab. environment
e were exposed to 300 rad. at age 5-6 weeks

e and followed to death (NB: no censoring), classified (by
Nnecropsy) as

— thymic lymphoma (cancer, solid line on figure, later)

— reticulum cell sarcoma (also cancer, dashed line on figure,
later)

— other causes (dotted-dashed line on figure, later)

e Purpose: study temporal patterns of failure causes and compare

between environments.
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Nelson-Aalen estimates, germ-free mice.

FIG IV.4.1
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Nelson-Aalen estimates, conventional mice.

FIG IV.4.2
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Radiation-exposed male mice, Hoel and Walburg (1972).

Cox models for cause-specific hazards: conventional vs. germ-free
o TL (3 =-0.323 (0.286) (solid)
e RCS 3 =2.004 (0.345) (dashed)
e OC 3 =1.080 (0.304) (dotted-dashed)
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Bone marrow transplantation.

1715 leukemia patients with BMT:

e 537 ALL, 340 AML, 838 CML
e 1026 early stage, 410 intermediate stage, 279 advanced stage

e 1224 HLA-identical sibling, 383 HLA-matched unrelated donor,
108 HLA-mismatched unrelated donor

Analysis:

e Cox regression models for cause-specific hazards of “relapse” and

“death in remission”

24



Cox regression models for cause-specific hazards

Relapse Death
Covariate 8 (SE) & (SE)
HLA-id. sibling 0 - 0 -
HLA-matched donor 0.011 0.15 0.811 0.097
HLA-mismatched donor | -0.944 0.36 1.118 0.14
ALL 0 - 0 -
AML -0.271 0.15 -0.195 0.14
CML -0.721 0.16 0.291 0.117
Early stage 0 - 0 -
Intermed. stage 0.640 0.15 0.474 0.10
Advanced stage 1.848 0.15 0.781 0.13
Karnofsky> 90 -0.118 0.14 -0.504 0.11
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Register-based studies in psychiatric epidemiology.

Study [1] [2-3]: [4]:

Outcome depression affective disorders anti-depressants

Index Control Index Controll Control2 Index Control

Diagnosis Diabetes Osteo. Hyper- Non-toxic Osteo. Dementia Osteo.

thyr. goitre

Number 91507 108487 28190 32687 122770 24137 100378
Median age 63.1 68.5 57.7 45.2 68.0 81.0 65.0
% females 48.1 59.7 84.2 85.3 58.8 60.6 58.8
Event (%) 0.38 0.46 1.2 0.8 0.6 43.2 16.0
Death (%) 50.7 32.8 27.7 11.3 34.4 30.7 6.7

Osteo.=osteoarthritis, Hyper-thyr.=hyper-thyroidism
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Models for cause-specific hazards.

Due to the large sample sizes Poisson regression models are natural
choices for hazard models. This is because tables of events and
person-years according to (categorical) explanatory variables are

sufficient for the parameters in the model.

Models used:

0t | Z) = ajo(t) exp(B,Z (1)), = 1,2

where ¢ =age, a;o(t) = ajp when ¢ € (ag,a¢+1), and Z(t) includes
diagnosis, gender, time since diagnosis, calendar time, ... as

categorical variables (and possible interactions).
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Some results: rate ratios.

12]: Hyperthyroidism and affective disorders:

0-0.5 years 0.5-1 years 1 year+

Hyperthyroidism | 3.60 (2.58,5.04) 2.47 (1.57,3.90) 1.34 (1.14,1.56)
Non-toxic goitre | 1.46 (0.92,2.30) 1.27 (0.71,2.27)  1.00 (0.84,1.18)
Osteoarthritis 1 (ref) 1 (ref) 1 (ref)

|4]: Dementia and purchase of anti-depressants

Overall Women Men
Dementia 4.17 (4.05,4.29) | 3.67 (3.55,3.80) 5.49 (5.24,5.75)
Osteoarthritis | 1 (ref) 1 (ref) 1 (ref)
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Cumulative incidences.

Recall:
t
= / S(u—)aj(u)du,j=1,...,k

/exp ZAh (w)du,j =1,... k.

Note that F;(t), via S(u) = exp(— ZZ:1 Ap(u—)), depends on the
cause-specific hazards for all causes: think of cancer and

cardio-vascular mortality in smokers.

That is, the simple one-to-one correspondance between the “rate”,
a,;(t), and the “risk”, F;(t), which we are used to from simple survival

analysis does no longer hold when competing risks are operating.

This is the key to understanding competing risks!
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Rates and risks.

Comparison of rates (cause-specific hazards) and risks (cumulative

incidences differ):

L @ M (@) 0{5-2) F§2)(t1) Ff)(tz)
7 7 " S R A F ()
0.1 0.2 1.0 2.0 2 1.33287* 1.11080"
0.1 0.2 2.0 1.0 2 2.78712 3.23094
0.1 0.1 1.0 2.0 1 0.68902 0.58025
0.1 0.1 2.0 1.0 1 1.45134 1.72340
0.1 0.2 1.0 1.0 2 1.92038 1.87474
0.1 0.1 1.0 1.0 1 1.00000 1.00000
0.1 0.2 0.1 0.2 2 1.81873** 1.67032**
0.1 0.2 0.2 0.1 2 2.00000 2.00000
0.1 0.1 0.1 0.2 1 0.95321 0.91238
0.1 0.1 0.2 0.1 1 1.04909 1.09604
0.1 0.2 0.1 0.1 2 1.90642 1.82475
0.1 0.1 0.1 0.1 1 1.00000 1.00000
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Inference for cumulative incidences.
Estimate for F(t): plug-in.

For simple non-parametric inference, plugging the Nelson-Aalen

estimator into F}(¢) gives the estimator

B0 = | Sw-)adw.

where S is the Kaplan-Meier estimator for the overall survival

function, S.

This is a simple special case of the general Aalen-Johansen estimator

for non-homogeneous Markov processes.

A variance estimator is also available.
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Sidetrack.
In the competing risks model, what is the interpretation of

Fi(t)=1- exp(—/0 a;(u)du)?

It is: Prob(Dead from cause j before t) IF all other a(t) = 0, i.e. if

the competing risks did not exist!

It can, therefore, only be interpreted in a hypothetical population
where mortality from causes other than cause 5 have been eliminated
(and where the mortality from cause j is still given by the same «; (%)

- "independent competing riks").

This is an untestable assumption and the estimator F;(¢) should not

be used.
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It has, in fact, been used extensively in, e.g. clinical cancer studies:

“Relapse survival curve”.

The paradox is that A\j (t), the cumulative cause-specific hazard, is
not problematic (except for the fact that a cumulative hazard is hard
to interpret), but presenting this as a “Kaplan-Meier-type” estimator

is problematic since this does not have a probability interpretation.

The magnitude of this problem, obviously, depends on the magnitude

of the competing risk; but note that we always have: Fj(t) > F;(t).
The quantity F;(t) corresponds to the partial Markov process where

all transition intensities other than a;(t) are set to 0.
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Radiation-exposed male mice, thymic lymphoma.

FIG IV.4.5
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Censoring in survival studies

When, in survival studies, we draw the Kaplan-Meier estimator only
the death intensity is taken into account - NOT the censoring
intensity. This makes sense if BOTH: (I), the population without
censoring makes sense AND: (II), censoring is “independent”.

Example: event = death due to cancer, consider censoring due to:

e end of study

e emigration

e loss to follow-up

e death due to traffic accidents

e death due to cardiovascular diseases

The magnitude of the first problem (I) depends on the magnitude of
the competing risk.
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BMT study: Cox regression models for cause-specific hazards

Relapse Death
Covariate 8 (SE) & (SE)
HLA-id. sibling 0 - 0 -
HLA-matched donor 0.011 0.15 0.811 0.097
HLA-mismatched donor | -0.944 0.36 1.118 0.14
ALL 0 - 0 -
AML -0.271 0.15 -0.195 0.14
CML -0.721 0.16 0.291 0.117
Early stage 0 - 0 -
Intermed. stage 0.640 0.15 0.474 0.10
Advanced stage 1.848 0.15 0.781 0.13
Karnofsky> 90 -0.118 0.14 -0.504 0.11
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BMT study: cumulative incidences for relapse.
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Figure 1. Cumulative incidence of relapse.
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Time-dependent covariates.

As in many standard hazard-based models for survival data,
time-dependent covariates are easily accomodated in models for
cause-specific hazards.

However, as in standard survival models, the one-to-one relation
between hazard and probability only holds when time-dependent
covariates are exogenous or deterministic. If covariates are
endogeneous (“truly random”) then the survival probability depends
on the possible future development of the time-dependent covariate.

Models used in psychiatric epidemiology studies:

Oéj(t | Z) = Oéjo(t) exp(ﬁ’Z(t)),j = 1,2

where ¢ =age, a;o(t) = oo when t € (ag,a¢+1), and Z(t) includes
diagnosis, gender, time since diagnosis, calendar time, ... as

categorical variables (and possible interactions).
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Some results.

|2]: Hyperthyroidism and affective disorders - rate ratios ().

0-0.5 years 0.5-1 years 1 year+

Hyperthyroidism | 3.60 (2.58,5.04) 2.47 (1.57,3.90) 1.34 (1.14,1.56)
Non-toxic goitre | 1.46 (0.92,2.30) 1.27 (0.71,2.27) 1.00 (0.84,1.18)
Osteoarthritis 1 (ref) 1 (ref) 1 (ref)
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Some results.

|4]: Dementia and purchase of antidepressants - rate ratios (x).

Overall

Women

Men

Dementia

Osteoarthritis

4.17 (4.05,4.29)
1 (ref)

3.67 (3.55,3.80)
1 (ref)

5.49 (5.24,5.75)
1 (ref)
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Probability of antidepressants
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Regression models for competing risks

e Models for rates (cause-specific hazards):

— all well-known hazard regression models from survival analysis

e Models for risks (cumulative incidences):

— plug in models for rates: no simple covariate effects, but
prediction of cumulative incidence for given covariates is
possible (e.g., psychatric studies). Standard errors available
via the delta-method (Cox model: Andersen, Hansen and
Keiding (1992, SJS), Cheng, Fine and Wei (1998, Biometrics);
additive hazard model: Shen and Cheng (1999, Biometrics);
flexible “Cox-Aalen” model: Scheike and Zhang (2003,

Biometrics)).
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— Direct regression models

*

*

Fine & Gray (1999, JASA), cloglog model: (Sub-distribution)
hazard for X7 = X - I(D = j) + oo I(D # j) is

a;(t) = — < log(1 — Fy(t)), model:

log(&;(t | Z)) =log(a,o(t)) + B Z where 3 is estimated by partial
likelihood with no or known censoring and by an IPCW score
equation with general censoring. Related to the Gray (1988, Ann.
Statist.) test for comparison of cumulative incidences.

Fine (1999, JRSS B, 2001, Biostatistics), general links
pseudo-observations (Andersen, Klein et al., Biometrika, 2003;
Biometrics, 2005; SJS, 2007),

Direct binomial regression using inverse probability of censoring
weights (Scheike & Zhang, 2007, SJS, Scheike, Zhang & Gerds
Biometrika)

(The latter two work for more general multi-state models.)
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Direct models for probabilities:

Without censoring, the counting process N;;(t) = I(X; <t,D; =j) is
observed and its values can be used as outcome variables in a

regression model.

1. Pseudo-observations:

A(t) = ﬁj (t) estimator based on entire sample,
é_i(t) estimator based on data obtained by deleting <.

Pseudo-observation no. ¢ is then given by

0;:(t) =n-0(t) — (n—1)-0_;(t).

For selected (all?) time points, t1,...,t,,, these are used as outcome
variables in standard regression models using GEE with some choice
of link function, e.g. cloglog, and sandwich estimator for variances.

Note that censoring must be independent of covariates.
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2: Direct binomial regression:

Let

Vii = Xil(C; > Xi, Di = j) + oo(I(Ds # j) + I(Ci < Xy)).

Then

. (Ié?(é)t)> — F(1),

and inverse probability of censoring weights (IPCW) can be used in

the regression.

1. and 2. shown by Graw, Gerds & Schumacher (2007) to be

equivalent:

A _](Xigt,Di:jaXiSCi)
92(?5) — SC(XZ) + OP(l)'
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Radiation-exposed male mice, Hoel and Walburg (1972).
e Fine-Gray (1999) regression analysis of cumulative incidences.
e Pseudo-observations computed at ¢ = 200, 400, 600, 800 days.

e 3: conventional vs. germ-free

Cause of death TL RCS OC
Fine and Gray /3 0.487 | 0.975 | -0.090
Fine and Gray (SE) || (0.283) | (0.305) | (0.236)
Pseudo-obs. f3 0.401 | 1.151 | 0.659
Pseudo-obs. (SE) (0.286) | (0.321) | (0.276)
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Bone marrow transplantation.

Regression models for cumulative incidences (adjusted for disease,

stage, Karnofsky) at 10 time points.

Relapse Fine-Gray Pseudo: cloglog | Pseudo: logit
Covariate & (SE) 8 (SE) 8 (SE)
HLA-id. sibling 0 - 0 - 0 -
HLA-matched donor -0.32 0.16 -0.37 0.16 -0.45 0.19
HLA-mismatched donor -1.37 0.38 -1.61 0.45 -1.88 0.51
Death in remission Fine-Gray Pseudo: cloglog | Pseudo: logit
Covariate 6 (SE) & (SE) 6 (SE)
HLA-id. sibling 0 - 0 - 0 -
HLA-matched donor 0.76 0.10 0.75 0.10 0.95 0.12
HLA-mismatched donor 1.15 0.13 1.23 0.14 1.64 0.21
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Further topics.

Missing failure type information, e.g. Goetghebeur and Ryan
(Biometrika, 1995).

Relative survival: a;(t) = af(t) + aft).

Pattern mixture regression model, e.g. Larson and Dinse (Appl.
Stat., 1985):

logitP(D = j | Z) = aj+b; Z,cloglogP(X >t | Z,D = j) = log(ao;(t))+8, Z.
Parameters in common for several cause-specific hazards, e.g.
an(t | Z) = aon(t) exp(Bn1 21 + BZ2), h = 1,2

(Andersen, Borgan, Gill and Keiding, 1993, Springer).

Random effects (frailty) models
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More on identifiability.

We saw previously that the joint survival function for the latent

failure times was not identifiable from the competing risks data.

Two remarks to that effect:

1. Heckman and Honoré (Biometrika, 1989) showed that, with
quantitative covariates and marginal proportional hazards
models, the joint distribution is identifiable under suitable

regularity conditions.

2. Zheng and Klein (Biometrika, 1995) showed that, with an
assumed form of the joint distribution (an assumed “copula”), the
marginal distribution of an X jL is identifiable. They used this to

estimate in the presence of dependent censoring.
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Software.
Models for cause-specific hazards: coxph in R, PHREG in SAS, ...
Fine-Gray model, Gray’s test: cmprsk package in R

Plug-in estimation of cumulative incidence based on Cox models
for cause-specific hazards: SAS MACRO by Rosthgj, Andersen and
Abildstrom (Comp. Progr. Meth. Biomed., 2004).

Computation of pseudo-values: SAS MACRO and R function by
Klein, Gerster, Andersen, Tarima, Pohar Perme (Comp. Progr.

Meth. Biomed., in press).
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Conclusions.

Competing risks are frequently seen in biomedical (and other)

applications of survival analysis.

The identifiable parameters are cause-specific hazards and

cumulative incidences (and overall survival function).

In standard survival analysis, rates (hazards) and risks (failure

probabilities) are equivalent

In the competing risks model, this is no longer the case: for each

failure type, the failure risk depends on all failure rates
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Modelling cause-specific hazards using techniques from standard

survival analysis is quite straightforward

The cause-specific hazards, however, only provide a local (in

time) description of the operation of the causes

To obtain a global description (cumulated over time), the
competing risks must be specified (and accounted for) unless

they are small

Questions like independence of risks and what would happen if
certain causes were removed may be important and interesting
but their answers rely on unverifiable assumptions. However,

sensitivity analysis may give useful insight.

57



References.
OO Aalen (1976): Scand. J. Statist. 3, 15.
OO Aalen (1978). Ann. Statist. 6, 534.
OO Aalen, S Johansen (1978). Scand. J. Statist. 5, 141.
PK Andersen, SZ Abildstrom, S Rosthgj (2002). Statist. Meth. Med. Res. 11, 203.
PK Andersen, @ Borgan, RD Gill, N Keiding (1993). Statistical Models Based on

Counting Processes. Springer

PK Andersen, LS Hansen, N Keiding (1991). Scand. J. Statist. 18, 153.
PK Andersen N Keiding (2002). Statist. Meth. Med. Res. 11, 91.

PK Andersen, JP Klein, S Rosthgj (2003). Biometrika 90, 15.

PK Andersen, JP Klein (2005). Biometrics 61, 223.

PK Andersen, JP Klein (2007). Scand. J. Statist. 34, 3.

SC Cheng, JP Fine, LJ Wei (1998). Biometrics 54, 219.

DR Cox (1959). J. Roy. Statist. Soc. B 21, 411.

M Crowder (2001). Classical Competing Risks, Chapman and Hall/CRC.
PW Dickman, A Slogett, M Hills et al. (2004). statist. Med. 40, 326.
JP Fine, RJ Gray (1999). J. Amer. Statist. Assoc. 94, 496.

58



JP Fine (1999). J. Roy. Statist. Soc. B 61, 817.

JP Fine (2001). Biostatistics 2, 85.

JJ Gaynor, EJ Feuer, CC Tan et al. (1993). J. Amer. Statist. Assoc. 88, 400.
E Goethghebeur, L Ryan (1995). Biometrika 82, 821.

TA Gooley, W Leisenring, J Crowley et al. (1999). Statist. Med. 18, 695.

F Graw, TA Gerds, M Schumacher (in preparation).

RJ Gray (1988). Ann. Statist. 16, 1141.

JJ Heckman, BE Honoré (1989). Biometrika 76, 325.

DG Hoel, HE Walburg (1972). J. Nat. Cancer Inst., 49, 361.

JD Kalbfleisch, RL Prentice (2002): The Statistical Analysis of Failure Time Data,
2nd ed.. Wiley.

LV Kessing, MG Harhoff, PK Andersen (2007). Int. Psychoger. 19, 902.

LV Kessing, FM Nilsson, V Siersma, PK Andersen (2003). Diabetes Res. Gen. Pract.
62, 113.

JP Klein, M Gerster, PK Andersen et al. (in press). Comp. Progr. Meth. Biomed.
MG Larson, GE Dinse (1985). Appl. Statist. 34, 201.
DY Lin (1997). Statist. Med. 16, 901.

59



M Lunn, D McNeil (1995). biometrics 51, 524.
M Pintilie (2006). Competing Risks. A Practical Perspective, Wiley.
RL Prentice, JD Kalbfleisch, AV Peterson et al. (1978). Biometrics 34, 541.

S Rosthgj, PK Andersen, SZ Abildstrom (2004). Comp. Progr. Meth. Biomed. 74,
69.

TH Scheike, M-J Zhang (2003). Biometrics 59, 1036.

TH Scheike, M-J Zhang (2007). Scand. J. Statist. 34, 17.

TH Scheike, M-J Zhang, TA Gerds (2008). Biometrika (in press).

Y Shen, SC Cheng (1999). Biometrics 55, 1093.

R Szydlo, JM Goldman, JP Klein et al. (1997). J. Clin. Oncol. 15, 1767.
AF Thomsen, TK Kvist, PK Andersen, LV Kessing (2005). Thyroid 15, 700.

AF Thomsen, TK Kvist, PK Andersen, LV Kessing (2005). Eur. J. Endocrinol. 152,
535.

AA Tsiatis (1975). Proc. Nat. Acad. Sci, USA 72, 20.

M Zheng, JP Klein (1995). Biometrika 82, 127.

60



