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Abstract

Multivariate outlier detection based on the Mahalanobis dis-
tance with the BACON-EEM algorithm, the TRC algorithm
and the ER algorithm is presented and imputation of outliers
and further missing values is discussed. The methods are illus-
trated with a data set on Swedish municipalities. The relation
between outliers, influential observations and selective editing
is explored. Finally robust multivariate imputation with sur-
vey data is discussed.

Keywords: Sampling, robustness, selective editing, imputa-
tion, sensitivity function, winsorization.

1 Introduction

Outliers in business surveys are common due to the structure
of the economy: many small enterprises, some medium en-
terprises, and few large enterprises. This is reflected in the
common sample designs for business surveys where large en-
terprises are often in take-all strata while small enterprises
have low sampling fractions. For a single variable which is
well correlated with the size of the business, often measured
by number of employees, outlier problems are attenuated and
tractable with the basic model of a ratio estimator which is
robustified against outliers in residuals (See (Gwet and Rivest
1992) and (Hulliger 1999)). However, a coherent approach
over all variables of interest must be considered from a multi-
variate point of view.

When enterprises have to be analyzed more in depth, mul-
tivariate outliers become even more important. For example,
when the relation between investments into different types of
measures against pollution is investigated, the correlation be-
tween these investments and the size of the enterprise may be-
come rather weak and the correlation between different types
of investment may be negative.

Multivariate robust estimators and multivariate outlier de-
tection (MOD) have been developed in statistics for years
now but the problems are still formidable. In public statisti-
cal agencies the focus has been traditionally more on detec-
tion of multivariate outliers because the separation from treat-
ment permits the use of clerical work for verification of out-
liers and subsequent imputation. The particular problems of
survey data have not been addressed until recently.

Among the first applications, Statistics Canada uses a pro-
jection pursuit method for MOD (Franklin, Thomas, and
Brodeur 2000). The EUREDIT project of the EU has brought
forward several MOD methods which are capable of deal-

ing with data from sample surveys and missing values (EU-
REDIT 2003), (Charlton 2004). The transfer of these meth-
ods into applications is slow but first experiences have been
made. Among others the Transformed Rank Correlations al-
gorithm has been tested with data from the Environment Pro-
tection Expenditure Survey and from the Survey on Hospitals
in Switzerland.

Survey data is often incomplete. An outlier detection
method which cannot cope with incomplete data is not ap-
propriate when missing values occur. Few methods have been
developed that cope with missing values.

Variance estimation for robust estimators which can cope
with incomplete survey data is still in its infancy. Some ex-
perience with linearized variance estimators for univariate ro-
bust estimators exist (Hulliger 1999). For MOD with Trans-
formed Rank Correlations followed by regression imputation
variance estimation by multiple imputation has shown good
performance (Hulliger and Münnich 2006).

2 Multivariate Outlier Detection

The majority of methods for multivariate outlier detection
is based on the Mahalanobis distance with robust estimates
for the mean and covariance. The combination of the EM-
algorithm with a robust estimation in the maximisation step
seems to be the first method which copes with missing data
(Little and Smith 1987). The authors called their algorithm
ER-algorithm. The robust estimator starts from a non-robust
mean and covariance estimator and adds one weighting step,
i.e. does the first iteration which would lead to an M-estimator.
However, the non-robust start implies that the resulting es-
timator is not robust. Furthermore the breakdown point of
multivariate M-estimators is relatively low. This may be the
reason that other researchers have used Minimum Covariance
Determinant estimation in the maximisation step of the EM-
algorithm (Cheng and Victoria-Feser 2000). Their algorithm
seems computationally so heavy that it was not applied in
practice.

The projection pursuit method of Statistics Canada is built
on a robust version of principal component analysis. A limita-
tion of this approach is that for the projection step a full data
matrix is needed and therefore it seems difficult to adapt the
method for missing values.

The BACON-EEM algorithm is based on the forward
search algorithm BACON (Billor, Hadi, and Vellemann 2000).
BACON starts with an outlier-free sub-sample and adds good
points as long as possible. To cope with missing values
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in survey samples the EM-algorithm was extended to the
EEM-algorithm, which works with the estimate of the suf-
ficient statistics in the expectation step. The combination,
called BACON-EEM is robust since the outer loop of the BA-
CON algorithm protects the non-robust EEM inner loop. The
BACON-EEM is comparably fast, tolerates a considerable
amount of missingness and, at least empirically, showed a re-
markably high breakdown point (Béguin and Hulliger 2003).

Transformed Rank Correlations (TRC) is a non-iterative al-
gorithm which is based on the bivariate Spearman Rank Cor-
relations that are assembled into a preliminary covariance ma-
trix (Béguin and Hulliger 2004). To ensure positive definite-
ness an orthogonal transformation into the eigen-space and re-
estimation of the center and covariance by the median and me-
dian absolute deviation is used. To cope with missing values
a simple robust regression imputation with the best available
regressor yields an ad hoc imputation.

Imputation under the multivariate normal model based on
the non-robust mean and covariance calculated with the orig-
inal EM-algorithm, followed by the application of the Min-
imum Covariance Determinant method (Rousseeuw and van
Driessen 1999) without consideration of the sampling weights
was used as a comparison base line. We call this algorithm
GIMCD (Gaussian Imputation with Minimum Covariance De-
terminant).

A few algorithms have been adapted to survey data which
are not based on the Mahalanobis distance. One is a multivari-
ate version of a weighted robust tree algorithm, called WAID
(Chambers, Hentges, and Xinqiang 2004). Outliers can be de-
tected because they obtain a low overall weight over the tree-
nodes in which they are located. Another non-Mahalanobis
distance algorithm is based on an epidemic in a point cloud
where the epidemic infects the outliers late (Béguin and Hul-
liger 2004).

2.1 Data and results for MOD

The MU284 data set from (Särndal, Swensson, and Wretman
1992) contains data about Swedish municipalities. We use the
variables population in 1975 and population in 1985 (P75 and
P85), revenue from municipal taxes 1985 (RMT85), number of
municipal employees 1984 (ME84) and real estate value 1984
(REV84). We assume the data is a stratified sample where
municipalities with P75<20 have been sampled with rate 10%
while the larger municipalities form a take all stratum. A pre-
liminary analysis shows that a good model can be seen for
the per capita figures, i.e. we use RMT85/P85, ME84/P85 and
REV84/P85 and denote these per capita variables by lower
case letters rmt85, me84 and rev84. A second look at the data
suggests a logarithmic transformation for the auxiliary vari-
able P75 and for rev84. We will call these log-transformed
variables lp75 and lre84 respectively.

The three largest cities of Sweden are outliers compared
with the other municipalities in any sense. We exclude them
from the data set in order to see finer details. The resulting
data set is called MU281.

We include the auxiliary variable lp75 when doing outlier
detection and treatment. Of course we raise the dimensionality

of the problem by doing so. But population size is the variable
on which the design is built and it is an important explanatory
variable even after the log transformation.

To determine representative outliers the data set without
missing values is augmented by adding 9 replicates of the stra-
tum of smaller enterprises. Then a MCD algorithm is run on
this artificial population and the 10% of the artificial popu-
lation with largest Mahalanobis distance are declared repre-
sentative outliers. In the original MU281 sample there are 34
representative outliers.

Missingness at random is created with probabilities that
are decreasing for increasing P75. The probabilities vary ac-
cording to a logistic model. For each value an independent
bernoulli trial with the missingness rate of the observation is
carried out to determine whether a value is set to missing.

Non-representative outliers are determined with a prob-
ability depending on P75 again. For P75<10 the non-
representative outlier rate is set to pnr,1 = 0.10 and for P75≥
10 to pnr,2 = 0.20 (low amount of non-representative out-
liers) or to pnr,1 = 0.25 and pnr,2 = 0.35 or pnr,1 = 0.3
and pnr,2 = 0.4 respectively (middle and high amount of non-
representative outliers). Representative outliers which are de-
termined non-representative outliers, too, remain representa-
tive outliers.

The outlier values are set by a simple linear regression
model y′ = a + by with a = 8, 50, 2.4 and b = 0.2, 0.1, 0.2
for rmt85, me84 and lre84 respectively. This is a contamina-
tion which is a concentrated point cloud close to the bulk of
the data.

With 24.8% missingness rate the parameter for the
BACON-EEM algorithm must be set to α = 0.001 or smaller
if no non-representative outliers are present. Otherwise the
detection of representative outliers is not good (9 of the 34 de-
tected with α = 0.01.) On the other hand for missingness rate
10.7% α = 0.001 yields only 18 detected outliers compared
with 24 when α = 0.01. Thus the tuning of BACON-EEM is
relatively important.

Table (1) shows the number of representative and non-
representative outliers detected by the methods ER, BACON-
EEM, TRC and GIMCD. The number of outliers is equal
for the methods (sum of number of representative plus non-
representative outliers). The best method for each situation
in terms of number of outliers detected is bold-faced. There
is no method best in all situations. ER seems to cope rel-
atively well with the representative outliers but not with the
non-representative outliers. GIMCD is relatively good for low
amount of non-representative outliers. TRC is remarkably
good in many situations. BEM is usually close to TRC and
better for high missingness rate and middle amount of non-
representative outliers. In the most difficult situation in the
last line with high missingness rate and high amount of non-
representative outliers all methods have problems, the best
method, TRC, detecting a moderate 55% of the outliers.

3 Influential Observations and Outliers

In a business survey we would like to know and control the im-
pact of an observation on the results of the survey. The main

Papers presented at the ICES-III, June 18-21, 2007, Montreal, Quebec, Canada

1284



Table 1: Number of (rep, non-rep) outliers detected
miss-rate n. of non-reps ER BEM TRC GIMCD
10.7 0 18 24 27 20
10.7 51: low 22,21 19,47 21,48 20, 51
24.8 0 19 17 13 14
24.8 51: low 22,20 23,45 20,48 16,48
30.1 0 21 20 27 16
30.1 51: low 21,21 16,45 32,12 17,47
30.1 84: middle 24,32 24,61 33,32 28,15
30.1 98: high 27,31 27,31 33,39 26,27

For 0 non-rep. outliers only representative outliers can be detected.

results of the survey are estimators or, more generally, statis-
tics. However, there are many possible statistics, including
variance estimators, ratios, correlation coefficients, quantiles,
test statistics and derived measures like p-values and confi-
dence intervals. There are so many possible statistics that we
cannot check for every statistic what the impact of every ob-
servation is. This is the reason why we try to solve the seem-
ingly simpler problem to check whether an observation is an
outlier. An observation will be declared as an outlier when it
is compared with a model. The implicit trick is to assume that
whatever observation is compatible with the model will not
have a high influence for any statistic. Under this assumption
it is simpler to detect and treat outliers than to check influ-
ential observations for every statistic. However, the outlier-
model reflects a choice of statistics and it may well be that
for statistics which are not reflected well in the outlier-model
there are influential observations which are not detected. This
is particularly the case when the outlier-model is defined in
transformed variables, e.g. log-transformed as with lrev84 in
the Swedish Municipality Data MU281. Statistics based on
the untransformed variables may not be protected from influ-
ential observations then. Therefore we advocate to look for
influential observations in addition to detection and treatment
of outliers. In the following we discuss a simple measure of
influence.

The influence function (Hampel 1974) focusses on a statis-
tic T (F ) as a functional at the distribution F and its behav-
ior under an infinitesimal change in F . The statistic may be
multi-parameter and the distribution may be multivariate, i.e.
T ∈ Rd and Y ∼ F, Y ∈ Rp. For finite populations we
may look at the population distribution function FU which is
estimated by the (sampling weighted) empirical distribution
function FS . A sampling analogue of the empirical influence
function is the sensitivity curve

SC(x;T, yS , i) = n
(
T (yS\i, x)− T (yS\i)

)
. (1)

Here T (yS\i, x) is the statistic T evaluated at the full sam-
ple when the value yi of observation i is replaced by the func-
tion argument x. The statistic T evaluated at the sample when
observation i is considered a missing unit is T (yS\i). Of
course, in practice the definition and calculation of T (yS\i)
may be far from simple, e.g. involving calibration or response
propensity modeling. We may approximate T (yS\i) by a
simpler expression involving re-weighting but some care is

needed to ensure that the influence is still described correctly.
For finite population sampling the sensitivity curve depends

not only on the value of x but also on the particular observation
i. For the Horvitz-Thompson estimator this dependence from
the sample is expressed with the sampling weight (see below).
However, for other estimators the dependence on i may be
more complicated, for example when we deal with a rotational
panel and each unit has its own inclusion history.

The sensitivity curve of the Horvitz-Thompson estimator
T =

∑
i∈S wiyi with the inverse of the inclusion probabili-

ties as weight is

SC(x;HT, yS , i)

= n

∑
S\i

wjyj + wix−
∑

S wj∑
S\i wj

∑
S\i

wjyj


= nwi(x− ŷi), (2)

where ŷi =
∑

S\i wjyj∑
S\i wj

is the Hajek-estimator of yi based on

the reduced sample S \ i. In other words ŷi is an imputed
mean.

The basic expression for the sample sensitivity curve (1)
will be different for other estimators and it may be much more
complicated. For example the Yates-Grundy-Sen variance es-
timator will involve the double inclusion probabilities. When
multivariate characteristics are involved like the correlation
coefficient the sensitivity curve will be a function of all the
variables. It may be difficult to find a closed form expression
for the sensitivity curve of non-linear statistic like the Spear-
man rank-correlation though its value may be quite simple to
calculate numerically.

We call the value of SC(yi;T, yS , i) the impact of observa-
tion i on a statistic T . Of course the impact is a "leave-one-
out" score like Cook’s distance in regression.

Outlier measures and impact measures often correlate
highly. This is the reason why outlier detection and treatment
is used as a substitute for limiting the influence of observa-
tions on particular statistics. However, outlier detection and
treatment is no guarantee for limiting the impact on all possi-
ble statistics!

The impact of the observations in MU281 on the Horvitz-
Thompson estimator for the total of variable rev84 of MU281
is shown in Figure 1. The weights of the two strata determine
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Figure 1: MU281: Impact on Horvitz-Thompson estimator for rev84

the slope of the underlying sensitivity curves, which is linear
in our case.

A different picture can be seen for the impact on a ro-
bust version of the Horvitz-Thompson estimator (see Figure
2). The robustification is based on a univariate robustness
weight based on the median and median absolute deviation
of a specific variable. The impact of the extreme observations
is bounded above and below. However, if the model to de-
termine the outliers is fitted on a logarithmic scale (lre84) and
robustness weights are derived accordingly, the final (robustly)
weighted mean has impacts as shown in Figure 3. Obviously
the impact is no more bounded though it is much smaller than
for the non-robust Horvitz-Thompson estimator (Figure 1).
This shows that influential observations and outliers are not
the same because outliers depend on a model, while influen-
tial observations depend on a statistic.

4 Selective Editing

The impact function (2) at x = yi of the Horvitz-Thompson
estimator contains the sample based estimate ŷi. If ŷi can be
replaced by a value derived from previous surveys or from
other external data, with ỹi say, then the sensitivity curve and
the impact can be calculated individually. In other words when
replacing ŷi with ỹi the impact becomes a score function for
selective editing (Lawrence and McKenzie 2000) and can be
applied in micro-editing. Of course the score functions of se-
lective editing have been developed with several criteria in
mind (Latouche and Berthelot 1992) and consider combina-
tions of score functions or impacts. Nevertheless, a basic in-
gredient of the score functions of selective editing often are
approximations to the impact of the Horvitz-Thompson esti-
mator or ratios and linear combinations of it. The strength of
selective editing is that it can be applied at the micro level, i.e.

for each observation independently. We do not need the com-
plete sample to calculate the score function. The sensitivity
score of a statistic is clearly a macro level approach since we
need the complete sample to calculate it.

An obvious drawback of selective editing is that the score
function reflects a particular choice of one or a few statis-
tics. This may be the most important statistic like the Horvitz-
Thompson estimator. Nevertheless, selective editing with a
particular score function will not prevent a high impact on
other statistics than the ones represented in the score function.

In practice the theoretical goal of knowing and controlling
the impact of any observation on any possible statistics is not
attainable. The way to proceed is a good and affordable com-
bination of the three actions

• Selective editing with score function detection.

• Outlier detection and treatment (univariate, multivariate,
with appropriate models)

• Investigating the impact scores of important statistics.

Note that the latter two actions are macro-editing and impu-
tation tasks while selective editing is a micro-editing task.

5 Robust multivariate imputation

The multivariate outlier detection methods that are based on
a robust covariance matrix and the Mahalanobis distance lead
to a direct model based imputation, using the same robust co-
variance matrix.

Observations are declared outliers if their Mahalanobis dis-
tance is larger than a constant c. The imputation for an obser-
vation xi with Mahalanobis distance di > c is

x̂i = m + (xi −m)
c

di
. (3)
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Figure 2: MU281: Impact on Horvitz-Thompson estimator for rev84, robustified on rev84

The squared Mahalanobis distance of the winsorized value
x̂i to the robust mean m using a robust covariance C is

d̂2
i = (x̂i −m)>C−1(x̂i −m)

=
c

di
(xi −m)>C−1(xi −m)

c

di

= c2. (4)

Thus the above imputation correponds to winsorizing the Ma-
halanobis distance of the vector xi −m to c while leaving its
direction unchanged.

If there are missing values in the outliers then the observed
variables of the outlier may be winsorized in the same way
as above but with the mean and covariance only referring to
the sub-space of observed values. Note that when calculat-
ing the Mahalanobis distance with missing values a factor p/q
is applied to compensate at least partially for the number of
missing dimensions p− q.

Once the outliers are winsorized the missing values may
be imputed under the multivariate normal model with mean
m and covariance C. A missing value is imputed by a fitted
value under a regression model with all variables with present
values as predictors. We may, of course, add a random error
term to this imputation. It seems more natural to winsorize
before the imputation to avoid the imputation of outliers. If
the same robust mean and covariance are used for imputation
and winsorization the imputation may be carried out first. The
two versions may lead to different results because the Maha-
lanobis distance with missing values usually differs from the
Mahalanobis distance with imputed values.

A nearest neighbor algorithm based on the Mahalanobis dis-
tance may be applied whether there are missing values or not.
The outliers should be excluded from being donors to prevent
outlier imputation. The robust covariance matrix and mean of
the outlier detection phase may be used directly. Alternatively

the mean and covariance may be re-estimated using only the
robustness weights of the preceding outlier detection. This
may be useful when further editing or even call-backs to re-
spondents have clarified outliers or when the outlier threshold
should be raised to change less observations than suggested by
the outlier detection.

Re-estimation of m and C has been used in the EUREDIT
project for the POEM algorithm (EUREDIT 2003). How-
ever, it turned out that estimating a positive definite covari-
ance matrix is problematic. A nearest neighbor algorithm im-
plemented at Swiss Federal Statistical Office uses the robust
covariance matrix of the TRC algorithm for outlier detection.

To show the effect of imputation when outliers are present
estimations of means and correlations for the MU281 data are
presented in Table 2 and 3. Missingness was introduced at
random (See Section 2). The TRC algorithm was used for
outlier detection and imputation. For the three variables with
missing values and outliers, rmt85, me84 and lre84, the means
after imputation lie closer to the means of the complete and
winsorised data than the raw and raw winsorised data. For
the imputed data the correlation of rmt85 with me84 is higher
than for the raw winsorised data and differs more from it than
for the raw and raw winsorised data. The correlation between
rmt85 and lre84 with imputed data is roughly half the correla-
tion with raw winsorised data. Winsorisation and imputation
move the correlation in the same direction. The correlation
between me84 and lre84 is reduced to nearly 0 by the win-
sorisation of the complete data. The correlation of the raw
winsorised and the imputed data follow this move to zero and
even a slightly negative value.
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Figure 3: MU281: Impact on Horvitz-Thompson estimator for rev84, robustified on lrev84

Table 2: MU281 data: Estimation of population mean
data rmt85 me84 lre84
complete 6.92 49.86 2.061
complete winsorised 6.90 49.53 2.044
raw 6.94 49.97 2.062
raw winsorised 6.93 49.80 2.049
imputed 6.91 49.70 2.047

Table 3: MU281 data: Estimation of correlations
data rmt85,me84 rmt85,lre84 me84,lre84
complete 0.630 0.151 0.182
compl. wins. 0.624 0.159 0.005
raw 0.625 0.120 0.130
raw wins. 0.627 0.098 0.022
imputed 0.671 0.083 -0.036

6 Conclusions

BACON-EEM and TRC are multivariate outlier detection al-
gorithms which can cope with incomplete survey data. Gaus-
sian Imputation followed by Minimum Covariance Determi-
nant outlier detection performs remarkably well and deserve
more research. There is a limit of missingness and outlying-
ness where the methods cannot cope anymore.

The scores of selective editing often are particular instances
of impacts: Selective editing cannot protect all possible statis-
tics. Outliers and influential observations do not necessarily
coincide, in particular not, when the model involves transfor-
mations. It is necessary to check the impacts on the statistic of
interest during macro-editing, even if selective editing was ap-
plied in micro-editing and outlier detection in macro-editing.

More experience is necessary with multivariate imputation

in the presence of outliers. Preliminary results show that the
behavior is not always as expected. In addition, variance esti-
mation after outlier detection and imputation must be investi-
gated further.
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