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Abstract

In survey sampling, Taylor linearization is often used
to obtain variance estimators of calibration estimators
of totals and nonlinear finite population parameters. It
is generally applicable to any sampling design, but it
can lead to multiple variance estimators that are
asymptotically design unbiased under repeated
sampling. The choice among the variance estimators
requires other considerations such as (i) approximate
unbiasedness for the model variance of the estimator
under an assumed model, and (ii) validity under a
conditional repeated sampling framework. Demnati
and Rao (2004) proposed a new approach to deriving
Taylor linearization variance estimators that leads
directly to a unique variance estimator that satisfies
the above considerations for general designs. Demnati
and Rao (2002) considered the case of missing
responses when adjustment for complete nonresponse
and imputation for item nonresponse are used.
Demnati and Rao (2003) extended the work to deal
with longitudinal surveys which lead to dependent
observations and to multiple weights on the same
element. They considered a variety of longitudinal
sampling designs, covering panel surveys, household
panel surveys as well as rotating surveys. Demnati
and Rao (2005) studied total variance estimation in
the context of finite populations assumed to be
generated from  superpopulation models and
analytical inferences on model parameters are of
interest. If the sampling fraction is small, then the
sampling variance captures almost the entire variation
generated by the design and model random processes.
However, when the sampling fraction is not
negligible, the model variance should be taken into
account in order to construct valid inferences on
model parameters under both randomization
processes. In this paper, we give a brief account of
the Demnati-Rao method for variance estimation. We
also present simulation results on total variance
estimation and some extensions.
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1. Introduction

Taylor linearization is a popular method of variance
estimation for complex statistics such as ratio and
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regression  estimators and logistic regression
coefficient estimators. It is generally applicable to
any sampling design that permits unbiased variance
estimation for linear estimators, unlike a resampling
method such as the jackknife, and it is
computationally simpler than the Ilatter method.
However, it can lead to multiple variance estimators
that are asymptotically design unbiased under
repeated sampling. The choice among the variance
estimators, therefore, requires other considerations
such as (i) approximate unbiasedness for the model
variance of the estimator under an assumed model,
and (ii) validity under a conditional repeated
sampling framework. For example, in the context of
simple random sampling and the ratio estimator,

I?R =(y/x)X, of the population total Y, Royall and

Cumberland (1981) showed that a commonly used
linearization variance estimator

9, =N’(n"'=N")s’ does not track the conditional

MSE of Y, . given X, unlike the jackknife variance
estimator 4,. Here y and X are the sample means,
X is the known population total of an auxiliary
variable x, s’ is the sample variance of the residuals
e, =y, —(¥/x)x, and (n,N) denote the sample and
population sizes. By linearizing the jackknife

variance estimator, &,, we obtain a different

linearization variance estimator, 9, =(X/x)’9, ,
which also tracks the conditional variance as well as
the unconditional variance, where X = X /N is the
mean of x. Asaresult, ¢, or §, may be preferred

over 9, . Valliant (1993) obtained &, for the post-

stratified estimator and conducted a simulation study
to demonstrate that both &, and §, possess good

conditional properties given the estimated post-strata
counts. Sirndal, Swensson and Wretman (1989)
showed that &, 1is both asymptotically design

JL

unbiased and asymptotically model unbiased in the
sense of E (8,)=V (};R), where E denotes

m

model expectation and V), (Y, ) 1s the model variance

of )}R under a “ratio model”: E (y,)=/px;
k=1,..,N andthe y, ’s are independent with model
Thus, 4

variance V, b is a

m

(»)=0’x, 6>>0.
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good choice from either the design-based or the
model-based perspectives.

Demnati and Rao (2004) proposed a new approach to
variance estimation that is theoretically justifiable and
at the same time leads directly to a &, -type variance

estimator for general designs. They applied the
method under the design based approach to a variety
of problems, covering regression calibration
estimators of a total ¥ and other estimators defined
either explicitly or implicitly as solutions of
estimating equations. They obtained a new variance
estimator for a general class of calibration estimators
that includes generalized raking ratio and generalized
regression estimators. They also extended the method
to two-phase sampling and obtained a sampling
variance estimator that makes fuller use of the first
phase sample data compared to traditional
linearization variance estimators. Demnati and Rao
(2002) extended their method to the case of missing
responses  when  adjustments for complete
nonresponse and imputation for item nonresponse
based on smooth functions of observed values, in
particular ratio imputation, are used. Demnati and
Rao (2003) extended the work to deal with
longitudinal surveys which lead to dependent
observations and to multiple weights on the same
element. They considered a variety of longitudinal
sampling designs, covering panel surveys, household
panel surveys as well as rotating surveys. Demnati
and Rao (2005) studied total variance estimation in
the context of finite populations assumed to be
generated from superpopulation models and
analytical inferences on model parameters are of
interest. If the sampling fractions are negligible, the
sampling variance captures almost the entire variation
generated by the design and model random processes.
However, when the sampling fraction is not
negligible, the model variance should be taken into
account in order to construct valid inferences on
model parameters under both randomization
processes.

In this paper, we give a brief account of the Demnati-
Rao (DR) method for variance estimation. In section
2, we review the DR method for total variance
estimation. We apply the method to the ratio
estimator and provide simulation results on the
performance of DR variance estimator. In section 3,
we extend the results to estimators of model
parameters defined as solutions to weighted
estimating equations. Results in section 3 are
extended to the case of multiple weight adjustments
in section 4.
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2. Demnati-Rao Linearization Method

We start with a general formulation of the Demnati
and Rao (2004) approach to deriving Taylor
linearization variance estimators. This formulation
will cover both finite population (or census)
parameters, 8, , and model parameters, 6, under an
assumed super-population model. An estimator, é,
based on a probability sample, s, drawn from a finite
population P of size N is used to estimate both 6,
and 0. However, variance estimators associated with

0, and @ are different. In the latter case, we estimate
the total variance V(d)= E,V,(0)+V,E,(0), while
the design variance V, (é) is estimated in the former

case, where E,  and V, denote model expectation

m

and model variance and £, and V, denote design

expectation and design variance, respectively.

Let d, =(d,,...d,)" bea gxl vector of random

weights and u, = (u,,,...,u, )" be a gxI vector of

e
constants for k =1,.,N.Let U=Xu’d, be a linear

estimator and using an operator notation let $(u)

denote the estimator of variance of U , where 2.
denotes summation over all elements & inP. We

write @ as f(A,), where A, is gx N matrix with

k" column d, . The choice of A, depends on the

random processes involved. For example, suppose
0, =2y, is the population total and we use a ratio

0=Xyd)(Exd)=XR,
d, =a,/r, are the Horvitz-Thompson weights with

estimator where

a, =1 if element k is in the sample s, a, =0
otherwise and =, are the inclusion probabilities. In
this g=1, d,=d, A,=d,,..d,)",
f(Ad):X(zykdk)/(zxkdk):XYA'/)% >
S(u)=39,(u) is the design-based variance estimator

of the total U =Y u,d, :

case,

and

'9p(u):Zzukuxdm(l_wm)/wm > (2.1)

k+t, d,=d,,

are the joint inclusion

where d,=aa,lr,,
o,=r7xlr,, and 7,
probabilities.

Suppose, on the other hand, we are interested in the
model  parameter d=2E (y,) under a
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superpopulation model on y, . In this case, g=2,
dy=d,, dy=d.y, and
f(A,)=X(>d,,)(Xx.d,). Further, the estimator

of total variance of U is
'9(”) = Zzu: COV(dk 5d/ )u/ b (22)

where cov(d,,d,) is an estimator of total variance of

d, and d, . In the above case of d, =d,v,, where
v, =(1,y,)", we have
d,,d)=d 0 0
cov(d,,d,))=d,
‘ ’ O Covm(yl(’yl)
. (2.3)
+d,, ( _w"')vkvf.
a)kt

In (2.3), cov,(y,,y,) is an estimator of the

covariance of y, and y, under the assumed model.
When the model covariance of y, and y, is zero,

cov, (y,,»,) is taken as zero.

The DR linearization variance estimator of
6 = f(A,) is simply given by
9,,(0) = 9(2) ., (2.4)

where $(z) is obtained from $(u) by replacing u,
by z,=09(4,)/0b,|,_, , where A, is a gxN
matrix of arbitrary real numbers with k" column
b, =(b,....b,)" . Inthe case of 0, , we use I (z) in
(2.4).

Application to Ratio Estimator

For the ratio estimator @ and the finite population
total 6, we have f(A4,)=Xy,b,)/(Xxb,) and
hence

2, =z, =(X/X)(y, -Rx)=(X/X)e,. (2.5)

The DR variance estimation is then given by d (z2).

Similarly, for the model parameter 6 =X E (y,), we
have f(4,)=X(2b,)(Xxb,) and

_(Zlk)_X —Ii’xk
i, = == .
Zy X 1

(2.6)
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Substituting z, in (2.6) for u, in (2.2), we get

lgDR (é) =22 dkrzk;mzr;m cov,, (yk > yr)
+ Z Z dkzzk;szl;s (1 - wkl ) / wkz
=94 +9

@2.7)

om = Zap = X/X and
Ziis :z;f"k =zt 2y :(X/X)(yk _ka)'

where z

Note that the first component,

m?

corresponds to the
model while the second component, & , corresponds
to the sampling design.

Now consider the special case of simple random
sampling without replacement (SRS). For this special

case,
g - (1—ij(§] s$=8,(2), (28
‘ n NN\ X

where s’ =Xa,e; /(n—1). Further, under the ratio
model

E (y)=px, Cov, (y,,y)=0,k=t, (2.9)

0=pX,
V.(»)=E, (yv,—Bx,)" is estimated robustly by
of (2.7)

and the model variance of y,_,

3 (y,)=e;. The model component 9,

2
9 :E(KA] (n—1)s?.
n\X

reduces to

(2.10)

Note that §, remains valid under misspecification of
V. _(»,). Now combining (2.8) and (2.10), we get

2 2 _
SDRw):NT[ij N1,

= @.11)

It is interesting to note that the “g-weight” appears

automatically in 9, (é), and that the finite

population correction 1-n/N is absent in 3, (é).

The DR approach leads to a unique choice of variance
estimator that preserves the g-factors automatically.

It is customary to ignore the factor (X / X )* and use
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N(N -1

9 (é)zTS:’ (2.12)

cus

A mixed version which includes the g-factor in the
sampling component only, i.e., uses 4 given by

(2.8), is given by
8,.(0)= ESZ {(N - n)(ﬁ] +(n- l)} . (2.13)
n X

Here, V,E (O)~V,(Y)=XE, (v, - fr)>  is

m—p

estimated by &, =Xd,e; =(N/n)(n—1)s’ which is
used in place of §, in (2.7).

We conducted a small simulation study to examine
the performances of different variance estimators,

both unconditionally and conditionally on X. We
first generated R =2,000 finite populations {y,}

each of size N = 393, from the ratio model
v, =2x, +x"e,, (2.14)

with &, are independent observations generated from
a N(0,1), where the fixed x, are the “number of

beds” for the Hospitals population studied in Valliant
et al. (2000, p.424-427). One simple random sample
of specified size n is drawn from each generated
population. Our parameter of interest is
0= pX =2X, and the simulated total MSE of the

0=X7/X) is
M(@)=R"X* (6 —6)*, where 6, is the value of

ratio estimator calculated as

6 for the r" simulated sample and (y,x) are the
sample means. We calculated the total variance

estimate 9, (), and its components 9, and §, from
3.

and §m. Figure 1 gives a plot of the average of

each simulated sample and their averages §DR ,

variance estimates ¢,, and & , and the simulated
MSE for n=20,40,---,380,393. In the case of

n=N, § =0. It is seen from Figure 1, that 9,

tracks M (é) very well, whereas the use of 53 leads

to severe underestimation as the sample size, =,
increases.

To examine the conditional performance of the
variance estimators under simple random sampling

given X = Nx, we conducted another simulation
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study, similar to Royall and Cumberland (1981) for
inference on =2 E (y,) using model (2.14). We

generated R =20,000 finite populations {y,} each
of size N =393 from (2.14) using the number of
beds as x, and from each population we then
selected one simple random sample of size n =100 .
We arranged the 20,000 samples in ascending order
of X -values and then grouped them into 20 groups
each of size 1,000 such that the first group, G,,
contained 1,000 samples with the smallest X -values,
the next group, G, , contained the next 1,000 smallest
X -values, and so on to get G,,...,G,, . For each of the
20 groups so formed, we calculated the average
values of the ratio estimates =X (y/Xx) and the
Ny, and the
conditional relative bias (CRB) in estimating
6 =2X ; see Figure 2. It is clear from Figure 2 that
Ny is conditionally biased unlike 0: Negative CRB
(-14%) for G, increasing to positive CRB (+14%) for

expansion estimates resulting

G,, . Note that both Ny and 6 are unconditionally

unbiased for @. The conditional bias of 6 and Ny in
estimating @ is similar to the conditional bias in
estimating @, =Y, observed by Royall and
Cumberland (1981).

We also calculated the conditional MSE of & and the

associated CRB of the variance estimates 4,,, &,
and 9, and
&, in each group; see Figure 3. It is evident from
Figure 3 that CRB of &  ranges from -28% to 20%

across the groups whereas §,, exhibits no such trend

based on the average values of 4,,, 9

cus

and its CRB is less than 5% in absolute value except
for G, and G,,. Also, the CRB of 4, is largely

negative and below that of 4, for the first half of the
groups and above for the second half, but 4

exhibits no visible trends unlike 4_ . Figure 4 reports

the conditional coverage rates (CCR) of normal
theory confidence intervals based on $,,, 4., 9.
and 8 (ignoring the component 4,) for nominal
level of 95%. As expected, the use of & leads to
severe undercoverage because the sampling fraction,
100/393, is significant. On the other hand, CCR
associated with &, is closer to nominal level across
groups, while & exhibits a trend across groups with

CCR ranging from 91% to 97%. Further, CCR
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associated with | is below that of ,, for the first
half of the groups and above for the second half.

3. Estimating Equations

Suppose the supperpopulation model on the responses
v, 1s specified by a generalized linear model with

mean E, (y,)=u,(0)="h(z,0), where z, isa pxl
vector of explanatory variables and /4(.) is a “link”
function. The model parameter of interest is €. For
example, the choice /(a) =a gives linear regression
model and A(a)=e"/(1+e") leads to the logistic
regression model for binary responses y, . We define
census estimating equations (CEE) as
1,0)=>1(0)=0 with E [ (0)=0, and the

solution to CEE gives the census parameter 6, . We

m

have [, (0)=z,(y, —u,(0)) for linear and logistic
regression models.

We use a general class of calibration estimators with
weights w, =d, F(x]a), where the vector parameter

a is determined by solving a set of calibration
constraints

Yd F(xla)x, =X, 3.1)

where X is the known total of a gx1 vector of
calibration variables x,. For example, the choice
F(a)=1+a gives GREG weights and F(a)=e¢"
leads to raking ratio weights. We use the calibration

weights to estimate the CEE. The calibration
weighted estimating equations are given by

[0)=Xd F(x'a)l, (0)=0. (3.2)

The solution to (3.2) gives the calibration weighted
estimator 6 of both 0, and 0. It is approximately
design unbiased for @, and design-model unbiased
for 0, ie., E,(0)=0, and E,E, (0)=0. We focus
here on total variance estimation associated with 6.

Demnati and Rao (2004) studied the case of 6,

under the general class of calibration weights, while
Demnati and Rao (2005) studied the case of model
parameter @ under GREG weights. It follows from

(3.2) that 6 is of the form f(4,) with
d, =(d,d]l (0)", where f(A,)is a px1 vector

and A4, isa (p+1)x N matrix with k" column d, .
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Following the implicit differentiation method of
Demnati and Rao (2004), Z, =0f(4,)/0b, |, _, 1is

evaluated as

z] =[JO)71 F(x]a)-B"(I.a)x,.1,), (3.3)
with
B(l:a):[zdkf(x:a)xkx{]-] (34)
Yd, f(x[a)x,I] (0),
JO)=-Xd F(xa)@l (0)/80"), (3.5

I, is the identity matrix and f(a)=0F(a)/0a . The
DR linearization variance estimator of @ is obtained
from (2.2) and (2.3) by replacing u, by the
px(p+1) matrix Z!, v, by (1,I/(0))" and

cov, (¥, 5,) of the pxp
covariance matrix of /, (@) under the assumed model.

by an estimator

After simplification, we get

3.0)=8 +3, (3.6)

where &, is the sampling estimated covariance

matrix given by

9. =[JO)]' LXd, F(x a)F(x'a)

A (3.7
[(-w,)/,le (0)e, ONJO)]"
with
e (0)=1,(0)-B"(,a)x, . (3.8)
The model estimated covariance matrix, &, , depends

on the assumed model covariance structure. If

COVM (lk (0)>I,T (0)) = 0 fork *1 , and
V,(1,(0)=E, 1 (0)](0) is estimated robustly by

lk(é)l[ (é), then the model estimated covariance

matrix , 4, , reduces to

9, =[J(O]" Td, F*(x[a)l, (O O)NJ@)]" .(3.9)

Note that for the linear regression and logistic
(1,(0),17(0)=0 for k=t
if the y, ’s are uncorrelated under the model, noting
that 1, (0)=z,(y, —1,(0)).

regression models, Cov

m

We conducted a small simulation study to examine
the unconditional (design-model) performance of the

calibration weighted estimator 6 of the model
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parameter @ under a Poisson regression model and
simple post-stratification adjustment. In particular, we

compared the efficiency of 0 relative to @ using
only design weights in the weighted estimating

equations (3.2): 7(0):delk(0):0. We also
examined the unconditional performance of the
variance estimators 9, (é) and 9, (5 ) in tracking
the total variances of @ and @ , respectively. Note
that &,,(0) is given by (3.6) and 9, (6) is obtained
from (3.6) by changing F(x’a) to 1 and e (6) to
I, (é) . We also considered a naive variance estimator

L. (é) associated with 6 which uses w, in the

place of d, in 9, ).

We generated R =10,000 finite populations {y,},
each of size N =393, from y,|z ~P(4,) and
z, ~B(Q,p,) with A, =exp(b,+z,06,)
p, =exp(d, +0,x,)/{l+exp(d, +J,x,)}, where the

and

fixed variable x, is the number of beds in hospital &
for the hospital population. The choice of J, =1 and
0, =—.002 leads to an average of about 60% for z, .
The group indicators z, were generated for the first
population and then fixed in the simulation of
remaining populations, so that {z,} may be regarded
as fixed explanatory variables. Our parameter of
interest is 8 =(6,,6,)" =(2, )".

From each generated population, one simple random
sample of size n =30 was drawn. To implement
post-stratification adjustment, we first grouped the
population units into two classes with 271 units &
having x <350 in class 1 and 122 units & with
x 2350 in class 2. Let u, be the class membership
indicator for element k& in class ¢=12. We used
GREG weight adjustment with x, = (u,,,u,,)" and
known X =(N,,N,)", N, =271
N, =122.

where and

We calculated the estimates é, 6 and the variance
estimates SDR(é), SDR(ﬁ) and SDRVH(HA) from each

generated sample and their means é , 5 , §DR (é) ,
&, (0) and §DM (0) , and the variances of 6 and @,

denoted V(é) and V(g). We have the following
results:
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(1) ¥(6,)=.0139 and V(6,)=.0167 compared to

V(6N’0)=.0133 and V(67])=.0161 , suggesting that

post-stratification is not effective for estimating
model parameters when the model fits the data well;
in fact, it lead to slight increase in variance. This
result is in agreement with the observation made by
Rao, Yung, and Hidiroglou (2002).

2) 9,.(0,)=.0123, 3,.(0,)=.0150 compared to
V(6,)=.0139 and ¥(6,)=.0167, suggesting that the

variance estimator §,, tracks the corresponding total
variance in the case of calibration. Similarly,
3.(6,)=.0122 and 9,,(6,)=.0148 compared to
V(6,)=.0133 and V(6,)=.0161, showing that 3,
also tracks the total variance without calibration.
Finally, the naive variance estimator of 6 also tracks
the total variance of 6: §DR.H(6A’O)=.0120 and

§DR,H(91)=-0145 compared to V(éo)=.0139 and
V(6,)=.0167.

4. Multiple Weight Adjustments

In the presence of missing responses, weighting
adjustment is often used to compensate for complete
nonresponse. Let 7, denotes the partial response
indicator variable for the k" element, i.e. r, =0 if
there is complete nonresponse and r, =1 if there is

partial response. A widely-used approach to adjust for
complete nonresponse is to employ a new set of

weights, w, with k" element equals to

1'va - dkrkF(xZ&) >

4.1

where the vector parameter @, when predictor
variables x, = (x,,..,x,, )" are available for all

sampled elements, is defined by solving a set of
stochastic calibration constraints

dexkp(x:a)zzdkxkrkﬂ 4.2)

where p(x;a)=[lb+ubxexp(x/a)]/[l+exp(x]a)],
F(x[a)=1/ p(xa), with lower and upper bounds,
(Ib,ub) generally set to (0,1). Note that (4.2) can be
written as >d,x,(r, — p(x/a))=0. Suppose an

additional vector of  calibration variables
t,=(t..t,,)" with know totals T =(7,..,T,)" is
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available in addition to the vector x,. The vector x,

is assumed to be related to the response probability of
element &, while the vector ¢, is assumed to be

related to the variables of interest. In this case the
final weights are of the form

w, =, Gl B), (4.3)

where the parameter f is determine by solving a set
of constant calibration constraints

Xt w G p)=T. 4.4)

After adjustment for complete nonresponse and use of

auxiliary information, the estimator 0 of the model
parameter 6 under the model E, (y,)=x,(0) is
obtained as the solution to

[O)=Xd r,F(x"a)Gt' Bl (0)=0. (4.5)

Let d, =(d,,d,,,d},)", where d, =d,, d,,
and d,,
é=f(Ad), where A, is a (p+2)x N matrix with

k" column d, . Following the implicit differentiation

=d,r,

Kk

=d,rl (0). Then 6 can be written as

method  of  Demnati and Rao (2004),
3, =0f(A,)/0b, |, _, isevaluated as:
= (2,205 7)) (4.6)

with

z, =[J(O)]" B (¢',a)x,p(xa),
&, =IO (F DG BB U pyt, + B (e ),
2 =[JO)] F(x[a)G(t! p)I

r’

where

B )=, g pyee] ) S, gt Py, 17 0),

B(e',a)=[0(a)]" Xd,r,[0p(xa)/ dalx.e]” | p*(x!a)

0(a)=Xd, x,[Op(x]a)/da’],
and

e, =GPl 0)-B (U1, p),].

The DR linearization variance estimator of @ is given
by

4.0 =%z covd,.d)z,, (4.7)
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where
cov(d,,d,) =
00 0
d/arkrrékér /ékz 0 O 0
0 0 cov, (I,(0).1,8))
(4.8)
0 0 0

+drr(E,—EENIE|0 1 17(6)
0 1,0) I1,0)©0)

T
+dkz (l_wkz ) / DYV,

§=Em). & =Ewn), v, =0rn.nll0),
and E, is the response expectation. Substituting (4.8)
in (4.7), we get

8 (0) =X d,nr[EE 1€ 2L, cov, (1, (0).1(0))z,,
+X3d €, -EE) E N 7,
+XYd [(1-0,)/0,lz.2,
=9,+9+9,

4.9)

where

2L, =[JO] F(x[ )G P,

i =[O (F(x]ae; - B7 (€ d)x, ), and

i =OT [ F(xla)e] -B (¢ a)x, I, - p(x])))
Note that the first component, 4, , corresponds to the
model, the second component, &, corresponds to the

response and the third component, &, , corresponds to
the sampling design.

We generated R =1,000 populations, each of size
N =1,000, using Hansen et al. (1983) model where
E (y]x)=0.4+0.25x and Var, (y|x)=0.0625x""
with both x and y having gamma distributions. The
values of x were generated for the first population
only and maintained fixed during the simulation. We

used x/a=1-0.04 x

response rate of about 64% where x, =(1,x,)". The

.» which leads to an average

element k is

’xk—l/Z)T and

estimating  equation  for
-3/2

lk(a):ck(yk_xza) &
the vector parameter is 6 =(0.4,0.25)" =(6,,6,)" .

From each population one simple random sample of
size n =100 is drawn. To implement the adjustments
we used in both adjustments the same vector of

with ¢, =(x
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auxiliary variables For the complete
used (4.2) with

second  weight

t,=x,.
nonresponse adjustment,
(Ib,ub)=(0,1); and for

adjustment, we used T =(N,X)" in combination

lw-1)+u(l-1)xexp(4t] B)
(u-D+1-1)exp(4t, p)

A=@-D/[uw-DA-D], p=(B,,B)", 1=0.6 and

u=1.4. The estimator of model parameter is given

we
the

with G(¢/ B) = , where

by O=[Xwe,x'1'Iwey,. Only 720 cases
converged. The nonconvergence is mainly due to
nonresponse adjustment. For the 720 cases, the bias
in the estimation of @ is negligible: 6, =0.4 vs.

6,=040248 and 6, =025 vs. 6, =0.25069,

where éo and él denote the average values of 90

and él . We have the following results on the average

values 9,,, 4, & ,and 9 compared to simulated
V(0):

v(,)=.015, 3.6,)=.021, 39(,)=.020,
3(6,)=.0004, 3 (6,)=.0009,

V(6,)=.0007, 9,(6,)=.0009, I (6,)=.0009,

3(6,)=.00002, & () =.00003
V(6,,0)=-.0023, 3 .(6,,6,)=-.0031,
3(6,,6,)=-.0029, 3(6,,6,) =—.00008 ,

§m (éo,él):—.OOOI. The percent coverage of 95%

normal theory confidence intervals associated with
8, are 94.4 for 6, and 96.3 for 6, .

DR
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