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Abstract

Sample co-ordination maximizes or minimizes the overlap of two or more samples selected from
overlapping populations. It can be applied to designs with simultaneous or sequential sample se-
lection. The degree of co-ordination is measured by the expected sample overlap, which is limited
by theoretical bounds (absolute upper and lower bounds). Two types of bounds can be defined: on
unit level and on marginal sampling designs’ level. We consider the bounds on unit level, which
depend on unit inclusion probabilities. If the expected overlap equals the absolute upper bound,
the sample co-ordination is maximal; if the expected overlap equals the absolute lower bound, the
sample co-ordination is minimal. It is possible to construct optimal sampling designs for given unit
inclusion probabilities to realize maximal or minimal co-ordination. This approach was developed
by Matei and Skinner (2009) and uses a combination of the iterative proportional fitting algorithm
and the linear programming implementation to controlled sampling method. We study here the
performance of this method using a real scenario survey based on Swiss municipality data set. De-
spite the computing facilities available nowadays, the problem can be prohibitively large even for
moderately large population and sample size. The method is useful to solve moderate-sized sample
co-ordination problems.

Key Words: Fréchet bounds, joint selection probability of two samples, linear programming.

1. Introduction

The sample co-ordination problem is typical for surveys where the goal is to create a depen-
dency between the selected samples in repeated surveys given their selection probabilities;
a similar problem can be defined when two surveys are conducted simultaneously. The
co-ordination between two or more samples is positive if the sample overlap is maximized,
and negative if the sample overlap is minimized. The advantage of having overlapping
samples is for example to improve the precision in the estimation of change or to reduce
data collection costs, while for non-overlapping samples is to diminish the response burden
of the selected units. In some applications the units in the population might represent pri-
mary sampling units. In other applications each population might represent a stratum, with
sample co-ordination taking place stratum by stratum.

Different approaches have been proposed in the literature to do sample co-ordination
such as: permanent random numbers (PRNs) or mathematical programming; see, for ex-
ample, Ernst (1999); Ohlsson (1995); Mach et al. (2006) and the references therein. The
degree of co-ordination is measured by the expected sample overlap, which is limited by
theoretical bounds. These bounds depend on unit inclusion probabilities or on marginal
probability sampling designs. We are interested here in studying methods that achieve the
theoretical bounds on unit level. The paper is organized as follows. In Section 2 the general
framework is shown. In Section 3 two sample co-ordination criteria are presented: one on
unit level and other one on probability sampling designs’ level. We recall general condi-
tions to achieve the theoretical bounds on unit level, and show some necessary conditions
to achieve the equivalence of the two criteria. Section 4 gives a practical evaluation of a
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method constructed to achieve the theoretical bounds on unit level. This method combines
the iterative proportional fitting algorithm and the linear programming implementation of
the controlled sampling method. Conclusions are drawn in Section 5.

2. Framework

Consider the selection of samples s1 and s2 from populations U1, U2, respectively, and
let U = {1, . . . , N} = U1 ∪ U2. The sets of possible samples s1 and s2 are denoted
S1 = {s11, ..., s

1
m} and S2 = {s21, ..., s

2
q}, respectively. Let sij = (s1i , s

2
j ) referred to as

the bi-sample. The set of all possible bi-samples is denoted S = {sij |sij = (s1i , s
2
j ), s

1
i ⊆

S1, s2j ⊆ S2, i = 1, . . . ,m, j = 1, . . . q}. The overall sampling design is represented by the
probability that bi-sample sij is selected, denoted pij = p(s1i , s

2
j ) = p(sij) for sij ⊆ S. The

marginal sampling designs for s1 and s2 are given by the probabilities p1(s1i ) and p2(s2j ),

respectively. We have
∑

s1i⊆S1 p1(s1i ) =
∑

s2⊆S2 p2(s2j ) = 1,
∑q

j=1 pij = p1(s1i ), and∑m
i=1 pij = p2(s2j ). The overall sampling design is said to be co-ordinated if p(s1i , s

2
j ) 6=

p1(s1i )p
2(s2j ) (see Cotton and Hesse, 1992; Mach et al., 2006), i.e. if the two samples are

not selected independently.
The size of the overlap between two samples s1i and s2j is denoted cij = |s1i ∩ s2j | and,

in general, is random. Let c denote the random overlap between two samples. The degree
of co-ordination is measured by the expected sample overlap, given by:

E(c) =
m∑

i=1

q∑

j=1

cijpij =
∑

k∈U

π
1,2
k , (1)

where
π
1,2
k =

∑

k∋s1i ,k∋s
2

j

sij=(s1i ,s
2

j )⊆S

p(s1i , s
2
j )

is the probability that unit k is included in both samples.

3. Two sample co-ordination criteria

Two different criteria (among others) can be used to measure the quality of sample co-
ordination schemes. Using the first criterium the degree of sample co-ordination is maxi-
mized/minimized on unit level; using the second one, the degree of sample co-ordination
is maximized/minimized on marginal probability sampling designs’ level.

The first one measures this quality by maximizing the expected sample overlap in (1)
on unit level for a positive co-ordination and minimizing it in the negative case. To obtain
bounds on the expected overlap on unit level, let

π1
k =

∑

s1i∋k

s1i⊆S1

p1(s1i )

be the first-order inclusion probability of unit k ∈ U for the first design and let

π2
k =

∑

s2j∋k

s2j⊆S2

p2(s2j )



be the first-order inclusion probability of unit k ∈ U for the second design. If k ∈ U1 \
U2, π2

k = 0 and if k ∈ U2 \ U1, π1
k = 0. Using the Fréchet bounds of π1,2

k we have

max(0, π1
k + π2

k − 1) ≤ π
1,2
k ≤ min(π1

k, π
2
k),

and the expected sample overlap is limited by the following bounds

∑

k∈U

max(0, π1
k + π2

k − 1) ≤ E(c) ≤
∑

k∈U

min(π1
k, π

2
k). (2)

The first criterium applied to a sample co-ordination scheme implies that E(c) equals the
right-hand side in (2) for a positive co-ordination and the left-hand side in (2) for a negative
co-ordination.

The second criterium uses the joint probability sampling design. Based on the Fréchet
bounds of p(s1i , s

2
j ) we have in (1)

∑

k∈U

∑

k∋s1i∩s
2

j

max(0, p1i + p2j − 1) ≤ E(c) ≤
∑

k∈U

∑

k∋s1i∩s
2

j

min(p1i , p
2
j ). (3)

The second criterium applied to a sample co-ordination scheme implies that E(c)
equals the right-hand side in (3) for a positive co-ordination and the left-hand side in (3) for
a negative co-ordination. To our knowledge, the second criterium has not been yet studied
in the literature.

The right-hand side in Expression (3) depends on the number of bi-samples containing a
unit k ∈ U, and it can be very large in practice (and thus never reached). To our knowledge,
it is not possible, however, to give a monotonic relationship between the two upper bounds:
the right-side in (2) and the right-side in (3).

Note that the methods proposed in the literature do not always achieve the proposed
criteria. The first criterium is achieved using the Keyfitz’s method (Keyfitz, 1951), Pois-
son sampling with permanent random numbers for each marginal design (Brewer et al.,
1972, 1984), and the sequential simple random sample without replacement (srswor) with
permanent random numbers (Ohlsson, 1995) in the case of stratified designs. The second
criterium can be achieved in very particular cases given in Section 3.2.

In what follows, we recall general properties to reach the first criterium, and we develop
conditions upon which the two criteria are equivalent.

3.1 General conditions for maximal/minimal co-ordination on unit level

Matei and Tillé (2005) call
∑

k∈U min(π1
k, π

2
k) the Absolute Upper Bound (AUB) and

say that maximal sample co-ordination occurs when equality holds in the right part of (2).
Similar,

∑
k∈U max(0, π1

k + π2
k − 1) is called the Absolute Lower Bound (ALB) and the

minimal sample co-ordination occurs when equality holds in the left part of (2). The fol-
lowing result summarizes theoretical conditions to reach the AUB and ALB, respectively,
for two fixed marginal designs, but arbitrary (for a proof, see Matei and Tillé, 2005).

Proposition 1 Let pij be the joint selection probability of two samples s1i and s2j , with

given marginal designs p1 and p2.

1. Let I = {k ∈ U |π1
k ≤ π2

k} be the set of ‘increasing’ units, and let D = {k ∈ U |π1
k > π2

k}
be the set of ‘decreasing’ units, with U = I ∪D, and I ∩D = ∅. The AUB is achieved iff

the following two relations are fulfilled for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , q} :



a) pij = 0, for all s1i and s2j for which (s1i \s
2
j ) ∩ I 6= ∅;

b) pij = 0, for all s2j and s1i for which (s2j\s
1
i ) ∩D 6= ∅.

2. Let Ĩ = {k ∈ U |π1
k + π2

k − 1 ≤ 0}, and let D̃ = {k ∈ U |π1
k + π2

k − 1 > 0}, with

U = Ĩ ∪ D̃, and Ĩ ∩ D̃ = ∅. The ALB is achieved iff the following two relations are fulfilled

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , q} :

c) pij = 0, for all s1i and s2j for which (s1i ∩ s2j ) ∩ Ĩ 6= ∅;

d) pij = 0, for all s1i and s2j for which U \
(
(s1i ∪ s2j ) ∩ D̃

)
6= ∅.

Remark 1 If the following conditions are fulfilled: (s1i \s
2
j )∩I = ∅ and (s2j\s

1
i )∩D = ∅,

for all s1i and s2j , i = 1, . . . ,m, j = 1, . . . , q it is possible to show that the AUB is also

reached (for a proof see Matei and Skinner, 2009).

3.2 Equivalence of the two criteria

The problem of interest is to see in which conditions the two criteria are equivalent. This
problem is considered here because, in general, one measures the performance of a co-
ordination method using only the theoretical bounds defined on unit level. Consider the
case of positive co-ordination.

Proposition 2 If the the right-hand in (2) is reached by a bi-design P, the AUB is smaller

or equal to the right-hand in (3).

Proof 1 Let k ∈ I. Following Proposition 1, point a), the AUB is reached if and only if

pij = 0, for all s1i and s2j for which (s1i \s
2
j ) ∩ I 6= ∅. We have

π1
k =

∑

k∋s1i

p1i =
∑

k∋s1i

q∑

j=1

pij =
∑

k∋s1i

(
∑

k∋s2j

pij +
∑

k 6∋s2j

pij) =
∑

k∋s1i∩s
2

j

pij +
∑

k∋s1i \s
2

j

pij =

∑

k∋s1i∩s
2

j

pij ≤
∑

k∋s1i∩s
2

j

min(p1i , p
2
j ). (4)

Similarly, using Proposition 1, point b), for all k ∈ D, we have

π2
k ≤

∑

k∋s2j∩s
1

i

min(p1i , p
2
j ). (5)

Finally ∑

k∈U

min(π1
k, π

2
k) =

∑

k∈I

π1
k +

∑

k∈D

π2
k ≤

∑

k∈I

∑

k∋s1i∩s
2

j

min(p1i , p
2
j ) +

∑

k∈D

∑

k∋s2j∩s
1

i

min(p1i , p
2
j ) =

∑

k∈U

∑

k∋s1i∩s
2

j

min(p1i , p
2
j ).

Remark 2 Obviously, the right-hand side in (3) is reached by a bi-design P if pij =
min(p1i , p

2
j ) for all s1i and s2j such that s1i ∩ s2j 6= ∅.

Remark 3 If the AUB is reached by a bi-design P, the AUB equals the right-hand side

in (3) if this bound is also reached (it follows from Expressions (4) and (5)).



Proposition 3 If the the right-hand side in (3) is reached by a bi-design P, the AUB is

larger or equal to the right-hand side in (3) if the following condition is fulfilled

∑

k∈I

∑

k∋s1i \s
2

j

pij +
∑

k∈D

∑

k∋s2j\s
1

i

pij ≥ 0.

Proof 2 Let k ∈ I. We have

π1
k =

∑

k∋s1i

p1i =
∑

k∋s1i

q∑

j=1

pij =
∑

k∋s1i

(
∑

k∋s2j

pij +
∑

k 6∋s2j

pij).

Let k ∈ D. We have

π2
k =

∑

k∋s2j

p2j =
∑

k∋s2j

m∑

i=1

pij =
∑

k∋s2j

(
∑

k∋s1i

pij +
∑

k 6∋s1i

pij).

If the the right-hand side in (3) is reached, it follows that

∑

k∈U

min(π1
k, π

2
k) =

∑

k∈I

π1
k +

∑

k∈D

π2
k =

∑

k∈I

∑

k∋s1i∩s
2

j

min(p1i , p
2
j ) +

∑

k∈D

∑

k∋s2j∩s
1

i

min(p1i , p
2
j ) +

∑

k∈I

∑

k∋s1i \s
2

j

pij +
∑

k∈D

∑

k∋s2j\s
1

i

pij =

∑

k∈U

∑

k∋s1i∩s
2

j

min(p1i , p
2
j ) +

∑

k∈I

∑

k∋s1i \s
2

j

pij +
∑

k∈D

∑

k∋s2j\s
1

i

pij ≥
∑

k∈U

∑

k∋s1i∩s
2

j

min(p1i , p
2
j ).

If ∑

k∈I

∑

k∋s1i \s
2

j

pij +
∑

k∈D

∑

k∋s2j\s
1

i

pij > 0

the AUB is larger then the right-hand side in (3).

4. Practical evaluation of a method to reach the maximal/minimal sample

co-ordination on unit level

In this section we study the performance of the method developed by Matei and Skinner
(2009) to reach the maximal/minimal sample co-ordination on a real data set. This method
can satisfy the first criterium given in Section 3. The example of this study uses Swiss
municipalities data set which is available in the R ‘sampling’ package (Tillé and Matei,
2012). It is a data set having 2896 observations and 22 variables. This data set is the
official register of Swiss municipalities. Swiss Federal Statistical Office uses this register
for its Environmental quality and behavior survey.

Before giving the application, we briefly describe here this method for the positive co-
ordination (the negative coordination is similar). Matei and Tillé (2005) proposed to use
the Iterative Proportional Fitting (IPF) procedure (Deming and Stephan, 1940) to obtain a
joint probability design pij which fulfill the conditions a) and b) given in Proposition 1. Let
P = (pij)m×q be initially any matrix of m × q dimension. Using Proposition 1, matrix
P is modified by assigning zero values to some pij , for example by applying p1 and p2

independently, i.e. pij = p1(s1i )p
2(s2j ). Now, the total of row i and the total of column j

of P are different from the given values p1(s1i ) and p2(s2j ) and the constraints of the joint
probabilities pij are not respected, i.e.

∑q
j=1 pij 6= p1(s1i ) ,

∑m
i=1 pij 6= p2(s2j ). To respect



these constraints, the non-zero values of P are modified using the IPF procedure. The IPF
procedure iteratively modifies the matrix P and is applied until convergence is reached. The
final matrix P has the property that

∑m
i=1

∑q
j=1 cijpij equals the AUB, if the latter can be

achieved. The procedure is not constructive in the case where AUB cannot be achieved.
The AUB cannot be achieved if Proposition 1 gives only zero values to the P elements for
some row(s) i′ and/or column(s) j′ since the corresponding p1(s1i ′) and p2(s2j ′) are strictly
positive. In terms of controlled selection method, these are ‘nonpreferred’ samples, and
their influence should be reduced. Matei and Skinner (2009) extended the method given
by Matei and Tillé (2005) and develop a method based on the controlled selection method
to reduce the influence of these ‘nonpreferred’ samples in the case where the AUB is not
achieved using the previous method. The extended method uses the linear programming
implementation of the controlled selection method (Rao and Nigam, 1990). Contrary to
the transportation method and the method of Matei and Tillé (2005), this approach does
not necessarily maintain the constraints that the marginal sample designs are fixed. The
extended method computes new selection probabilities p1∗ and p2∗, such that the marginal
constraints are satisfied, i.e.

q∑

j=1

pi ′j = p1∗( s
1
i ′) = 0 and

m∑

i=1

pij ′ = p2∗( s
2
j ′) = 0,

and the inclusion probabilities π1
k, π

2
k are preserved.

Let S1
∗ = {s1i ⊆ S1 | pij = 0, for all j = 1, . . . , q} and S2

∗ = {s2j ⊆ S2 | pij =
0, for all i = 1, . . . ,m}. Consider the following problem

min
pt∗

∑

st
ℓ
⊆St

∗

pt∗(s
t
ℓ), (6)

subject to ∣∣∣∣∣∣∣∣

∑
k∋st

ℓ

st
ℓ
⊆St

∗

pt∗(s
t
ℓ) = πt

k, k ∈ U,

∑r
ℓ=1 p

t
∗(s

t
ℓ) = 1,

pt∗(s
t
ℓ) ≥ 0, ℓ = 1, . . . , r,

where t = 1, 2 and r = m if t = 1 and r = q if t = 2.
For t = 1, Problem (6) is used to reduce the probability of selecting samples s1i ′ for

which pij = 0, for all j = 1, . . . , q. Similarly, for t = 2, Problem (6) is used to reduce the
probability of selecting samples s2j ′ for which pij = 0, for all i = 1, . . . ,m. A solution
to the linear programming problem (6) always exists. If the value of the objective function
equals zero, the AUB is achieved. In the case of simple random sample without replace-
ment, Lahiri and Mukerjee (2000) developed a method to reduce the size of Problem (6)
based on equivalence classes. Another approach useful for proportional to size sampling
designs is to use quadratic programming with the same constraints as in Problem (6) (see
Tiwari et al., 2007); the result is a nearest proportional to size sampling design.

Several examples using the Swiss municipalities data set are given below. Each popula-
tion represents a stratum, and sample co-ordination takes place stratum by stratum. Samples
in the two surveys are drawn simultaneously. Due the problem complexity (enumeration of
all possible samples and linear programming), the examples below are restricted to small
strata and small sample sizes. Two cases are taken into account: no changes in strata and
different stratification in the two surveys.

1. No changes in strata: both strata are defined by the canton CT variable, giving 26
strata of sizes between 1 and 150. Consider the stratum 6 (canton of Obwald) for



both surveys, where the stratum size is equal to 7. We consider simple random sam-
pling without replacement in both surveys, using the sample sizes n1 = 4, n2 = 3,
respectively. The total number of samples in the first survey is 35. The same number
of samples is available for the second survey. The vectors of inclusion probabili-
ties are π

1 = (π1
k)

′
7 = (0.57)′7 and π

2 = (π2
k)

′
7 = (0.43)′7. The set D contains

all the seven units, while the set I is empty. Proposition 1 allows the construc-
tion of the matrix P35×35 which does not have any zero row and zero column.
The IPF procedure is successfully applied on the matrix P resulting in the matrix
P̃ = (p̃ij)35×35 which fulfills the given margins p1 = (p1(s1i ))

′
35 = (0.028)′35

and p2 = (p2(s2j ))
′
35 = (0.028)′35 and the expected overlap

∑
i

∑
j cij p̃ij equals∑

k∈U min(π1
k, π

2
k) = 3.

2. Different stratification: The units in the first survey are stratified using the variable
canton; the units in the second survey are stratified according to canton and munic-
ipality size, altogether 78 strata with 2896 units. The last variable is a categorical
one (three categories, small, medium and large) and is derived from the number of
inhabitants of each municipality.

(a) We have considered for the first survey the stratum 15 (canton of Appenzell
Ausserrhoden) containing 20 units. For the second survey, the canton 15 and
small size municipalities are cross-stratified; the cross-stratum population size
is 18. Thus, two units change stratum. We consider simple random sampling
without replacement for both surveys, using the following sample sizes n1 =
4, n2 = 2, respectively. The total number of samples in the first survey is 4845
versus 153 in the second one. The vectors of inclusion probabilities are π1

k =
(0.2)′20 and π2

k = (0.11)′18. The population U = U1 ∪U2 consists in 20 units.
The set I is empty for this example, while the set D contains all 20 units. By
applying the procedure given before the matrix P4845×153 is computed; it does
not have any zero row and zero column. The IPF procedure is successfully
applied on the matrix P resulting in the matrix P̃ = (p̃ij)4845×153 and the
expected overlap

∑
i

∑
j cij p̃ij equals

∑
k∈U min(π1

k, π
2
k) = 2.

(b) Stratum 4 (canton of Uri) with 20 units was considered for the first survey. For
the second survey, the cell cross stratum was determined by canton 4 (canton
of Uri) and small size municipalities; the cross-strata population size is 10.
Thus, 50% of the units change stratum. As before, simple random sampling
without replacement was used in both cases. The number of total samples of
size 4 in the first survey was 4845, while for the second survey a number of
120 samples of size 3 was computed. The vectors of inclusion probabilities
π

1
k = (0.2)′20 and π

2
k = (0.3)′10 determine the sets I and D, each one of size

10. Using Proposition 1, the matrix P4845×120 was computed. The matrix con-
tains 210 zero rows, but no zero columns. Problem (6) was applied to diminish
the importance of the 210 non-preferred samples in the first survey. The linear
programming gives a solution with 20 nonzero selection probabilities p1∗(s

1
i ).

The corresponding matrix is now P20×120. The IPF procedure was success-
fully applied on this matrix, resulting in the matrix P̃ = (p̃ij)20×120. Finally,
the expected overlap

∑
i

∑
j cij p̃ij =

∑
k∈U min(π1

k, π
2
k) = 2.

(c) A more complicated example is given bellow. We consider the same setting as
in Example (a), but now we take n2 = 3. The total number of possible samples
in the second survey is 816. The corresponding vector of inclusion probabil-
ities is π2

k = (0.16)′18. The set I is empty, while the set D contains all the



20 units. The matrix P4845×816 is computed using Proposition 1; it contains
153 zero rows and there is no single column in P consisting of zeros. Problem
(6) was applied to reduce the importance of the 153 non-preferred samples.
The linear programming reduced very much the sample support of the first
survey, determining only 20 samples s1i with non-zero probabilities. The cor-
responding matrix P20×816 contains 769 zero columns. Problem (6) was again
applied to reduce now the importance of the 769 non-preferred samples s2j in
the second survey. The resulting probability sampling p2∗ contains 17 non-zero
values. Now, the current matrix P20×17 obtained using Proposition 1 contains
five zero rows and four zero columns. The third application of the linear pro-
gramming for the five non-preferred samples (on rows) does not eliminate any
required sample. A similar result is obtained in the fourth application of the
linear programming to eliminate the four non-preferred samples (on columns).
The algorithm stopped here since the current matrix P20×17 with five zero
rows and four zero columns cannot be any more modified; consequently the
IPF procedure cannot be applied. The final marginal probabilities p1∗ and p2∗
are given in Table 1. For this example, the AUB cannot be reached. To ob-
tain, however, a solution the elements of the zero rows and zero columns were
replaced by a very small value (here 2.2 × 10−16), and the IPF procedure
was successfully applied, resulting in the matrix P̃ = (p̃ij)20×17 which ver-
ify the marginal probabilities given in Table 1. Finally, the expected overlap∑

i

∑
j cij p̃ij = 2.204. Yet,

∑
k∈U min(π1

k, π
2
k) = 3.

If we come back to the initial matrix P4845×816 and replace the 153 null rows
by 2.2×10−16, we obtain (after the IPF application) the value

∑
i

∑
j cij p̃

′
ij =

2.916, which is much closer to the AUB. In this case, the application of the
linear programming is not desirable, since a simpler application of the IPF
procedure gives a better result. More research should be done to develop a
controlled selection method which selects only the nonpreferred samples.

Table 1: Final marginal probabilities p1∗ and p2∗ for Example (c)

p1∗ 0.03415 0.00488 0.00488 0.05366 0.09919 0.08293
0.00325 0.08455 0.03740 0.01789 0.02114 0.07642
0.02927 0.09431 0.10244 0.05366 0.05366 0.04878
0.04878 0.04878

p2∗ 0.02500 0.02500 0.11458 0.05208 0.05208 0.06250
0.06250 0.04167 0.04167 0.08333 0.08333 0.11667
0.00208 0.07083 0.07083 0.04792 0.04792

5. Conclusions

For the problem of two sample co-ordination, we have considered theoretical bounds of
the expected overlap defined on unit level and on marginal probability sampling designs’
level. We have also discussed conditions to reach these bounds in the case of positive co-
ordination. The bounds constructed on unit level seem to be easier to reach in practice than
the marginal bounds, which can be very large. In general, one measures the performance



of the methods proposed in the literature using the theoretical bounds defined on unit level.
Yet, there are particular cases where the bounds constructed on marginal sampling level are
smaller than those on unit level, and it seems necessary to be also considered.

A method constructed to reach the bounds on unit level was developed by Matei and
Skinner (2009). In the second part of the paper, the performance of this method has been
investigated using a real scenario survey. In many cases, the method reach the theoretical
bounds defined on unit level. Sometimes, however, it is better to search for sub-optimal
solutions (see the last example), where these bounds are not reached. The method becomes
impractical when the number of all possible samples is very large. For this case, the pro-
cess of enumeration of all possible samples and definition of the constraints in the linear
programming become infeasible in practice. Consequently, the method is useful to solve
moderate-sized sample co-ordination problems.
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Ohlsson, E. (1995), “Coordination of samples using permanent random numbers”, in Business Survey Methods,

eds. Cox, B. G., Binder, D. A., Chinnapa, B. N., Christianson, A., Colledge, M. J., and Kott, P. S., chapter
9, Wiley, pp. 153–169.

Pathak, P. K. and Fahimi, M. (1992), “Optimal integration of surveys”, in Current issues in statistical inference:

Essays in honor of D. Basu, eds. Ghosh, M. and Pathak, P. K., Hayward, CA: Institute of Mathematical
Statistics, pp. 208–224.

Rao, J. N. K. and Nigam, A. K. (1990), “Optimal controlled sampling designs”, Biometrika, 77, 807–814.
Tillé, Y. and Matei, A. (2012). sampling: Survey Sampling. R package version 2.5.
Tiwari, N., Nigam, A. K., and Pant, I. (2007), “On an optimal controlled nearest proportional to size sampling

scheme”, Survey Mathodology, 33(1), 87–94.


