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Overview

• Motivating example: Healthy for Life Project

– Masking

– Swamping

• Mixture model for outliers

• Application

– Model assessment

– Effect of outliers on obesity assessment

• Discussion/Future Work
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Healthy for Life Project

• To ascertain the prevalence of pediatric obesity in medically
underserved areas, the Healthy For Life Survey obtained data
from a probability sample of children using Health Resource
and Service Administration (HSRA) supported Community
Health Centers at least once during calendar year 2001
(Stettler et al. 2005).

• Compute body-mass index (BMI) and Box-Cox transform as a
function of age and gender (Cole 1990); if BMI “z-score”
exceeds 95th percentile of reference population, child is
classified as obese.

• Abstract height and weight during last visit to the health clinic
in 2001.
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Healthy for Life Project: Missing Height Data

• One-fourth of height data missing.

– Height measured only sporadically; less likely to be
observed among older children and children seen more
frequently at the clinic.

• Use multiple imputation to reduce bias and inefficiency
associated with a complete-case analysis (Stettler et al. 2005).

– Potentially problematic: data overdispersed and included
incorrectly recorded or abstracted elements.

– Failure to account for abstraction errors may cause
insufficient standardization between centers to be
interpreted as unequal risk for pediatric obesity.

• Standardization in multi-center studies is expensive; propose
analytic alternative to outlier correction when extensive
training impossible.
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Outlier Detection

• Using standard methods such as consideration of Mahalanobis
distance to identify multiple outliers in multivariate data is
problematic (Campbell 1980, Rousseeuw and van Zomeren
1990; Hadi 1992).

– “Masking” prevents identification of outliers when a small
cluster of observations inflates the empirical covariance
matrix.

– “Swamping” can make some observations appear to be
outliers when true outliers pull the empirical covariance
matrix away from non-outlier observations.
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Removing Outliers via Multiple Imputation

• Goal is to develop method to assess distribution of population
after removing outliers likely due to clerical errors.

• Mixture model defined by latent classes that have common
means but differing covariances

– “Clerical error class” is class with the largest covariance
matrix determinant.

– Multiple imputation imputes both item missingness and
latent classes.

– Subjects assigned to the clerical error class at a given
imputation are dropped before the complete-data analysis
of the observed and imputed data.
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Accounting for Complex Sample Design

• Include design variables in mean model

• Consider association between posterior distribution of latent
class membership and probability of selection

• Utilize standard design-based analyses at the complete-data
stage of analysis to further enhance robustness.

• Use of MI to compute obesity estimates relies more heavily on
the empirical distribution of the data than a fully model-based
approach.
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Previous Work

• Methods for simultaneous assessing outliers and accounting for
missing data in a multiple imputation framework include Little
and Smith (1987), Little (1988), Penny and Jollife (1999), and
Ghosh-Dastidar and Schafer (2003, 2006).

• Similar to Ghosh-Dastidar and Schafer (2003, 2006)
“multiple-edit-multiple imputation” (MEMI) model.

– Embed the clerical error class in a larger mixture model

– Consider AIC, BIC, and posterior predictive distribution
p-values to select among differing class sizes considered

– Develop the model in a fashion to more explicitly account
for complex sample design.
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Complete Data Mixture Model: Likelihood

Zi | Ci = k ∼ Nq(μi, Σk)

Ci ∼ MULTI(1, p1, . . . , pK)

where Zi is a q-dimensional outcome of interest, μij = xT
i βj ,

j = 1, . . . , q, | Σ1 |< · · · <| ΣK |.
• Mean of each subject depends on p covariates xi, and a

covariance given by his or her latent variance class membership
given by Ci.

• Class K is the “clerical error” class with the largest variability.

– Assume that responses with clerical errors have the same
mean but larger variability than other responses.
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Complete Data Mixture Model: Priors

p(β) ∼ N(0, Vβ)

p(Σk) ∼ INV − WISHART (2, Sk), k = 1, . . . , K

p(p1, . . . , pK) ∼ DIRICHLET (1, . . . , 1)

10



Missing Data

• Ci are missing for all subjects

• Allow some components of Zi to be missing under missing at
random (MAR) assumption (Rubin 1978): conditional on the
observed elements of Zi, the missingness status of the elements
of Zi is unrelated to their value.
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Model Estimation

• Gibbs sampler data augmentation algorithm (impute missing
elements of Zi and the completely unobserved Ci at each step
of the algorithm).
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Multiple Imputation

Take m independent draws of Zcomp given by replacing the missing
elements of Z with their imputed values, analyze using standard
complete data procedures, and combine (Rubin 1987):

Q̂ = m−1
m∑

t=1

Q
(
Zcomp(t)

)
.

where
V 1/2(Q̂ − Q) ∼ tν
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Multiple Imputation

for

V = U + (1 + m−1)B

U = m−1
m∑

t=1

V̂ar
(
Q

(
Zcomp(t)

))

B = (m − 1)−1
m∑

t=1

(Q̂ − Q
(
Zcomp(t)

)
)2

ν = (m − 1)
[
1 +

U

(1 + m−1)B

]2

Delete subjects assigned to the Kth latent class when computing

Q(Zcomp(t)).
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Multiple Imputation: Accounting for Complex Sample Design

• Include covariates for sample design in mean regression → no
need to incorporate the sample design further if Ci

independent of selection probability.

• If latter fails, minimize effect of model misspecification by
using case-weighted estimates of Q

(
Zcomp(t)

)
and Taylor

Series linearization estimates for V̂ar
(
Q

(
Zcomp(t)

))
(Woodruff

1971).

– “Uncongeniality” (Meng 1994): analyst assumes more than
the imputer.
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Application to the Healthy for Life Project

• Probability sample of children aged 2-11 served at one of 141
HRSA-supported Community Health Centers in NJ, NY, PR,
VI, DE, DC, MD, PA, VA, and WV between 1/1/01 and
12/31/01.

• Stratified sample of 30 centers, with second-stage sample of
approximately 100 children/center stratified by age (2-5 vs.
6-11).

• Inverse probability-of-selection case weights were
post-stratified to known age group-region (US mainland urban,
suburban, and rural, Puerto Rico (PR) urban and non-urban,
and New York City Chinatown) totals.
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Application to the Healthy for Life Project

• Dropped 373 cases because of unknown age, gender, or both
height and weight information; additional 3 cases dropped
because of unknown weight information (to simplify analysis).
2,474 cases remained, of which 606 were missing height data.

• Improve normality approximation via “z-score” transformation
(Weiss et al. 2004):

Zij =
(Yij/Mij)Lij − 1

LijSij
, i, = 1, . . . , n j = 1, 2

where Yi1 and Yi2 are the raw weights (kg) and height (m)
measures, and Lij = Lj(Ai, Gi), Mij = Mj(Ai, Gi), and
Sij = Sj(Ai, Gi) are known population parameters that are
functions of the age Ai and gender Gi (Cole 1990).
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Modeling the Healthy for Life Project data

• xi consists of age group-by-center dummy variables, to
accommodate within-center correlation systematic association
between BMI and the probability of selection.

• Restrict ρk = σ12k

σ11kσ22k
≡ ρ for k = 1, . . . , K − 1.

• Assume
Vβ = 1000I2

p(log σjjk) ind∼ N(0, 4) j = 1, 2, k = 1, . . . , K − 1

p(ρ) ∼ U(−1, 1)

SK = 5I2
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Results of Model Fit

• Both AIC and BIC suggest that the 3-class model provides the best fit to

the data.

pk σ2
11k σ2

22k ρk

k=1 .912.873,.936 1.431.35,1.55 1.141.04,1.24 .70.67,.72

k=2 .072.049,.106 3.882.40,6.07 12.347.01,18.83 .70.67,.72

k=3 .015.007,.029 37.4821.14,83.88 29.2315.23,64.03 .92.63,.98
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Model Checking

• Test distributional assumptions using posterior predictive
distributions (Gelman, Meng, and Stern, 1996). Consider PPD
of S = n−1

∑n
i=1

∑K
k=1 I(Ci = k)Z̃2

ki where

Z̃2
ki =

⎧⎨
⎩ (Zi − μi)T Σ−1

k (Zi − μi) if Zi2 is observed.

(Zi1 − μi1)2/σ2
11k if Zi2 is missing.

. If the

number of classes is sufficient, the normality assumption within
class will hold, at least approximately, and Sobs and Srep will
correspond.

– P (Sobs < Srep|y) = .46 for the 3-class model.
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Model Checking

• Spearman correlations between the posterior medians of latent
variance class probability membership for the 3-class
constrained model π̂ki and inverse of the case weight 1/wi:
-.022 for k = 1 (p=.27), .008 for k = 2 (p=.69),and .012 for
k = 3 (p=.54).

– Suggests that including the centers as fixed effects has been
sufficient to remove design effect from the model.
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Multiple Imputation
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Effect of Outliers

• If height data is missing and an older child incorrectly noted as
younger, the resulting weight z-score would be extremely large,
likely yielding a large BMI after height imputation, and
potentially classifying a non-obese child as obese; the reverse is
true if a younger child is incorrectly noted as older.

• Since children are more likely than not to be non-obese, the
net effect of age transcription errors should be to inflate
obesity rates among younger children, and deflate to a much
lesser degree obesity rates among older children.

• Analysis of 2.5% and 97.5% quantiles suggested that younger
children tended to have large BMI outliers and older children
tended to have small BMI outliers, consistent with clerical
errors in age.
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Simulation Study

• Zi | Ci = k ∼ N2(0, Σk), Σk = σk

⎛
⎝ 1 .5

.5 1

⎞
⎠ for k < K and

ΣK = σK

⎛
⎝ 1 0

0 1

⎞
⎠, and n = 500.

• Delete Zi2 under an MAR mechanism, so that large values of
Zi1 tended to be associated with missing Zi2 unless the
observation was a member of the “outlier” class.

• Simulation A: K = 2, σ1 = 1, σ2 = 100, ρ = .5, p = (.98 .02)T ;

• Simulation B: K = 4, σ1 = .25, σ2 = 1, σ3 = 9, σ4 = 100,
ρ = .5, p = (.225 .225 .225 .10)T .
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Simulation Study: Target parameters of interest

Mean and 95% confidence interval for

• p = P (Zi2 < Z2(.9)) where Z2(.9) is the 90th percentile for Z2

• ρk = ρ for k < K:
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Simulation Study: Results

• When the fraction of outliers was small, both imputation
methods correctly estimated the proportion of the Zi2

observations above the 90th percentile.

• When the fraction of outliers was large, standard imputation
overestimated the fraction belonging to 90th percentile and
above by approximately 30 percent. Mixture imputation
resulted in correct inference for percentile.

• Standard imputation methods did not sufficiently correct for
the bias toward the null in the estimation of the non-outlier
correlation when the fraction of outliers was small.

• The estimate of the common correlation was essentially
unbiased under all scenarios under the mixture imputation,
and the coverage was approximately correct despite the
tendency to underestimate the model size, especially with BIC.
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Summary

• LC model for variability that simultaneously accounts for
missing data and clerical error outliers.

• MI framework allows estimation to proceed using standard
design-based methods for complete-case analyses.

– Including transcription errors in the HSRA analysis lead to
modest overestimates of obesity among younger children in
selected subregions with higher transcription error rates,
but for most subdomains their impact appears to be
minimal.

• Method also suggests a class of 5-10% of the population
overdispersed by a factor of 2-4; may be of clinical interest as
an obesity/malnutrition cluster.
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Future Work

• In HSRA application, MAR assumption reasonable. NMAR
model (sensitivity analysis as a function of non-identified
parameters) is also possible.

• A more fully design-consistent model would cross-classify the
dispersion classes by the probability of selection (Elliott and
Sammel 2002).

• Model assumes “outlying completely at random”

– Treat the transcription errors as missing and impute both
height and weight z-scores.

• Implement fully Bayesian method to accommodates
uncertainty in the number of classes: add a model choice step
to the Gibbs routine via a product space search (Carlin and
Chib 1995) or reversible jump (Green 1995) step.
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