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Abstract 

 
Calibration weighting is a general technique for adjusting probability-sampling weights 

to increase the precision of estimates, account for unit nonresponse or frame errors, or 

force internal estimates to be consistent with external measures. Special cases of 

calibration weighting include poststratification, weighting-class adjustments for 

nonresponse, raking (iterative proportional fitting), and separate ratio estimation.  

Although the literature has primarily focused on linear calibration techniques having 

close ties to the general regression or GREG estimator, attractive nonlinear calibration 

techniques have also been developed.  The goal here is to provide a general introduction 

to calibration weighting for establishment surveys using as a motivating example a 

survey of hospital emergency departments.    

 

Key Words: Survey weight; Ratio; Poststratification; Raking; Generalized exponential 

form; Variance. 

 

1. Introduction  
 

Establishment surveys based on randomly drawn samples come with survey weights 

allowing valid inferences about the target population. Given a probability sample with 

probability-based survey weights, calibration weighting involves a mild adjustment to 

those weights that forces the weighted totals for a set of calibration (or benchmark) 

variables to equal values determined using more complete information whether from the 

the target population itself or a larger sample.  Many establishment surveys have access 

to frame data that can be used for this purpose.  

 

There are three purposes of calibration weighting: 

 

1.  Decreasing the variance of many (nearly) unbiased estimators. 

2.  Removing or decreasing selection biases caused by unit nonresponse or frame errors. 

  3.  Forcing estimates to be numerically consistent with external measures. 

 

 1.1 A Motivating Example Notation and a Motivating Example 

The following example of an establishment survey will motivate much of this discussion.  

Suppose we are interested in producing annual estimates of drug-related 

emergency-department visits to US hospitals. We have a list of all US hospital with 

emergency departments, but contacting each and collecting the information we want 

would be prohibitively expensive.   Instead, we draw a random sample from the list and 

collect the information only from that sample.  Moreover, it may be that not all the 

sample hospitals cooperate, and we able are to survey only a subset of them. For 

simplicity, we will assume that all cooperating hospitals supply all the information we 

request of them.  



The list of all US hospitals with emergency departments is called a “sampling frame.”  

Let F denote this frame, and k an emergency department on this frame.  The frame 

comes with a fair amount of information about all the hospitals on it, such as their 

location, whether each is publicly or privately owned, and the annual number of 

emergency-department visits in a recent year (drug-related or not).   

 

We draw a random sample S of n hospitals in F. Often, this sample is drawn by first 

dividing the population into mutually exclusive strata based on location, size and 

ownership (i.e., public or private), then selecting a simple random sample in each 

stratum.  An example of just such a sample of hospital emergency departments can be 

found within the SUDAAN 11/WTADJX examples in http://www.rti.org/sudaan/. This is 

not a real sample. Rather, it is based on a public use file but some numbers have been 

adjusted and others have been created out of whole cloth for our illustrative purposes. 

 

Let  
y1k  be the number of annual drug-related visits to k collected on the survey,  

dk   be the probability-sampling  (or design) weight associated with k (the inverse of its   

probability of sample selection), and  

qk  be the number of emergency-departments visits to k on the frame.  

  

Assume that the frame contains the complete universe U of US hospitals with emergency 

departments and, for now, that there is no nonresponse. 

       

1.2 Estimating Totals 

Our primary goal is to estimate the universe total 
1yT  T1 = kU y1k =U y1k.. One simple 

way to do that is with the expansion estimator t1 =  S dky1k, which is unbiased under 

probability theory (i.e., Eprob(t1) = T1).  Under mild conditions, it also has small relative 

error, (t1 T1)/T1 when n is large (technically, (t1 T1)/T1 = OP(1/n)). 

 
The expansion estimate can be used to estimate the universe total for any item given its 

values in the sample. In particular, tN =  S dk1 =  S dk  is an unbiased estimator for N, the 

size of U.  Define ugk  to be 1 when k is in a group Ug  (e.g., public hospitals), and 0 

otherwise.  Let 1
gg gkU k UN u   be the size of Ug, which can be estimated by  

                                .
g g

N k k gkS St d d u     

For public hospitals in our example data set, Ng  is 1632, while its estimator, ,
gNt  is 

1647. 

 

In general, the relative error of 
gNt will be small under mild conditions when ng  is large.  

This is some disagreement, however, about how large is “large.”  Opinions range from 6 

to 20.  

http://www.rti.org/sudaan/)


 2. Sample Balance 
 

When, regardless of which random sample is drawn, 
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and each wk  = dk, the sample design is said to be balanced (or design balanced) on 1, the 

qk, or the public-indicator ,respectively.  The three equations t are called “balancing 

equations.” 

 

It is not hard to show that any simple random or stratified simple random sample is 

balanced on 1. Similarly, a stratified simple random sample where no strata contains both 

public and private hospitals is balanced on the public indicator.  Finally, a sample drawn 

with probabilities proportional to qk will be balanced on the qk (as long as no qk is larger 

than U qj /n). 

 

Sometimes, we would like an equation like k k k qS Uw q q T    to hold exactly – and 

perhaps additional balancing equations as well – even when the sample is not design 

balanced on the qk.  Calibration weighting creates a set of weights {wk} close the 

probability-sampling weights (the dk) which satisfy balancing equation. In particular, 

,k k kw d  and each k is close to 1 (technically, each k = 1 + OP(1/n).)  

 

Using probability-sampling weights assures us that balancing equations hold on average 

across all possible samples.  Calibration weighting provides a mild adjustment that 

makes the equalities hold exactly given a particular sample.  The balancing equations, 

which may or may hold exactly depending on the design, become calibration equations 

which our choices for the wk force to hold.  

 

A type of calibration equation that is rarely a balancing equation but is often used in 

practice has the form:   

                                       2 2 ,k kS
w y t                                  

 

where y2k is a variable collected on the survey, but 2t  is an estimate from an outside 

source deemed more reliable than S dky2k.  This type of calibration equation is used to 

make estimates from different sources numerically consistent.  We will not discuss it 

further here.  

 

The calibration estimator for  Ty =  U yk, where yk is any variable collected on the 

survey, is ty,cal =  S wkyk. Under mild conditions on the sample design and population,   

ty,cal is nearly unbiased in that Bias(ty,cal)/Var(ty,cal)  0.  

 

Sometimes the benchmark totals for calibration equations come from a source other than 

the sampling frame.  Often, however, the frame of an establishment survey will have 

some information on every element in the frame or nearly so.  Control variables are  
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variables with known values for every element on the frame.  In practice, some of these 

values may have to be imputed.  This should be done without using values collected on 

the survey itself.  Indeed, even if the survey provides more accurate information than the 

frame, survey values should not be used to update or correct errors perceived to be on the 

frame. 

 

3. Simple Ratio Adjustments 
 

Given a probability sample, the calibration equation equation in (2) will always hold if 

calibration weights are produced using the following adjustment:  
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for all k in the sample.  

 

Notice that this calibration weight adjustment produces the simple ratio estimator:  
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no matter what the survey variable yk.  For example, it would be the estimator even if  yk 

were y1kupulic,k , which is the number of drug-related emergency department visits to 

hospital k when k is publicly owned and zero otherwise.  Recall that qk is positive for all 

k, so that ty,cal. is no longer the traditional ratio estimator for the total number of 

drug-related emergency department visits to public hospitals.   

 

Now suppose U were divided into G mutually exclusive groups each of size Ng. The G 

calibration equations S wkugk = Ng are satisfied by the weight adjustment:    
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for kSg.  These calibration weight adjustments produce the poststratified estimator: 
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4. Reducing Variances: The Working Prediction Model 
 

Calibration weighting will tend to decrease the variance of an estimated total like Ty =   

 U yk when yk behaves like as a linear function of the calibration variables. For example, 

consider the working prediction (or outcome) model:  

             

                                   ,k k ky q                                     (4)                                  

 

which is often useful in establishment surveys.  Observe that we can write: 

                                 

     ,

,

, and    

y k k k k k k z k kS S S S

y cal k k k k k k z k kS S S S

y k k k z kU U U U

t d y d z d t d

t w y w z w T w

T y z T

        

        

        

   

   

   

      

 

From which it is easy to see that while the variance or ty as an estimator of Ty has two 

components: the difference between qt and qT and the difference between 

k kS d  and ,kU  the variance of ty,cal as an estimator of Ty has only one: the 

difference between k kS w  and .kU   
 

The k in equation (4) need not be normally distributed or even uncorrelated.  In fact, the 

prediction model in equation (4) may not even hold in the traditional sense that 

Emodel(k|qk) = 0 whether or not k is in the sample. Still, there can be a reduction in 

variance from calibration weighting.  

 

An analogous variance-reduction rationale works for a vector of calibration variables zk, 

with 
T
zk replacing qk.  Examples include:  

 

A group-mean model like m1upublic,k + m2uprivate,k , where m1 is the public y-mean and m2 the 

private mean. This is the model for the poststratified estimator.  

 

A group ratio model like b1 (qkupublic,k) + b2(qkuprivate,k). This is the model for the separate 

ratio estimator. 

 

A simple regression model is a + bqk. This is the model for the simple regression 

estimator. It requires more than ratio adjustments to find calibration weights.  

       

An example of the general linear model is 
T
zk   (e.g., 0 +1uurban,k + 2upublic,k + 3qk ). 

More on this later. 

 

 



5. Unit Nonresponse 
 

Suppose the unit response mechanism can be described with the following selection 

model: Each k U is in one of G mutually exclusive groups (poststrata), and the 

probability of k Ug responds if sampled is (g), which can vary across groups.   

 

Denote the set of respondents within each group by Rg. Suppose, at first, that Ng  is 

known (e.g., the number of public hospitals in a region of a certain size).  In principle, 
(2)

( )(1 / )
g gN k gRt d   is an unbiased estimator for Ng with a small relative error when 

rg is large.  

 

By using the calibration equation,  

 

                         ( )(1/ )
g g

k k k g gR Rd d N      

 

(which should approximately hold), to adjust the original weights, we implicitly estimate 

π(g). The solution comes from solving the calibration equation:  

 

( )

1
for . 

ˆ
g g

g g
k k k g

g j jR R

N N
w d k R

d d

   
        
       
   
 

 

 

Note that k need not be near 1. 

 

When Ng is not known, it can be replaced by its full-sample estimate but only if that is 

known, in this case because we can presumably determine ownership in the full sample 

but not in the population: 
                         

                     ( )
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Since calibration weighting reduces variances, this choice for the k should be better than 

the unweighted maximum-likelihood solution, ng/rg for k  Rg, for estimating Ty (but not 

for estimating the response rate within Sg). 

 

 

 

 

 

 

 

 

 

 



 6.  Linear Calibration 
 

Ratio adjustment doesn’t work for the combination of these two calibration equations: 

Swk = N and S wkqk = Tq. In general, we can write a system of P calibration equations 

as a matrix equation:  

                                                              S wkzk = Tz. 

 

For example, with P = 2,  
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With linear calibration weighting: 
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where h is chosen so that the calibration equation holds. This produces the the general 

regression (GREG) estimator: 
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 (Here  1( ) .T
j j jS d T t  z zh z z ) 

 

Using linear calibration to treat unit nonresponse, we have the calibration equation:   

 

                             R wkzk = R dk (1+h
T
zk) zk= S dkzk,  

 

which leads to                                                       

                1 1
1 ,
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where h estimates .  But this estimate can be less than 0 or greater than 1. Even when 

there is no nonresponse, a linear calibration weight can be less than 0.  

 

Truncated linear calibration is an iterative method that successively fixes wayward αk at 

their truncated values, removes the associated k from the population and sample, and 

performs linear calibration again (and again) on the remainder of the sample and 

population.  

 



 7. Raking 
 

Suppose we have many calibration equations like 
gk gk NS d u t but the groups are not 

all mutually exclusive. For example, urban/non-urban, four regions, public/private. If we 

cross-classified the population, some groups could have few sampled or responding units.  

Some may even be empty.    

  

We can ratio adjust first for urban and non-urban, then ratio adjust the result for the four 

regions, and then ratio adjust that result for public and private.  We then can repeat the 

process as many times as needed until all calibration equations are effectively satisfied 

(which may never happen).  This type of calibration weighting in called “iterative 

proportional fitting” or “raking.”  

 

Raking is equivalent to adjusting weights like so:  

 

        α(h
T
zk) = exp(h

T
zk)  = 31 2
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where zk  = (uurban,k  unon-urban,k  ueast,k   ……)
T
. 

 

When there are no nonresponse or coverage errors: exp(h
T
zk)  1 + h

T
zk..  When used for 

nonresponse or coverage adjustment, by contrast,  
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which need not be  1  γ 'zk.  These estimated probabilities of response are always 

nonnegative but can exceed 1.  

  

Finding an h such that wk = dkexp(h
T
zk) and S wkzk = Tz (or R wkzk = S wkzk) can often 

be done even when components of zk are continuous. 

 

 8. Two Distinct Types of Models  
 

Although αk = α(h
T
zk) = exp(h

T
zk) and the k = exp(γ

T
zk) in the selection model are not 

linear functions of the component of zk, the working prediction (outcome) model for a y-

variable remains linear;  e.g., drug-related visits is a linear function of frame visits and 

other covariates. Formally, Emodel(yk – zk
T
|zk) = 0 for some vector  whether or not k 

responds when sampled (i.e., the response mechanism is assumed to be ignorable; the 

sampling mechanism may be ignorable as well, but the use of the dk in determining the 

calibration weights makes that additional assumption superfluous). A key difference 

between the two types of models is that it is possible for the prediction model to hold for 

some survey variables but not others.  By contrast, either the  selection model holds or it 

doesn’t regardless of the survey variables. 

 

If either the selection model or the prediction model holds, then the resulting estimator 

for Ty is nearly unbiased in some sense: there is double protection against nonresponse 

bias.   

 



9. Bounding and Centering Parameters 
 

Selection and prediction models can also be used to address coverage errors when 

population totals for the z-variables are known from an outside source but there are 

duplications or missing elements on the frame (so that F  U), 

 

When there is no nonresponse or coverage error (or adjustments for them have already 

been made), there are many possible versions of αk = α(h
T
zk)  1 + h

T
zk  that are nearly 

identical with α(0) = α'(0)  = 1.  There is no reason to set up a loss function to choose 

among them.  

 

 One attractive version is generalized raking 
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where 0 1 u     (and A defined so that αGR'(0; l, u) = 1), which constrains αk  

between the bounding parameters l and u.  With conventional raking, l = 0 and u = . 

Newton’s method is used to find h.  As a result the components of zk need not be 0/1.  

      

Even more general is the general exponential form (of weight adjustment):  
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where 0 ,k k kc u     (and Ak is defined so that αGEF'(0; lk, uk, ck) = 1).  It allows 

the bounds (and the center) to vary across k.  Yet when all ck = 1, and there is no 

nonresponse or coverage errors, it is asymptotically indistinguishable from linear 

calibration. 

 

If response (or coverage) is a function of the components of zk , then the choice of αk = 

α(h
T
zk) matters, since α(0) may differ from 1.  In particular, the general exponential form 

can be GEF(h
T
zk; l, u, c), where GEF(0; l, u, c) = c. A special case, GEF(h

T
zk; 1, , c > 1) 

corresponds to a logistic response model.  

 

10. Instrumental Variables 
 

With linear calibration:  
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Similarly for a vector xk with the same number of components as zk, 
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Components of xk that are not in zk are called instrumental variables.  

  
In the simple ratio, qj is the calibration vector and 1 is the instrumental-variable vector:  
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Pseudo-optimal calibration sets all xk = (dk 1)zk (including an intercept if there is one). 

This will often reduce the variance when there is no nonresponse or coverage error and yk 

is not strictly a linear function of the components of z. This is because b in the GREG is 

replaced by an estimate of 1[ ( )] ( , )design design yt t t
z zVar Cov under Poisson sampling or 

stsrs with large stratum sample sizes. 

 

When there is no nonresponse or coverage error, linear calibration with instruments is 

nearly equal to setting   

                           ( 1) (1 )exp( )
; , .

( 1) (1 )exp( )

T
T k

GR k T
k

u u A
u

u A

  
 

  

h x
h x

h x
           

  

If we add k-indices to the upper and lower bounds (as can be done in SUDAAN 10 and 

11), then the weights themselves, not just the weight adjustments, can be bound.  For 

example, we can restrict weights to be no smaller than 1 or we can bound the size of wkqk. 

 

When there is nonresponse, fitting ( ; 1, , )T
GEF k u c  h x bounds the weight 

adjustment between l and u, and thus the estimated probability of response between 1/u 

and 1/ l since ˆ k = 1/αk . It also allows some of the components in the xk vector governing 

the response model to be y-variables known only for respondents. Thus, treating unit 

nonresponse that is not missing at random is possible (and available with WTADJX in 

SUDAAN 11). The components of xk  are then called “response-model variables.” 

 

It is also possible to fit a response model when the x-vector has fewer components than 

the calibration vector zk (but we won’t). 
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11. Some Comments on Variance Estimation 
 

In general,  

             , .y c a l k k k k k kS S S
t w y w w      z  

 

Traditional methods of linearization variance estimation applied to ty,cal capture the 

variability of the wk in ,k kS w  but not the reduction in variance from k kS w z                         

being calibrated.   

 

Replication methods, by contrast, capture both (the former slightly more than is 

warranted).  When calibration fails in a replicate (i.e., a calibration equation is not 

satisfied) and the replicate isn’t dropped from the variance estimator, that estimator 

usually will be biased upward. 

    

The linearization routine in SUDAAN 11 will captures the variance reduction from one 

calibration step assuming either Tz or, in the case of unit nonresponse, k kS d z is         

known. If there really is only one calibration step, it may underestimate slightly because 

the 2( – )T
k ky z b , where b is a sample estimate will tend to be smaller than 

2( – *) ,T
k ky z b  where *b is the probability limit of b.   

 

Otherwise, it may tend to overestimate the variance because it fails to capture variance 

reduction from previous steps. 
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