
Revisions in Concurrent Seasonal Adjustments of Daily Air Pollution and
Weekly Google Searches for Unemployment in Germany

Karsten Webel*

Abstract
Shortly after the COVID-19 outbreak in Germany in March 2020, the Bundesbank has introduced

a weekly activity index for the timely tracking of pandemic-related economic turmoils. Besides
monthly industrial production and quarterly GDP, this PCA-based index utilises information from
several daily and weekly economic time series whose complex seasonal dynamics are currently
being removed with an experimental in-house seasonal adjustment approach based upon the STL
method. In May 2023, however, a new version of the official JDemetra+ program has been released
that contains several pretreatment and seasonal adjustment methods tailored to the specifics of infra-
monthly time series. Therefore, the Bundesbank now plans to migrate the seasonal adjustment of
the daily and weekly index components to one of the official methods. To assist the underlying
decision-making process, we provide an empirical comparison between the real-time revisions in
various concurrent signal estimates obtained with the aforementioned seasonal adjustment methods.
Our main findings are that the JDemetra+ methods tend to outperform the experimental in-house
method in terms of computational speed and that an extension of the famous ARIMA model-based
seasonal adjustment approach generates the smallest and least volatile revisions on average.

Key Words: extended ARIMA model-based approach, extended X-11 approach, real-time analy-
sis, signal extraction, stability analysis, STL approach

1. Motivation

The Bundesbank has launched a new weekly activity index (WAI) shortly after the COVID-
19 outbreak in Germany in March 2020 in order to monitor pandemic-related economic
disruptions in a timely manner. In essence, this index is the outcome of a principal compo-
nent analysis that utilises several daily and weekly economic time series as well as monthly
industrial production and quarterly GDP as input variables, see Eraslan and Götz (2021) for
more details. Most of these input series display a fair amount of seasonality that needs to be
removed prior to the WAI calculation. Whereas the monthly and quarterly inputs are rou-
tinely seasonally adjusted with the JDemetra+ (JD+) implementation of the famous X-11
method (Shiskin et al.; 1967), the more complex forms of infra-yearly repetitive dynamics
present in the daily and weekly inputs are currently being removed with an experimental
in-house STL-based method implemented in the {dsa} package (Ollech; 2021). In May
2023, however, a new version of JD+ has been released that contains various seasonal ad-
justment methods tailored to the specifics of infra-monthly data, such as the coexistence
of multiple seasonal patterns with potentially fractional periodicities, see Webel (2022)
and Webel and Smyk (2024) for detailed descriptions of these methods. In particular, the
new JD+ version implements a TRAMO-like linear regression model for data pretreatment
as well as extensions of the ARIMA model-based (AMB) and X-11 seasonal adjustment
approaches alongside the classic STL method and structural time series models.

Given these recent additions to JD+ and an aspiration for a harmonised production of
official seasonally adjusted figures, the Bundesbank now intends migrating the seasonal
adjustment of the daily and weekly WAI component series from the experimental in-house
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method to one of the official JD+ methods. The aim of this paper is to assist this migration
process by comparing the real-time revision profiles of various signal estimates obtained
from concurrent seasonal adjustments with the aforementioned methods and, if possible, by
identifying those JD+ methods that generate the lowest and least volatile revisions on aver-
age. To the best of our knowledge, such a real-time revision analysis for daily and weekly
economic data constitutes an entirely new field of empirical research. So far, revisions
in signal estimates have been studied exclusively for monthly and quarterly time series;
for example, Dagum (1982a,b), Huot et al. (1986), McKenzie (1984), Pierce and McKen-
zie (1987) and Wallis (1982) analyse revisions in classic X-11 seasonal adjustments while
Maravall (1986), McElroy and Gagnon (2008) and Planas and Depoutot (2002), amongst
others, conduct similar research for the classic AMB approach.

We start with a brief data description in Section 2. Afterwards, we introduce some
basic notations and revision measures in Section 3. The results of our real-time revision
analysis are reported in Section 4, including an assessment of computation times and a
visual inspection of the stability of estimated pretreatment effects across data vintages. We
conclude with a summary and some final remarks for future research in Section 5.

2. Real-Time Data

We consider two out of the six infra-monthly WAI component series as available in the 2022
W01 through 2024 W01 vintages processed by the Bundesbank during the experimental
seasonal adjustments: daily air pollution as of 1 January 2016 and weekly Google searches
for “Arbeitslosigkeit”—the German translation of unemployment—as of 2004 W02.

Air pollution (AP) is defined as the concentration of nitrogen dioxide in units of mi-
crograms per cubic metre averaged across all available measurement stations in Germany.
Measurements are currently taken at more than 500 stations in diverse urban, suburban and
rural areas; the data is published by the German Environment Agency. The Google trends
(GT) series covers weekly search activity for unemployment from Sunday through Sat-
urday. Owing to Google’s download restrictions regarding sample size, non-overlapping
5-year sequences of observations are downloaded first, with the maximum observations be-
ing normalised to 100 within each sequence. Those sequences are then padded and rescaled
to form a break-free GT series with values ranging between 100 and 200.

The two series are displayed in Figure 1 along with autoregressive estimates of their
spectral densities. In a nutshell, both the time series and spectral plots indicate presence of
strong day-of-the-week (DOW) and day-of-the-year (DOY) dynamics in the AP series as
well as presence of non-ignorable week-of-the-year (WOY) movements in the GT series.

3. Notations and Definitions

Model Let {yt} denote an infra-monthly time series and assume that it can be decom-
posed additively into unobservable components (UC) according to

f(yt) = tt + st + ht + it, (1)

where f(·) is a potentially non-linear transformation, {tt} is the trend-cyclical component,
{st} is the seasonal component, {ht} is the holiday component and {it} is the irregular
component. Throughout this paper, f(·) will be either the identity or the log transformation.
The former model will be referred to as the additive UC model, whereas the latter model
will be referred to as the multiplicative UC model. The seasonal component in (1) is further
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Figure 1: Time series plot (top, 2022 W01 vintage) and autoregressive spectral density
estimate (bottom, differenced logged data) for the daily AP series (left) and the weekly
GT series (right). Gray verticals in the spectral plots mark selected day/week-of-the-year
frequencies (solid) and the three day-of-the-week frequencies (dashed).

assumed to be an additive superimposition of multiple seasonal patterns, that is

st =
∑
τ∈S

s
(τ)
t , (2)

where S = {τ1, τ2, . . .} is a finite set of seasonal periodicities with τi ∈ [2,∞) for all i and
{s(τ)t } denotes the seasonal pattern associated with periodicity τ .

In JD+, pretreatment of {yt} will utilise a linear regression model in which the distur-
bances are driven by what is called the extended Airline model (EAM). The entire pretreat-
ment model can be written compactly as

(1−B)
∏
τ∈S

(1−Bτ )
[
f(yt)− x⊤

t β
]
= (1− θ1B)

∏
τ∈S

(1− θτB
τ ) εt, (3)

where B is the backshift operator, i.e. Byt = yt−1, xt is a k-dimensional vector of ex-
ogenous variables related to holidays and outliers at time t, β is a k-dimensional vector of
unknown regression effects and {εt} is zero-mean white noise with finite variance σ2

ε > 0.
If S contains fractional seasonal periodicities in (2), then the corresponding powers of the
backshift operator in (3) are defined through the first-order Taylor approximation at unity,
that is

Bτ ≈ (1− ατ )B
⌊τ⌋ + ατB

⌊τ⌋+1, (4)

where ⌊x⌋ is the largest integer not exceeding x and ατ = τ −⌊τ⌋ ∈ [0, 1) is the fractional
remainder of τ . Since each (1−Bτ ) factor naturally carries a (1−B) factor, model (3) is
prone to over-differencing. Therefore, we will consider the generalised version

(1−B)d
∏
τ∈S

Sτ (B)
[
f(yt)− x⊤

t β
]
= (1− θ1B)

∏
τ∈S

(1− θτB
τ ) εt, (5)

where d ∈ {1, . . . , 1 + |S|} is the order of non-seasonal differencing and

Sτ (B) = (1−Bτ ) (1−B)−1 = 1 +B + · · ·+B⌊τ⌋−1 + ατB
⌊τ⌋ (6)



is the seasonal summation operator associated with periodicity τ . Some theoretical prop-
erties of model (5) are discussed in Webel (2022) and Webel and Smyk (2024); the corre-
sponding linearisation step of the experimental in-house STL-based method, which is run
on the DOW-adjusted data, is described in Ollech (2021).

Types of Revisions The AP and GT series are recorded each Monday, yielding a triangular-
type data array V = (v1,v2, . . . ,vT ) for each of them, where the column vector vi is the
data vintage that contains the observations released in the i-th week. Each new data vin-
tage will thus contain one additional observation for the GT series and seven additional
observations (on average) for the AP series. Therefore, some slight changes to the standard
notations used in the literature on data revisions seem inevitable.

Let Ŝt|vi
be the estimated signal of interest at time t using raw data up to the last

observation available in vintage vi. Typical signals of interest are the seasonal patterns in
(2) and the seasonally adjusted data. In analogy to standard notations, the concurrent and
final signal estimates are denoted by Ŝt|vi(t)

and Ŝt|vT
, respectively, where i(t) is a function

of time that picks the week of the inaugural release of yt. In general, we consider two types
of revisions. The first type measures changes in later signal estimates as a percentage of the
concurrent estimates (PCE). More precisely, we define the final and lag-k PCE revisions as
the sequences {rt} and {rt(k)} with

rt = 100×
Ŝt|vT

− Ŝt|vi(t)

Ŝt|vi(t)

and rt(k) = 100×
Ŝt|vi(t)+k

− Ŝt|vi(t)

Ŝt|vi(t)

, (7)

respectively. The second revision type measures changes in the period-to-period (P2P)
percentage changes between later and concurrent signal estimates. More specifically, the
final and lag-k P2P revisions are given by the sequences {r%t } and {r%t (k)} with

r%t = ∆%Ŝt|vT
−∆%Ŝt|vi(t)

and r%t (k) = ∆%Ŝt|vi(t)+k
−∆%Ŝt|vi(t)

, (8)

where

∆%Ŝt|vi
= 100×

Ŝt|vi
− Ŝt−1|vi

Ŝt−1|vi

.

Revision Measures For the sake of brevity, we use the final PCE revisions {rt} to define
the majority of revision measures, bearing in mind that the measures for the other revision
types in (7) and (8) can be defined analogously.

Let n be the number of observations in the span chosen for the revision analysis. To
quantify size and volatility of revisions, we consider three descriptive statistics: the mean
revision (MR), the mean absolute revision (MAR) and the standard deviation (SD) of revi-
sions. These measures are given by:

MR = n−1
n∑

t=1

rt,

MAR = n−1
n∑

t=1

|rt|,

SD =

√√√√n−1

n∑
t=1

(rt − MR)2.



To assess the speed at which preliminary revisions converge to final ones, we consider the
rate of convergence (RC), which is defined as the SD ratio between the lag-k and final PCE
revisions in (7), i.e.

RC(k) =
SD [rt(k)]

SD [rt]
, k ∈ {1, 2, . . .}. (9)

Fast (slow) convergence of PCE revisions is indicated by (9) if RC(k) → 1 for small (large)
values of k. Usually, there will be a trade-off between size and speed of convergence of
revisions, that is smaller (larger) preliminary PCE revisions typically go along with slower
(faster) convergence.

4. Results

Seasonal Adjustment Specifications Each vintage of the AP and GT series is seasonally
adjusted with the extended AMB, STL and X-11 approaches implemented in JD+, includ-
ing re-estimation of pretreatment model (5). The AP series is also seasonally adjusted with
the experimental in-house STL-based method implemented in the {dsa} package. For ei-
ther series, calibration of the seasonal adjustment specification is carried out using the raw
data released in the 2022 W01 vintage; once completed, the chosen specification is held
fixed over all subsequent vintages.

The choice regarding the decomposition type of UC model (1) is based upon a set
of commonly accepted model selection criteria calculated from pretreatment model (5) as
specified below. The results reported in Table 1 indicate that the multiplicative model is
favoured over the additive model for either series.

Using model (5), the AP series is corrected for the deterministic effects of selected fixed
and moving holidays. The fixed holidays are New Year’s Day (1 January), Epiphany (6 Jan-
uary), Labour Day (1 May), German Unification Day (3 October), the 500-th Reformation
Day (31 October 2017), All Saints’ Day (1 November), Christmas Eve (24 December),
Christmas Day (25 December), Boxing Day (26 December) and New Year’s Eve (31 De-
cember); thereby, fixed holidays that fall onto a Sunday are treated as regular Sundays. The
moving holidays are Good Friday, Easter Monday, Ascension, Ascension Friday, Pentecost
Monday, Corpus Christi and Corpus Christi Friday. The corresponding dummy regres-
sion variables have been corrected for their long-term means, which are calculated from 1
January 1950 to 31 December 2030. In addition, automatic detection of additive outliers
and level shifts with length-adjusted critical t-values based upon the U.S. Census Bureau’s
modifications to the original formula derived in Ljung (1993) is run. Drawing on the visual

Table 1: Model selection criteria for AP and GT series

Series UC model (1) AIC AICC BIC HQ
AP Additive 12,109.54 12,109.97 12,229.03 12,153.22

Multiplicative 9,574.50 9,575.06 9,695.66 9,619.20

GT Additive 6,503.52 6,503.85 6,561.63 6,525.67
Multiplicative 5,866.09 5,866.51 5,928.32 5,889.88

Notes: 1 The considered criteria are Akaike’s information criterion (AIC), the corrected
AIC (AICC), the Bayesian information criterion (BIC) and the Hannan-Quinn criterion
(HQ). 2 For multiplicative UC models, the criteria are defined in terms of the untransformed
data, that is, the maximised log likelihood obtained from the differenced logged data is
corrected using the Jacobian log transformation adjustment.



evidence provided in Figure 1, we set S = {7, 365.2425} and d = 2 in (5). The same setup
for data linearisation is used in the {dsa} approach; the only exception is that the stochas-
tic EAM-type seasonality that drives the regression residuals is replaced with a set of 20
Fourier terms plus a (011) specification for the orders of the non-seasonal ARIMA model.
No forecasts of the raw data are generated from either pretreatment model. The sequential
extraction of the DOW and DOY patterns from the linearised AP series is carried out with
the following specifications:

• The extended AMB approach is run in full default mode without calculating back-
and forecasts of any estimated signal.

• The extended X-11 approach is run with trend-cycle filters constructed from a cubic
Henderson kernel. The length of the symmetric filter is set to the smallest odd in-
teger larger than the seasonal periodicity of current interest, that is, the length is 9
for DOW extraction and 367 for DOY extraction. Asymmetric variants are obtained
through the cut-and-normalise approach (Gasser and Müller; 1979). The 3 × 9 and
3×3 seasonal filters are chosen for DOW and DOY extraction, respectively, the max-
imum length of which is essentially dictated by the number of observations available
in the 2022 W01 vintage. It should also be noted that the extended X-11 method
does not generate naive forecasts of any seasonal pattern at the moment; as a result,
fully asymmetric trend-cycle and seasonal extraction filters are used at the beginning
and end of the series. Finally, the default σ-limits of (1.5, 2.5) are specified for the
automatic detection of extreme values in the detrended data.

• The STL method utilises trend-cycle and seasonal LOESS smoothers whose lengths
match the lengths of their X-11 counterparts, regardless of whether the non-robust or
robust STL variant is applied.

• {dsa} is run with the same trend-cycle and seasonal LOESS smoothers specified
in the JD+ implementation of STL. In addition, the “combined factors” option is
selected to interpolate the seasonally adjusted values on 29 Februaries.

As for the GT series, two types of weekly user-defined holiday regression variables
are considered for data linearisation via (5): first, dummy variables are used to capture
the effects related to Carnival, Good Friday, Easter Monday, Pentecost and Corpus Christi;
second, weekly shares of k-day periods are used to capture the effects of those holidays
that are spread across k consecutive days and may hence be distributed across two adjacent
weeks in some years. In particular, we have k = 3 for the Christmas period and k = 2
for the New Year period, whereby holidays that fall onto a Sunday are always counted as
holidays. Long-term averages are removed from all weekly regression variables, noting that
even holidays with a fixed datum can be moving on the weekly scale. For example, each
fixed holiday of the 3-day Christmas period can fall in either week 51 or 52. In addition,
automatic outlier detection is run in the exact same way as for the AP series. Based upon
spectral evidence (Figure 1), we set S = {52.18} and again d = 2 in (5). For each JD+
method, the extraction of the WOY pattern from the linearised GT series is based upon the
same setup described above. The only slight exception is the length of the symmetric X-11
trend-cycle filter, which is set to 55 in place of 53 alongside the 3× 5 seasonal filter.

Computation Times Table 2 reports the average computation times required for lineari-
sation of and signal extraction from the AP and GT series. Averages are taken over all data
vintages, using 25 replications within each vintage. All calculations have been carried out
on a 64-bit Windows OS with an Intel Xeon Gold 6338T CPU @ 2.10 GHz and 32.00 GB



Table 2: Average computation times in seconds for various seasonal adjustments

AP series GT series
Program Method EAM (5) DOW DOY Total EAM (5) WOY Total
JD+ 3.0 AMB 12.719 0.039 9.955 22.713 0.227 0.054 0.281

X-11 12.719 0.011 0.140 12.870 0.227 0.021 0.248
STL 12.719 0.004 0.151 12.874 0.227 0.010 0.237
STL-R 12.719 0.048 1.525 14.292 0.227 0.076 0.303

{dsa} STL 33.635
STL-R 49.726

Note: The suffix “-R” indicates usage of robustness weights in STL.

RAM. As for the JD+ methods, a large portion of the average total computation time is typ-
ically needed for data pretreatment whereas DOW and DOY extraction from the linearised
AP series as well as WOY extraction from the linearised GT series is quite fast, especially
for the non-parametric X-11 and STL methods. Seasonal adjustment of the AP series with
the experimental in-house STL-based method is noticeably slower.

Stability of Parameter Estimates from Pretreatment Model (5) To assess the relative
constancy of estimated holiday effects and MA parameters when model (5) is re-estimated
with new data, we plot the parameter estimates and their standard errors against the 2022
W01 through 2024 W01 vintages.

Figure 2 shows the results for the AP series. In general, the parameter estimates and
their point-wise standard errors are reasonably stable over time, although the estimated
holiday effects occasionally undergo minor jumps when there is a new observation for the
underlying event. Being even slightly more stable over time, the behaviour of the {dsa}
estimates is quite similar despite some (time-constant) moderate differences in the size
of some estimated effects. Unsurprisingly, the automatic outlier detection routines also
produce very similar results: ranging between 1 and 2 with a standard deviation of 0.23
across all vintages, an average of 1.06 outliers, or 0.04% of the average sample size, is
automatically detected in model (5); almost the same average of 1.08 outliers is detected
during data linearisation in the robust STL method in {dsa} (standard deviation is 0.27)
whereas no outliers are automatically found by the non-robust STL method.

Figure 3 shows the stability results for the GT series. The estimated holiday effects are
as stable as the ones for the AP series although the finer scale of the vertical axis in Figure 3
makes them appear much more volatile across data vintages (see especially their marked
changes across the first 10 vintages). However, the estimated MA parameters fluctuate
somewhat stronger than those of the AP series. The same goes for the outcome of the
automatic outlier detection routine in model (5): ranging between 0 and 7, the average
number of automatically detected outliers is 2.51, or 0.25% of the average sample size,
with a standard deviation of 1.41. On the flip side, the point-wise standard errors of the
parameter estimates tend to be visibly smaller than those for the AP series.
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Figure 2: Estimated holiday effects and MA parameters from (5) for the AP series (solid
lines). Shaded areas mark point-wise ±1 SE intervals. Dashed lines correspond to esti-
mated holiday effects from the linearisation step of the non-robust {dsa} approach. The
ordering is (left to right): New Year’s Day, Epiphany, Good Friday (row 1); Easter Monday,
Labour Day, Ascension (row 2); Ascension Friday, Pentecost Monday, Corpus Christi (row
3); Corpus Christi Friday, German Unification Day, 500-th Reformation Day (row 4); All
Saints’ Day, Christmas Eve, Christmas Day (row 5); Boxing Day, New Year’s Eve (row 6);
θ̂1, θ̂7, θ̂365.2425 (row 7).
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Figure 3: Estimated holiday effects and MA parameters from (5) for the GT series. Shaded
areas mark point-wise ±1 SE intervals. The ordering is (left to right): New Year, Carnival,
Good Friday (row 1); Easter Monday, Pentecost, Corpus Christi (row 2); Christmas, θ̂1,
θ̂52.18 (row 3).

Revisions in Signal Estimates We now calculate the final and lag-1 PCE revisions (7)
and P2P revisions (8) over the 2022 W01 to 2022 W52 vintages for both the raw AP and
GT data and various signal estimates, using the 2024 W01 vintage as the final vintage vT .

Table 3 reports the results for the AP series. The raw series displays moderate PCE and
P2P revisions. As for the signal estimates, the extended AMB method produces the smallest
revisions by far. The revision measures for the X-11 and STL estimates are quite similar
although the STL method tends to produce somewhat smaller revisions in the longer DOY
and SA signals. Unsurprisingly, the revisions obtained from the {dsa} estimates are very
similar to those of the STL estimates in JD+. Nevertheless, the lag-1 revisions in the longer
DOY and SA signals have sizes that are close to the range of those for the AMB estimates.
The rate of convergence for the DOW estimates obtained from the extended AMB and X-11
methods in JD+ and the non-robust STL method in {dsa} is shown in Figure 4. It confirms
the classic trade-off between the size of revisions and the speed of convergence: the AMB
estimates have the smallest revisions on average but the slowest convergence whereas the
other two methods generate larger average revisions that converge significantly faster to
their final values.

Table 4 reports the revision measures for the GT series. In contrast to the AP series, the
entire history of the GT series may be revised with each release of a new vintage. Therefore,
the fact that the revisions of the raw data are noticeably larger comes as no surprise; this
is especially true for the lag-1 PCE and P2P revisions (see also Table 3). In contrast, the
revision measures for the concurrent estimates of the WOY signal are generally low and
very similar across the JD+ methods. Nevertheless, the lowest and least volatile ones are
often produced by the extended AMB approach yet again, followed by the extended X-
11 method. Somewhat mixed results are obtained for the SA signal. The extended AMB
and X-11 approaches are still competitive; however, the non-robust STL method produces
the smallest measures for the lag-1 PCE revisions whereas the robust STL method gains a
slight advantage in terms of low lag-1 P2P revisions. Overall, the average size and volatility
of the revisions in the concurrent estimates of the seasonally adjusted GT series are very
similar to those of the unadjusted GT series.



Table 3: Revision measures for the AP series

PCE revisions (7)
{rt} {rt(1)}

Signal Method MR MAR SD MR MAR SD
Raw −0.7419 0.8406 0.9903 −0.0703 0.1877 0.8604

DOW AMB 0.0077 0.8187 1.0029 0.0019 0.1459 0.1894
X-11 0.0947 3.2296 4.0237 0.0642 2.1925 2.9115
STL 0.1136 3.3301 4.2544 0.0579 1.9308 2.5343
STL-R 0.2066 4.6625 5.9298 0.0617 2.1882 2.9752
{dsa} 0.1206 3.3975 4.1627 0.0536 1.9284 2.4579
{dsa}-R 0.2160 4.8799 6.2020 0.0367 1.9032 2.6260

DOY AMB −0.0132 0.8456 1.1096 −0.0793 0.7061 0.9139
X-11 −0.0232 5.3735 7.5876 −0.0558 2.1325 3.9708
STL −0.3656 5.7863 7.6786 −0.2545 1.4108 2.8576
STL-R 0.1163 6.8879 10.7423 −0.7297 1.9900 5.3682
{dsa} 0.6746 5.9582 7.5285 0.0073 0.7901 1.0274
{dsa}-R 0.8875 7.4585 11.7053 −0.0299 1.2967 3.5762

SA AMB −0.6678 1.5122 1.9236 0.0118 0.8220 1.1735
X-11 −0.0406 5.9149 8.8292 0.1483 2.6104 4.8069
STL 0.3084 6.5963 8.8378 0.2601 2.0231 3.7133
STL-R 0.6161 8.3938 14.5393 1.0596 3.1208 7.6671
{dsa} −0.8544 6.5810 8.0764 −0.0890 1.3638 1.7137
{dsa}-R −8.9126 14.6443 22.8953 −1.0741 2.7335 8.0703

P2P revisions (8)
{r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD
Raw 0.0303 0.5272 1.3706 −0.0017 0.2578 1.1952

DOW AMB −0.1751 1.1862 1.5416 −0.0029 0.1758 0.2283
X-11 −0.1365 4.0301 5.1402 −0.0186 3.0074 3.9611
STL 0.0064 4.0019 5.1876 0.0042 2.4194 3.1644
STL-R −0.0578 5.7015 7.3397 0.0027 2.8928 3.9714
{dsa} 0.0214 4.0966 5.1951 0.0081 2.4260 3.1740
{dsa}-R −0.1184 6.2918 7.9927 −0.0071 2.6954 3.5270

DOY AMB −0.0024 0.2072 0.3205 0.0001 0.2271 0.5777
X-11 −0.1084 5.5730 8.5015 −0.0653 2.5848 4.9588
STL −0.0153 4.7719 6.3195 −0.0026 1.0453 1.8696
STL-R −0.1170 8.1432 14.8023 −0.1650 2.6683 7.8864
{dsa} −0.0592 4.6972 6.0406 0.0071 0.8494 1.0994
{dsa}-R −0.3764 8.7518 15.6825 0.0746 2.0070 7.2289

SA AMB 0.0112 1.4986 2.2317 −0.0024 0.4959 1.1611
X-11 −0.0001 6.2611 9.9308 −0.0827 3.5358 6.8499
STL 0.0507 5.4985 7.4936 −0.0720 1.7862 3.0337
STL-R 0.2087 10.0203 17.7484 −0.1955 4.0311 9.6669
{dsa} 0.1339 5.4249 6.9779 −0.0061 1.6214 2.0946
{dsa}-R 0.5364 10.5313 19.4393 0.2499 3.3197 8.6444

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard devia-
tion (SD) of revisions. 2 The suffix “-R” indicates usage of robustness weights in the STL-based methods.
3 Bold figures indicate the smallest absolute value of the revision measure for the considered signal.
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Figure 4: Rate of convergence (9) with k ∈ {1, . . . , 30} for the DOW estimates of the
AP series obtained from the extended AMB (solid line), extended X-11 (dashed line) and
non-robust {dsa} (dotted line) methods.

Table 4: Revision measures for the GT series

PCE revisions (7)
{rt} {rt(1)}

Signal Method MR MAR SD MR MAR SD
Raw 3.5653 3.5723 2.5882 −1.3321 1.8892 1.8984

WOY AMB −0.4388 0.7823 0.8190 −0.3734 0.4663 0.3966
X-11 −0.2073 0.6962 0.8483 −0.1986 0.5044 0.6820
STL −0.3952 0.7884 0.9457 −0.3865 0.4811 0.4545
STL-R −0.4069 0.7913 0.9542 −0.2981 0.4709 0.5337

SA AMB 4.0205 4.0205 2.1533 −0.9727 1.5745 1.8987
X-11 3.7805 3.7882 2.1955 −1.1409 1.7636 2.0919
STL 3.9765 3.9814 2.1702 −0.9600 1.5540 1.8705
STL-R 3.9927 4.0106 2.3508 −1.0461 1.6680 1.9377

P2P revisions (8)
{r%t } {r%t (1)}

Signal Method MR MAR SD MR MAR SD
Raw 0.0126 2.2190 3.0619 0.0859 1.9792 3.0325

WOY AMB 0.0007 0.7418 0.9550 −0.0152 0.3379 0.5093
X-11 0.0231 0.7838 0.9976 −0.0091 0.7385 0.9593
STL 0.0683 0.9033 1.2708 0.0037 0.4159 0.6043
STL-R 0.0711 0.9718 1.4162 0.0005 0.5674 0.7580

SA AMB 0.0116 1.9282 2.7060 0.1104 1.8977 3.0305
X-11 −0.0170 1.9686 2.7270 0.1060 2.1551 3.3152
STL −0.0487 1.9948 2.6436 0.0992 1.9093 3.0325
STL-R −0.0652 2.0199 2.6779 0.0936 1.9553 3.0241

Notes: 1 Revision measures are mean revision (MR), mean absolute revision (MAR) and standard devi-
ation (SD) of revisions. 2 The suffix “-R” indicates usage of robustness weights in STL. 3 Bold figures
indicate the smallest absolute value of the revision measure for the considered signal.



5. Summary

The Bundesbank has launched a new weekly activity index (WAI) for a more timely mon-
itoring of economic developments in Germany in the post-COVID-19 era. Several daily
and weekly time series with pronounced seasonality enter the WAI; prior to its calcula-
tion, these seasonal dynamics are currently being removed with an experimental in-house
STL-based method implemented in the {dsa} package. Given the recent release of a new
JDemetra+ (JD+) version that implements several other signal extraction methods for infra-
monthly time series, the Bundesbank now plans to migrate from its experimental in-house
solution to one of the official JD+ approaches. To assist this migration process, this study
provides an empirical real-time comparison between the involved methods, using the 2022
W01 to 2024 W01 vintages of two infra-monthly WAI input series: daily air pollution (AP)
and weekly Google trends (GT) for unemployment. The main findings are threefold. First,
computational speed is generally high for the JD+ methods thanks to the underlying fast
Java routines, especially those for data pretreatment, including automatic outlier detection,
and non-parametric seasonal adjustment. The example of the AP series highlights that
33%–60% of computation time can be saved when using the JD+ methods in place of the
experimental in-house non-robust STL variant. Second, the models used for data lineari-
sation are reasonably stable across data vintages in both JD+ and {dsa}. Third, amongst
all competitors, the extended ARIMA model-based approach implemented in JD+ tends to
generate the smallest and least volatile real-time revisions on average in various concurrent
signal estimates obtained from the AP and GT series. On the flip side, however, conver-
gence of preliminary to final revisions may take significantly longer for this method, as
seen for the concurrent estimates of the day-of-the-week pattern in the AP series.

The stability and revision analyses described here are currently being conducted for the
other four daily WAI component series not covered in this report. Once completed, future
research could consider more nuanced, or individual, set of regression variables for data lin-
earisation as well as non-standard specifications for seasonal adjustment. For example, the
extended X-11 approach alone implements a wide range of options for kernel-based trend-
cycle extraction (Proietti and Luati; 2008) and selection of 3× k seasonal filters. Compar-
ing the revision profiles of concurrent estimates of seasonally adjusted infra-monthly time
series with those of estimates utilising projected seasonal factors obtained from earlier sea-
sonal adjustments of forecast-extended time series would be another interesting strand of
empirical research. Any of these studies could also include (basic) structural time series
models or other seasonal adjustment methods currently not implemented in JD+, such as
atomic seasonals or CAMPLET (see Webel; 2022, for an overview).
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