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Abstract

Calibration weighting is a general technique for adjusting probability-sampling weights
to increase the precision of estimates, account for unit nonresponse or frame errors, or
force internal estimates to be consistent with external measures. Special cases of
calibration weighting include poststratification, weighting-class adjustments for
nonresponse, raking (iterative proportional fitting), and separate ratio estimation.
Although the literature has primarily focused on linear calibration technigques having
close ties to the general regression or GREG estimator, attractive nonlinear calibration
techniques have also been developed. The goal here is to provide a general introduction
to calibration weighting for establishment surveys using as a motivating example a
survey of hospital emergency departments.
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1. Introduction

Establishment surveys based on randomly drawn samples come with survey weights
allowing valid inferences about the target population. Given a probability sample with
probability-based survey weights, calibration weighting involves a mild adjustment to
those weights that forces the weighted totals for a set of calibration (or benchmark)
variables to equal values determined using more complete information whether from the
the target population itself or a larger sample. Many establishment surveys have access
to frame data that can be used for this purpose.

There are three purposes of calibration weighting:

1. Decreasing the variance of many (nearly) unbiased estimators.
2. Removing or decreasing selection biases caused by unit nonresponse or frame errors.
3. Forcing estimates to be numerically consistent with external measures.

1.1 A Motivating Example

The following example of an establishment survey will motivate much of this discussion.
Suppose we are interested in producing annual estimates of drug-related
emergency-department visits to US hospitals. We have a list of all US hospital with
emergency departments, but contacting each and collecting the information we want
would be prohibitively expensive. Instead, we draw a random sample from the list and
collect the information only from that sample. Moreover, it may be that not all the
sample hospitals cooperate, and we able are to survey only a subset of them. For
simplicity, we will assume that all cooperating hospitals supply all the information we
request of them.



The list of all US hospitals with emergency departments is called a “sampling frame.”
Let F denote this frame, and k an emergency department on this frame. The frame
comes with a fair amount of information about all the hospitals on it, such as their
location, whether each is publicly or privately owned, and the annual number of
emergency-department visits in a recent year (drug-related or not).

We draw a random sample S of n hospitals in F. Often, this sample is drawn by first
dividing the population into mutually exclusive strata based on location, size and
ownership (i.e., public or private), then selecting a simple random sample in each
stratum. An example of just such a sample of hospital emergency departments can be
found within the SUDAAN 11/WTADJX examples in http://www.rti.org/sudaan/. This is
not a real sample. Rather, it is based on a public use file but some numbers have been
adjusted and others have been created out of whole cloth for our illustrative purposes.

Let

yik be the number of annual drug-related visits to k collected on the survey,

d¢ be the probability-sampling (or design) weight associated with k (the inverse of its
probability of sample selection), and

g« be the number of emergency-departments visits to k on the frame.

Assume that the frame contains the complete universe U of US hospitals with emergency
departments and, for now, that there is no nonresponse.

1.2 Estimating Totals
Our primary goal is to estimate the universe total T, =T, = 2keu Yik =20 Yik.. One simple

way to do that is with the expansion estimator t; = > s dyy1, Which is unbiased under
probability theory (i.e., Epop(ti) = T1). Under mild conditions, it also has small relative
error, (t, —T,)/T, when n is large (technically, (t; —T4)/T, = Op(1/An)).

The expansion estimate can be used to estimate the universe total for any item given its
values in the sample. In particular, ty = 2. sdil = 2 sdi is an unbiased estimator for N, the
size of U. Define ug to be 1 when k is in a group Uy (e.g., public hospitals), and 0
otherwise. LetNgy = ZUg]-:ZkeU Ugy be the size of Uy, which can be estimated by

tng = 2s, Ok =25 dklgk-
For public hospitals in our example data set, Ny is 1632, while its estimator, ty, is
1647.

In general, the relative error of t, will be small under mild conditions when ny is large.
g

This is some disagreement, however, about how large is “large.” Opinions range from 6
to 20.


http://www.rti.org/sudaan/)

2. Sample Balance

When, regardless of which random sample is drawn,

>ow =Y, 1=N, M
Dk =, U =Tg, (2)

or D" < Willpublick = D, Upublick = Zummlf N public ©)
and each w, = dy, the sample design is said to be balanced (or design balanced) on 1, the
Ok, Or the public-indicator ,respectively. The three equations t are called “balancing
equations.”

It is not hard to show that any simple random or stratified simple random sample is
balanced on 1. Similarly, a stratified simple random sample where no strata contains both
public and private hospitals is balanced on the public indicator. Finally, a sample drawn
with probabilities proportional to g, will be balanced on the g (as long as no g is larger

than >y gj/n).

Sometimes, we would like an equation like >.sw gy =2, tx =T to hold exactly —and

perhaps additional balancing equations as well — even when the sample is not design
balanced on the qc. Calibration weighting creates a set of weights {w,} close the
probability-sampling weights (the d,) which satisfy balancing equation. In particular,
W =di oy, and each ¢ is close to 1 (technically, each oy = 1 + Op(1/4n).)

Using probability-sampling weights assures us that balancing equations hold on average
across all possible samples. Calibration weighting provides a mild adjustment that
makes the equalities hold exactly given a particular sample. The balancing equations,
which may or may hold exactly depending on the design, become calibration equations
which our choices for the w, force to hold.

A type of calibration equation that is rarely a balancing equation but is often used in
practice has the form:

ZSWkYZk =1,

where y is a variable collected on the survey, but t, is an estimate from an outside
source deemed more reliable than X5 dya. This type of calibration equation is used to

make estimates from different sources numerically consistent. We will not discuss it
further here.

The calibration estimator for T, = > y Yk, Where yy is any variable collected on the
survey, is tyca = 2 s Wyk. Under mild conditions on the sample design and population,
ty ca 1S Nearly unbiased in that Bias(t, ca))/Var(ty ca)) = 0.

Sometimes the benchmark totals for calibration equations come from a source other than
the sampling frame. Often, however, the frame of an establishment survey will have
some information on every element in the frame or nearly so. Control variables are



variables with known values for every element on the frame. In practice, some of these
values may have to be imputed. This should be done without using values collected on
the survey itself. Indeed, even if the survey provides more accurate information than the
frame, survey values should not be used to update or correct errors perceived to be on the
frame.

3. Simple Ratio Adjustments

Given a probability sample, the calibration equation equation in (2) will always hold if
calibration weights are produced using the following adjustment:

[z:d a ]dk’

stquk =Tg- Inour example data set,
S

since ) Wqy = {
2.5d

T, 132491601
TS gz, 130612288
ZS 17

for all k in the sample.

Notice that this calibration weight adjustment produces the simple ratio estimator:

s dic i

t = W Yy =

y,cal ZS k Yk = [stqu
no matter what the survey variable y,. For example, it would be the estimator even if yy
were YuUguick » Which is the number of drug-related emergency department visits to
hospital k when k is publicly owned and zero otherwise. Recall that gy is positive for all
k, so that t ., is no longer the traditional ratio estimator for the total number of
drug-related emergency department visits to public hospitals.

Now suppose U were divided into G mutually exclusive groups each of size Ng. The G
calibration equations >s W g = Ng are satisfied by the weight adjustment:

( Ng }d Ng d

W=l 5 | E

2sdiujg ng dj

for keSy.  These calibration weight adjustments produce the poststratified estimator:

G ZS dic Y

ycal ZSkak_ZZS Wi Yk _zNg Z dk
Sq



4. Reducing Variances: The Working Prediction Model

Calibration weighting will tend to decrease the variance of an estimated total like T, =
2 uYk When y, behaves like as a linear function of the calibration variables. For example,
consider the working prediction (or outcome) model:

Yic =Bk + & 4)

which is often useful in establishment surveys. Observe that we can write:

ty =2 OV =B g dkz + D g ke = Bt +D o dex,
tycal = 2 s Wi Vi =B s WiZic + D Wi = BT, + D o Wyegy, and

Ty :Zuyk =BZUzk +ZU8|< =BTz+ZU8k

From which it is easy to see that while the variance or t, as an estimator of T, has two
components: the difference between Pty and BT, and the difference between

Y.sdye and >, g, the variance of t, ., as an estimator of T, has only one: the
difference between > cwge, and > g.

The g in equation (4) need not be normally distributed or even uncorrelated. In fact, the
prediction model in equation (4) may not even hold in the traditional sense that
Emocer(€xl0k) = O whether or not k is in the sample. Still, there can be a reduction in
variance from calibration weighting.

An analogous variance-reduction rationale works for a vector of calibration variables z,
with Bz, replacing pg.. Examples include:

A group-mean model like myUpysiick + M2Uprivatex » Where my is the public y-mean and m, the
private mean. This is the model for the poststratified estimator.

A group ratio model like by (QkUpubiick) + D2(OkUprivate k). This is the model for the separate
ratio estimator.

A simple regression model is a + bgy. This is the model for the simple regression
estimator. It requires more than ratio adjustments to find calibration weights.

An example of the general linear model is BTzk (e.9., Bo +P1Uurbank + P2Upublick + Badk)-
More on this later.



5. Unit Nonresponse

Suppose the unit response mechanism can be described with the following selection
model: Each k €U is in one of G mutually exclusive groups (poststrata), and the
probability of k €U, responds if sampled is (), which can vary across groups.

Denote the set of respondents within each group by Ry Suppose, at first, that Ny is
known (e.g., the number of public hospitals in a region of a certain size). In principle,

tNg(Z) = ZRQ dy 1/ m(gy) is an unbiased estimator for Ny with a small relative error when

ry is large.

By using the calibration equation,
ZRg dy o =ZR9 dy 1/ 7)) = Ng

(which should approximately hold), to adjust the original weights, we implicitly estimate
). The solution comes from solving the calibration equation:

1 | Ng
gy | 2 9

9

oy = =W =| = |dk forkeRy.

2r, 9]

Ng
R

Note that oy need not be near 1.

When Ng is not known, it can be replaced by its full-sample estimate but only if that is
known, in this case because we can presumably determine ownership in the full sample
but not in the population:

2R, dkou =2 R dk 1/ 7)) =25 Uy = Ng.

1 ngdj Zs dj

So Ak == :>Wk:dk Z—gd
Ry J

gy | 2R, 9]

forkeRg.

Since calibration weighting reduces variances, this choice for the oy should be better than
the unweighted maximum-likelihood solution, ny/rqfor k € Ry, for estimating T, (but not
for estimating the response rate within Sg).



6. Linear Calibration
Ratio adjustment doesn’t work for the combination of these two calibration equations:
2w = N and 2swigk = T, In general, we can write a system of P calibration equations
as a matrix equation:
2sWizg = T,

For example, with P = 2,

With linear calibration weighting:
Wy de |:1+ hTZk:|,

where h is chosen so that the calibration equation holds. This produces the the general
regression (GREG) estimator:

IR INA (1+ hTzk)yk
:stk [1+(TZ —tz)T (stjzjij )_1zkjyk
=2 s Gy +(T, ¢ )T (stjszjT )_125 di Zk Yk
= sy +H(T, -t )T b
(Here h=(Xgd;z;z;") (T, -t,).)

Using linear calibration to treat unit nonresponse, we have the calibration equation:

ZR Wiz = Yk (1+h'2) 2= Ts dizi,

which leads to

Ai=l+hTZk = Tk 2;1_,
Ttk 1+y zy

where h estimates y. But this estimate can be less than O or greater than 1. Even when
there is no nonresponse, a linear calibration weight can be less than 0.

Truncated linear calibration is an iterative method that successively fixes wayward oy at
their truncated values, removes the associated k from the population and sample, and
performs linear calibration again (and again) on the remainder of the sample and
population.



7. Raking

Suppose we have many calibration equations like > g dy g, =t but the groups are not

all mutually exclusive. For example, urban/non-urban, four regions, public/private. If we
cross-classified the population, some groups could have few sampled or responding units.
Some may even be empty.

We can ratio adjust first for urban and non-urban, then ratio adjust the result for the four
regions, and then ratio adjust that result for public and private. We then can repeat the
process as many times as needed until all calibration equations are effectively satisfied
(which may never happen). This type of calibration weighting in called “iterative
proportional fitting” or “raking.”

Raking is equivalent to adjusting weights like so:

a(h'z) = exp(h'z) = [exP(Unrban k)1 [EXPUnon-urban, k)12 [EXP(Ueast 1)1 -

— T
where Zy = (Uurban,k Unon-urbank Ueastk ------ ) .

When there are no nonresponse or coverage errors: exp(h'z) ~ 1 + h'z,. When used for
nonresponse or coverage adjustment, by contrast,

1
oy = a = exp(hTzk) = Ty = exp(—'yTzk),

which need not be ~ 1 — v 'z, These estimated probabilities of response are always
nonnegative but can exceed 1.

Finding an h such that w, = dexp(h'z) and Yswizi = T, (O ZrWizk = s Wizi) can often
be done even when components of z, are continuous.

8. Two Distinct Types of Models

Although oy = a(h'z) = exp(h'z,) and the 7 = exp(—y'z) in the selection model are not
linear functions of the component of z, the working prediction (outcome) model for a y-
variable remains linear; e.g., drug-related visits is a linear function of frame visits and
other covariates. Formally, Eneel(Yk — Zc'Blz) = O for some vector B whether or not k
responds when sampled (i.e., the response mechanism is assumed to be ignorable; the
sampling mechanism may be ignorable as well, but the use of the dy in determining the
calibration weights makes that additional assumption superfluous). A key difference
between the two types of models is that it is possible for the prediction model to hold for
some survey variables but not others. By contrast, either the selection model holds or it
doesn’t regardless of the survey variables.

If either the selection model or the prediction model holds, then the resulting estimator
for T, is nearly unbiased in some sense: there is double protection against nonresponse
bias.



9. Bounding and Centering Parameters

Selection and prediction models can also be used to address coverage errors when
population totals for the z-variables are known from an outside source but there are
duplications or missing elements on the frame (so that F = U),

When there is no nonresponse or coverage error (or adjustments for them have already
been made), there are many possible versions of a, = a(h'z) ~ 1 + h'z, that are nearly
identical with a(0) = o'(0) = 1. There is no reason to set up a loss function to choose
among them.

One attractive version is generalized raking

((u—1)+u(l—¢)exp(AhT z;)
(u-1)+@1-0)exp(AhTz,)

aGR(hTzk; E,u):

where 0</<l<u<ow (and A defined so that agg'(0; ¢ u) = 1), which constrains oy
between the bounding parameters ¢ and u. With conventional raking, ¢= 0 and u = .
Newton’s method is used to find h. As a result the components of z, need not be 0/1.

Even more general is the general exponential form (of weight adjustment):

£ (g =) +uy (o — ¢4 ) exp(Ach z,)
(U —C)+ (o — i ) exp(AchT z,)

OGEF (h Zy; Ly U Ck)

where 0< /) < ¢, <Uy <o, (and Ay is defined so that acer'(0; &, Uy, C) = 1). It allows
the bounds (and the center) to vary across k. Yet when all ¢, = 1, and there is no
nonresponse or coverage errors, it is asymptotically indistinguishable from linear
calibration.

If response (or coverage) is a function of the components of z, then the choice of oy =
a(h'z) matters, since o(0) may differ from 1. In particular, the general exponential form
can be ager(h'zc ¢ u, ¢), where ager(0; ¢, u, €) = c. A special case, oger(h'z; 1. ©, ¢ > 1)
corresponds to a logistic response model.

10. Instrumental Variables

With linear calibration:

W =dy [1+ hTszz dy [1+ szh}zdk {1+ " (ZSszJzJT )_1(TZ —tz)} =

1
ZSWka—ZSdek +stkzkzk (ZSdJZJZJ ) (TZ _tZ):TZ

Similarly for a vector x, with the same number of components as z,,



W =dy [1+thk}=dk {1+ka (ZSszJxJ )_1(TZ —tz)} =

1
ZSWka —stkzk +stkaXk (ZSdJZJXJ ) TZ _tZ):TZ
Components of x, that are not in z, are called instrumental variables.

In the simple ratio, g; is the calibration vector and 1 is the instrumental-variable vector:
T
m<dkb+1(§¥ i) @h—%ﬂ
-1 T
_ . B _ q
_d{u{2§h%)(m HH_WELde

Pseudo-optimal calibration sets all x, = (d¢ —1)z¢ (including an intercept if there is one).
This will often reduce the variance when there is no nonresponse or coverage error and yy
is not strictly a linear function of the components of z. This is because b in the GREG is

replaced by an estimate of [Vargesign (tz)]‘1Covdesign(tZ,ty) under Poisson sampling or
stsrs with large stratum sample sizes.

When there is no nonresponse or coverage error, linear calibration with instruments is
nearly equal to setting

U= +ud-71) exp(Athk)
(U-1)+@1-)exp(AhTx,)

aGR(thk l, u)

If we add k-indices to the upper and lower bounds (as can be done in SUDAAN 10 and
11), then the weights themselves, not just the weight adjustments, can be bound. For
example, we can restrict weights to be no smaller than 1 or we can bound the size of w,Qy.

When there is nonresponse, fitting oggg (thk;E >1,u,c> /) bounds the weight
adjustment between ¢ and u, and thus the estimated probability of response between 1/u
and 1/ ¢since mw, = 1/oy. It also allows some of the components in the x, vector governing

the response model to be y-variables known only for respondents. Thus, treating unit
nonresponse that is not missing at random is possible (and available with WTADJX in
SUDAAN 11). The components of X, are then called “response-model variables.”

It is also possible to fit a response model when the x-vector has fewer components than
the calibration vector z, (but we won’t).



11. Some Comments on Variance Estimation

In general,

ty,ca:FZSW V:RBZS Ve k"'IZS W £

Traditional methods of linearization variance estimation applied to t,.y capture the
variability of the w in > gwggy, but not the reduction in variance from > qwzy

being calibrated.

Replication methods, by contrast, capture both (the former slightly more than is
warranted). When calibration fails in a replicate (i.e., a calibration equation is not
satisfied) and the replicate isn’t dropped from the variance estimator, that estimator
usually will be biased upward.

The linearization routine in SUDAAN 11 will captures the variance reduction from one
calibration step assuming either T, or, in the case of unit nonresponse, > ¢dyzy is

known. If there really is only one calibration step, it may underestimate slightly because
the (yk—szb)z, where b is a sample estimate will tend to be smaller than

(Yx —sz b*)z, where b *is the probability limit of b.

Otherwise, it may tend to overestimate the variance because it fails to capture variance
reduction from previous steps.
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