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Abstract 

 

In survey sampling, Taylor linearization is often used 

to obtain variance estimators of calibration estimators 

of totals and nonlinear finite population parameters. It 

is generally applicable to any sampling design, but it 

can lead to multiple variance estimators that are 

asymptotically design unbiased under repeated 

sampling. The choice among the variance estimators 

requires other considerations such as (i) approximate 

unbiasedness for the model variance of the estimator 

under an assumed model, and (ii) validity under a 

conditional repeated sampling framework. Demnati 

and Rao (2004) proposed a new approach to deriving 

Taylor linearization variance estimators that leads 

directly to a unique variance estimator that satisfies 

the above considerations for general designs. Demnati 

and Rao (2002) considered the case of missing 

responses when adjustment for complete nonresponse 

and imputation for item nonresponse are used. 

Demnati and Rao (2003) extended the work to deal 

with longitudinal surveys which lead to dependent 

observations and to multiple weights on the same 

element. They considered a variety of longitudinal 

sampling designs, covering panel surveys, household 

panel surveys as well as rotating surveys. Demnati 

and Rao (2005) studied total variance estimation in 

the context of finite populations assumed to be 

generated from superpopulation models and 

analytical inferences on model parameters are of 

interest. If the sampling fraction is small, then the 

sampling variance captures almost the entire variation 

generated by the design and model random processes. 

However, when the sampling fraction is not 

negligible, the model variance should be taken into 

account in order to construct valid inferences on 

model parameters under both randomization 

processes. In this paper, we give a brief account of 

the Demnati-Rao method for variance estimation. We 

also present simulation results on total variance 

estimation and some extensions. 

 

Keywords: Calibration, model parameters, total 

variance. 

 

1. Introduction 
 

Taylor linearization is a popular method of variance 

estimation for complex statistics such as ratio and 

regression estimators and logistic regression 

coefficient estimators.  It is generally applicable to 

any sampling design that permits unbiased variance 

estimation for linear estimators, unlike a resampling 

method such as the jackknife, and it is 

computationally simpler than the latter method. 

However, it can lead to multiple variance estimators 

that are asymptotically design unbiased under 

repeated sampling. The choice among the variance 

estimators, therefore, requires other considerations 

such as (i) approximate unbiasedness for the model 

variance of the estimator under an assumed model, 

and (ii) validity under a conditional repeated 

sampling framework.  For example, in the context of 

simple random sampling and the ratio estimator, 

XxyY
R

)/(ˆ = , of the population total Y , Royall  and 

Cumberland (1981) showed that a commonly used 

linearization variance estimator 
2112 )(
eL
sNnN −− −=ϑ  does not track the conditional 

MSE of 
R
Ŷ  given x , unlike the jackknife variance 

estimator 
J

ϑ .  Here y  and x  are the sample means, 

X  is the known population total of an auxiliary 

variable x , 2

e
s  is the sample variance of the residuals 

kkk
xxyye )/(−=  and ),( Nn  denote the sample and 

population sizes.  By linearizing the jackknife 

variance estimator, 
J

ϑ , we obtain a different 

linearization variance estimator, 
LJL

xX ϑϑ 2)/(= , 

which also tracks the conditional variance as well as 

the unconditional variance, where NXX /=  is the 

mean of x .  As a result, 
JL

ϑ  or 
J

ϑ  may be preferred 

over 
L

ϑ . Valliant (1993) obtained 
JL

ϑ  for the post-

stratified estimator and conducted a simulation study 

to demonstrate that both 
J

ϑ  and 
JL

ϑ  possess good 

conditional properties given the estimated post-strata 

counts.  Särndal, Swensson and Wretman (1989) 

showed that 
JL

ϑ  is both asymptotically design 

unbiased and asymptotically model unbiased in the 

sense of )ˆ()(
RmJLm
YVE =ϑ , where 

m
E  denotes 

model expectation and )ˆ(
Rm
YV  is the model variance 

of 
R
Ŷ  under a “ratio model”: 

kkm
xyE β=)( ; 

Nk ,...,1=  and the 
k
y ’s are independent with model 

variance 
kkm
xyV 2)( σ= , 02 >σ .  Thus, 

JL
ϑ  is a 
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good choice from either the design-based or the 

model-based perspectives. 

 

Demnati and Rao (2004) proposed a new approach to 

variance estimation that is theoretically justifiable and 

at the same time leads directly to a 
JL

ϑ -type variance 

estimator for general designs. They applied the 

method under the design based approach to a variety 

of problems, covering regression calibration 

estimators of a total Y  and other estimators defined 

either explicitly or implicitly as solutions of 

estimating equations.  They obtained a new variance 

estimator for a general class of calibration estimators 

that includes generalized raking ratio and generalized 

regression estimators. They also extended the method 

to two-phase sampling and obtained a sampling 

variance estimator that makes fuller use of the first 

phase sample data compared to traditional 

linearization variance estimators.  Demnati and Rao 

(2002) extended their method to the case of missing 

responses when adjustments for complete 

nonresponse and imputation for item nonresponse 

based on smooth functions of observed values, in 

particular ratio imputation, are used. Demnati and 

Rao (2003) extended the work to deal with 

longitudinal surveys which lead to dependent 

observations and to multiple weights on the same 

element. They considered a variety of longitudinal 

sampling designs, covering panel surveys, household 

panel surveys as well as rotating surveys.  Demnati 

and Rao (2005) studied total variance estimation in 

the context of finite populations assumed to be 

generated from superpopulation models and 

analytical inferences on model parameters are of 

interest. If the sampling fractions are negligible, the 

sampling variance captures almost the entire variation 

generated by the design and model random processes. 

However, when the sampling fraction is not 

negligible, the model variance should be taken into 

account in order to construct valid inferences on 

model parameters under both randomization 

processes. 

 

In this paper, we give a brief account of the Demnati-

Rao (DR) method for variance estimation. In section 

2, we review the DR method for total variance 

estimation. We apply the method to the ratio 

estimator and provide simulation results on the 

performance of DR variance estimator. In section 3, 

we extend the results to estimators of model 

parameters defined as solutions to weighted 

estimating equations. Results in section 3 are 

extended to the case of multiple weight adjustments 

in section 4. 

 

2. Demnati-Rao Linearization Method

 

 

We start with a general formulation of the Demnati 

and Rao (2004) approach to deriving Taylor 

linearization variance estimators. This formulation 

will cover both finite population (or census) 

parameters,
N

θ , and model parameters, θ , under an 

assumed super-population model. An estimator, θ̂ , 
based on a probability sample, s , drawn from a finite 

population P  of size N  is used to estimate both 
N

θ  

and θ . However, variance estimators associated with 

N
θ  and θ  are different. In the latter case, we estimate 

the total variance )ˆ()ˆ()ˆ( θθθ
pmpm

EVVEV += , while 

the design variance )ˆ(θ
p

V  is estimated in the former 

case, where 
m
E  and 

m
V  denote model expectation 

and model variance and 
p

E  and 
p

V  denote design 

expectation and design variance, respectively. 

 
Let 

T

gkkk
dd ),...,(

1
=d  be a 1×g  vector of random 

weights and 
T

gkkk
uu ),...,(

1
=u  be a 1×g  vector of 

constants for Nk ,...,1= . Let 
k

T

k
U du∑=ˆ  be a linear 

estimator and using an operator notation let )(uϑ  

denote the estimator of variance of Û , where ∑  
denotes summation over all elements k  in P . We 

write θ̂  as )(
d

f A , where 
d

A  is Ng ×  matrix with 

thk column 
k

d . The choice of 
d

A  depends on the 

random processes involved. For example, suppose 

kN
y∑=θ  is the population total and we use a ratio 

estimator RXdxdyX
kkkk

ˆ)/()(ˆ =∑∑=θ , where 

kkk
ad π/=  are the Horvitz-Thompson weights with 

1=
k
a  if element k  is in the sample s , 0=

k
a  

otherwise and 
k

π  are the inclusion probabilities. In 

this case, 1=g , 
kk
d=d , T

Nd
dd ),...,(

1
=A , 

XYXdxdyXf
kkkkd

ˆ/ˆ)/()()( =∑∑=A , and 

)()( uu
p

ϑϑ =  is the design-based variance estimator 

of the total 
kk
duU ∑=ˆ : 

 

 
ktktkttkp

duuu ωωϑ /)1()( −∑∑= , (2.1) 
 

where 
kttkkt

aad π/= , tk ≠ , 
kkk
dd = , 

kttkkt
πππω /= , and 

kt
π  are the joint inclusion 

probabilities. 

 
Suppose, on the other hand, we are interested in the 

model parameter )(
km
yE∑=θ  under a 
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superpopulation model on ky . In this case, 2=g , 

kk
dd =

1
, 

kkk
ydd =

2
, and 

)/()()(
12 kkkd
dxdXf ∑∑=A . Further, the estimator 

of total variance of  Û  is 

 

 
ttk

T

k
udduu ),cov()( ∑∑=ϑ , (2.2) 

 

where ),cov(
tk

dd  is an estimator of total variance of 

k
d  and 

t
d . In the above case of 

kkk
d vd = , where 

T

kk
y ),1(=v , we have 

 

.
)1(

),(cov0

00
),cov(

T

tk

kt

kt

kt

tkm

kttk

d

yy
d

vv

dd

ω
ω−

+









=

 (2.3) 

 

In (2.3), ),(cov
tkm
yy  is an estimator of the 

covariance of 
k
y  and 

t
y  under the assumed model. 

When the model covariance of 
k
y  and 

t
y  is zero, 

),(cov
tkm
yy  is taken as zero. 

 

The DR linearization variance estimator of 

)(ˆ
b

f Aθ =  is simply given by 

 

 )()ˆ( zϑθϑ =
DR

, (2.4) 

 

where )(zϑ  is obtained from )(uϑ by replacing 
k

u  

by 
dbkbk

f
AA

bAz =∂∂= |/)( , where 
b

A  is a Ng ×  

matrix of arbitrary real numbers with thk  column 
T

gkkk
bb ),...,(

1
=b . In the case of 

N
θ , we use )(z

p
ϑ  in 

(2.4). 

 

 

Application to Ratio Estimator 
 

For the ratio estimator θ̂  and the finite population 
total 

N
θ , we have )/()()(

kkkkb
bxbyXf ∑∑=A  and 

hence 

 
kkkkk
eXXxRyXXz )ˆ/()ˆ)(ˆ/( =−==z . (2.5) 

 

The DR variance estimation is then given by )(z
p

ϑ . 

Similarly, for the model parameter )(
km
yE∑=θ , we 

have )/()()(
12 kkkb
bxbXf ∑∑=A  and 

 

 








−
=








=

1

ˆ

ˆ
2

1 k

k

k

k

xR

X

X

z

z
z . (2.6) 

Substituting 
k
z  in (2.6) for 

k
u  in (2.2), we get 

 

 

sm

ktktstskkt

tkmmtmkktDR

zzd

yyzzd

ϑϑ

ωω

θϑ

+≡

−∑∑+

∑∑=

/)1(

),(cov)ˆ(

;;

;;

 (2.7) 

 

where XXzz
kmk

ˆ/
2;
==  and 

)ˆ)(ˆ/(
21; kkkkkk

T

ksk
xRyXXyzzz −=+== vz .  

 

Note that the first component,
m

ϑ , corresponds to the 

model while the second component, 
s

ϑ , corresponds 

to the sampling design. 

 

Now consider the special case of simple random 

sampling without replacement (SRS). For this special 

case, 

 )(
ˆ

1 2

22

zs
X

X

N

n

n

N
pes

ϑϑ =















−= , (2.8) 

 

where )1/(22 −∑= neas
kke

. Further, under the ratio 

model 

 

 
kkm
xyE β=)( , 0),( =

tkm
yyCov , tk ≠ , (2.9) 

 

Xβθ = , and the model variance of 
k
y , 

2)()(
kkmkm
xyEyV β−=  is estimated robustly by  

2)(
kkm
ey =ϑ . The model component 

m
ϑ   of (2.7) 

reduces to  

 2

2

)1(
ˆ em

sn
X

X

n

N
−








=ϑ . (2.10) 

 

Note that 
m

ϑ  remains valid under misspecification of 

)(
km
yV . Now combining (2.8) and (2.10), we get 

 

 2

22
1

ˆ
)ˆ(

eDR
s

N

N

X

X

n

N −








=θϑ . (2.11) 

 

It is interesting to note that the “g-weight” appears 

automatically in )ˆ(θϑ
DR

, and that the finite 

population correction Nn /1−  is absent in )ˆ(θϑ
DR

. 

The DR approach leads to a unique choice of variance 

estimator that preserves the g-factors automatically. 

 

It is customary to ignore the factor 2)ˆ/( XX  and use  
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2)1(

)ˆ(
ecus
s

n

NN −
=θϑ . (2.12) 

 

A mixed version which includes the g-factor in the 

sampling component only, i.e., uses 
s

ϑ  given by 

(2.8), is given by 

 

 











−+








−= )1(

ˆ
)()ˆ(

2

2
n

X

X
nNs

n

N
emix

θϑ . (2.13) 

 

Here, 2)()()ˆ(
kkmmpm
xyEYVEV βθ −∑=≈  is 

estimated by 22* )1)(/(
ekkm
snnNed −=∑=ϑ  which is 

used in place of 
m

ϑ  in (2.7). 

 

We conducted a small simulation study to examine 

the performances of different variance estimators, 

both unconditionally and conditionally on X̂ . We 

first generated 000,2=R  finite populations }{
k
y  

each of size 393=N , from the ratio model 

 

 
kkkk

xxy ε2/12 += , (2.14) 

 

with 
k

ε  are independent observations generated from 

a )1,0(N , where the fixed 
k
x  are the “number of 

beds” for the Hospitals population studied in Valliant 

et al. (2000, p.424-427). One simple random sample 

of specified size n  is drawn from each generated 

population. Our parameter of interest is 

XX 2== βθ , and the simulated total MSE of the 

ratio estimator )/(ˆ xyX=θ  is calculated as 

22000

1

1 )ˆ()ˆ( θθθ −∑= =
−

rr
RM , where 

r
θ̂  is the value of 

θ̂  for the thr  simulated sample and ),( xy  are the 

sample means. We calculated the total variance 

estimate )ˆ(θϑ
DR

, and its components 
s

ϑ  and 
m

ϑ  from 

each simulated sample and their averages 
DR

ϑ , 
s

ϑ , 

and 
m

ϑ . Figure 1 gives a plot of the average of 

variance estimates 
DR

ϑ  and 
s

ϑ , and the simulated 

MSE for 393,380,,40,20 L=n . In the case of 

Nn = , 0=
s

ϑ . It is seen from Figure 1, that 
DR

ϑ  

tracks )ˆ(θM  very well, whereas the use of 
s

ϑ  leads 

to severe underestimation as the sample size, n , 

increases.  

 

To examine the conditional performance of the 

variance estimators under simple random sampling 

given xNX =ˆ , we conducted another simulation 

study, similar to Royall and Cumberland (1981) for 

inference on )(
km
yE∑=θ  using model (2.14). We 

generated 000,20=R  finite populations }{
k
y  each 

of size 393=N  from (2.14) using the number of 

beds as 
k
x  and from each population we then 

selected one simple random sample of size 100=n . 

We arranged the 20,000 samples in ascending order 

of x -values and then grouped them into 20 groups 

each of size 1,000 such that the first group, 
1

G , 

contained 1,000 samples with the smallest x -values, 

the next group, 
2

G , contained the next 1,000 smallest 

x -values, and so on to get 
201

,...,GG . For each of the 

20 groups so formed, we calculated the average 

values of the ratio estimates )/(ˆ xyX=θ  and the 

expansion estimates yN , and the resulting 

conditional relative bias (CRB) in estimating 

X2=θ ; see Figure 2. It is clear from Figure 2 that 

yN  is conditionally biased unlike θ̂ : Negative CRB 
(-14%) for 

1
G  increasing to positive CRB (+14%) for 

20
G . Note that both yN  and θ̂  are unconditionally 

unbiased for θ . The conditional bias of θ̂  and yN  in 

estimating θ  is similar to the conditional bias in 
estimating Y

N
=θ , observed by Royall and 

Cumberland (1981). 

 

We also calculated the conditional MSE of θ̂  and the 
associated CRB of the variance estimates 

DR
ϑ , 

cus
ϑ  

and 
mix

ϑ  based on the average values of 
DR

ϑ , 
cus

ϑ  and 

mix
ϑ  in each group; see Figure 3. It is evident from 

Figure 3 that CRB of 
cus

ϑ  ranges from -28% to 20% 

across the groups whereas 
DR

ϑ  exhibits no such trend 

and its CRB is less than 5% in absolute value except 

for 
6

G  and 
20

G . Also, the CRB of 
mix

ϑ  is largely 

negative and below that of 
DR

ϑ  for the first half of the 

groups and above for the second half, but 
mix

ϑ  

exhibits no visible trends unlike 
cus

ϑ . Figure 4 reports 

the conditional coverage rates (CCR) of normal 

theory confidence intervals based on 
DR

ϑ , 
cus

ϑ , 
mix

ϑ  

and 
s

ϑ  (ignoring the component 
m

ϑ ) for nominal 

level of 95%. As expected, the use of 
s

ϑ  leads to 

severe undercoverage because the sampling fraction, 

100/393, is significant. On the other hand, CCR 

associated with 
DR

ϑ  is closer to nominal level across 

groups, while 
cus

ϑ  exhibits a trend across groups with 

CCR ranging from 91% to 97%. Further, CCR 
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associated with 
mix

ϑ  is below that of 
DR

ϑ  for the first 

half of the groups and above for the second half. 

 

 

3. Estimating Equations 

 

Suppose the supperpopulation model on the responses 

k
y  is specified by a generalized linear model with 

mean )()()( θzθ T

kkkm
hyE == µ , where 

k
z  is a 1×p  

vector of explanatory variables and (.)h  is a “link” 

function.  The model parameter of interest is θ . For 

example, the choice aah =)(  gives linear regression 

model and )1/()( aa eeah +=  leads to the logistic 

regression model for binary responses 
k
y . We define 

census estimating equations (CEE) as 

0=∑= )()( θlθl
kN

 with 0=)(θl
km

E , and the 

solution to CEE gives the census parameter 
N

θ . We 

have ))(()( θzθl
kkkk

y µ−=  for linear and logistic 

regression models.  

 

We use a general class of calibration estimators with 

weights )ˆ( αx T

kkk
Fdw = , where the vector parameter 

α  is determined by solving a set of calibration 

constraints 

 Xxαx =∑
k

T

kk
Fd )( , (3.1) 

 

where X  is the known total of a 1×q  vector of 

calibration variables 
k

x . For example, the choice 

aaF += 1)(  gives GREG weights and aeaF =)(  

leads to raking ratio weights. We use the calibration 

weights to estimate the CEE. The calibration 

weighted estimating equations are given by 

 

 0=∑= )()ˆ()(ˆ θlαxθl
k

T

kk
Fd . (3.2) 

 

The solution to (3.2) gives the calibration weighted 

estimator θ̂  of both 
N

θ  and θ . It is approximately 

design unbiased for 
N

θ  and design-model unbiased 

for θ , i.e., 
Np

E θθ =)ˆ(  and θθ =)ˆ(
pm

EE . We focus 

here on total variance estimation associated with θ . 

Demnati and Rao (2004) studied the case of 
N

θ  

under the general class of calibration weights, while 

Demnati and Rao (2005) studied the case of model 

parameter θ  under GREG weights. It follows from 

(3.2) that θ̂  is of the form )(
d

Af  with 

TT

kkkk
dd ))(,( θld = , where )(

d
Af is a 1×p  vector 

and 
d

A  is a Np ×+ )1(  matrix with thk  column 
k

d . 

Following the implicit differentiation method of 

Demnati and Rao (2004), 
dbkbk AA

bAfZ =∂∂= |/)(  is 

evaluated as  

 ),)ˆ,(ˆ)(ˆ(])ˆ(ˆ[ -1

pk

TT

k

T

k
F IxαlBαxθJZ −= , (3.3) 

with 

 
),ˆ()(

])([),(ˆ -1

θlxαx

xxαxαlB

T

kk

T

kk

T

kk

T

kk

fd

fd

∑

∑=
 (3.4) 

 

 )/)()(ˆ()(ˆ T

k

T

kk
Fd θθlαxθJ ∂∂∑−= , (3.5) 

 

p
I  is the identity matrix and aaFaf ∂∂= /)()( . The 

DR linearization variance estimator of θ̂  is obtained 

from (2.2) and (2.3) by replacing T

k
u  by the 

)1( +× pp  matrix T

k
Z ,  

k
v  by TT

k
))(,1( θl  and 

),(cov
tkm
yy  by an estimator of the pp ×  

covariance matrix of )(θl
k

 under the assumed model. 

After simplification, we get 

 

 
smDR

ϑϑϑ +=)ˆ(θ , (3.6) 

 

where 
s

ϑ  is the sampling estimated covariance 

matrix given by 

 

 
1T-**

-1

])ˆ(ˆ[)ˆ()ˆ(]/)1([

)ˆ()ˆ(])ˆ(ˆ[

θJθeθe

αxαxθJ

tkktkt

T

t

T

kkts
FFd

ωω

ϑ

−

∑∑=
 (3.7) 

with 

 
k

T

kk
xαlBθlθe )ˆ,(ˆ)ˆ()ˆ(* −= . (3.8) 

 

The model estimated covariance matrix, 
m

ϑ , depends 

on the assumed model covariance structure. If 

0=))(),(( θlθl T

tkm
Cov  for tk ≠ , and 

))()(())(( θlθlθlV T

kkmkm
E=  is estimated robustly by 

)ˆ()ˆ( θlθl T

kk
, then the model estimated covariance 

matrix , 
m

ϑ , reduces to 

 

 -1T2-1 ])ˆ(ˆ[)ˆ()ˆ()ˆ(])ˆ(ˆ[ θJθlθlαxθJ T

kk

T

kkm
Fd∑=ϑ .(3.9) 

 

Note that for the linear regression and logistic 

regression models, 0=))(),(( θlθl T

tkm
Cov  for tk ≠  

if the 
k
y ’s are uncorrelated under the model, noting 

that ))(()( θzθl
kkkk

y µ−= . 

 

We conducted a small simulation study to examine 

the unconditional (design-model) performance of the 

calibration weighted estimator θ̂  of the model 
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parameter θ  under a Poisson regression model and 

simple post-stratification adjustment. In particular, we 

compared the efficiency of θ̂  relative to θ
~
 using 

only design weights in the weighted estimating 

equations (3.2): 0θlθl =∑= )()(
~

kk
d . We also 

examined the unconditional performance of the 

variance estimators )ˆ(θ
DR

ϑ  and )
~
(θ

DR
ϑ  in tracking 

the total variances of θ̂  and θ
~
, respectively. Note 

that )ˆ(θ
DR

ϑ  is given by (3.6) and )
~
(θ

DR
ϑ  is obtained 

from (3.6) by changing )ˆ( αx T

k
F  to 1 and )ˆ(* θe

k
 to 

)ˆ(θl
k

. We also considered a naïve variance estimator 

)ˆ(
,
θ

nDR
ϑ  associated with θ̂  which uses 

k
w  in the 

place of 
k
d  in )

~
(θ

DR
ϑ . 

 

We generated 000,10=R  finite populations }{
k
y , 

each of size 393=N , from )(~|
kkk

Pzy λ  and 

),1(~
kk
pBz  with )exp(

10
θθλ
kk
z+=  and 

)}exp(1/{)exp(
1010 kkk
xxp δδδδ +++= , where the 

fixed variable 
k
x  is the number of beds in hospital k  

for the hospital population. The choice of 1
0
=δ  and 

002.
1

−=δ  leads to an average of about %60  for 
k
z . 

The group indicators 
k
z  were generated for the first 

population and then fixed in the simulation of 

remaining populations, so that }{
k
z  may be regarded 

as fixed explanatory variables. Our parameter of 

interest is TT )1,2(),(
10

== θθθ .  

 

From each generated population, one simple random 

sample of size 30=n  was drawn. To implement 

post-stratification adjustment, we first grouped the 

population units into two classes with 271 units k  

having 350<x  in class 1 and 122 units k  with 

350≥x  in class 2. Let 
ck
u  be the class membership 

indicator for element k  in class 2,1=c . We used 

GREG weight adjustment with T

kkk
uu ),(
21

=x  and 

known TNN ),(
21

=X , where 271
1
=N  and 

122
2
=N .  

We calculated the estimates θ̂ , θ
~
 and the variance 

estimates )ˆ(θ
DR

ϑ , )
~
(θ

DR
ϑ  and )ˆ(

,
θ

nDR
ϑ  from each 

generated sample and their means •θ̂ , •θ
~
, )ˆ(θ

DR
ϑ , 

)
~
(θ

DR
ϑ  and )ˆ(

,
θ

nDR
ϑ , and the variances of  θ̂  and θ

~
, 

denoted )ˆ(θV  and )
~
(θV . We have the following 

results: 

(1) 0139.)ˆ(
0
=θV  and 0167.)ˆ(

1
=θV   compared to 

0133.)
~
(

0
=θV  and  0161.)

~
(

1
=θV , suggesting that 

post-stratification is not effective for estimating 

model parameters when the model fits the data well; 

in fact, it lead to slight increase in variance. This 

result is in agreement with the observation made by 

Rao, Yung, and Hidiroglou (2002). 

 

(2) 0123.)ˆ(
0
=θϑ

DR
, 0150.)ˆ(

1
=θϑ

DR
 compared to 

0139.)ˆ(
0
=θV  and 0167.)ˆ(

1
=θV , suggesting that the 

variance estimator 
DR

ϑ  tracks the corresponding total 

variance in the case of calibration. Similarly, 

0122.)
~
(

0
=θϑ

DR
 and 0148.)

~
(

1
=θϑ

DR
 compared to  

0133.)
~
(

0
=θV  and 0161.)

~
(

1
=θV , showing that 

DR
ϑ  

also tracks the total variance without calibration. 

Finally, the naive variance estimator of θ̂  also tracks 

the total variance of θ̂ : 0120.)ˆ(
0,
=θϑ

nDR
 and 

0145.)ˆ(
1,
=θϑ

nDR
 compared to 0139.)ˆ(

0
=θV  and 

0167.)ˆ(
1
=θV . 

 

4. Multiple Weight Adjustments 

 

In the presence of missing responses, weighting 

adjustment is often used to compensate for complete 

nonresponse.  Let 
k
r  denotes the partial response 

indicator variable for the thk  element, i.e. 0=
k
r  if 

there is complete nonresponse and 1=
k
r  if there is 

partial response. A widely-used approach to adjust for 

complete nonresponse is to employ a new set of 

weights, w~ , with thk  element equals to 

 

 )ˆ(~ αx T

kkkk
Frd=w , (4.1) 

 

where the vector parameter α , when predictor 

variables 
T

kqkk x
xx ),...,(

1
=x  are available for all 

sampled elements, is defined by solving a set of 

stochastic calibration constraints 

 

 
kkk

T

kkk
rdpd xαxx ∑=∑ )( , (4.2) 

 

where ])exp(1[/])exp([)( αxαxαx T

k

T

k

T

k
ublbp +×+= , 

)(/1)( αxαx T

k

T

k
pF = , with lower and upper bounds, 

),( ublb  generally set to (0,1). Note that (4.2) can be 

written as 0αxx =−∑ ))(( T

kkkk
prd . Suppose an 

additional vector of calibration variables 
T

kqkk t
tt ),...,(

1
=t  with know totals 

T

qt
TT ),...,(

1
=T  is 
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available in addition to the vector 
k

x . The vector 
k

x  

is assumed to be related to the response probability of 

element k , while the vector 
k
t  is assumed to be 

related to the variables of interest. In this case the 

final weights are of the form 

 

 )ˆ(~ βt T
kkk

Gw=w , (4.3) 

 

where the parameter β  is determine by solving a set 

of constant calibration constraints 

 

 Tβtt =∑ )(~ T

kkk
Gw . (4.4) 

 

After adjustment for complete nonresponse and use of 

auxiliary information, the estimator θ̂  of the model 

parameter θ  under the model )()( θ
kkm

yE µ=  is 

obtained as the solution to 

 

 0=∑= )()ˆ()ˆ()(ˆ θlβtαxθl
k

T

k

T

kkk
GFrd . (4.5) 

 

Let TT

kkkk
dd ),,(

321
dd = , where 

kk
dd =

1
, 

kkk
rdd =

2
, 

and )(
3

θld
kkkk

rd= . Then θ̂  can be written as 

)(ˆ
d

f Aθ = , where 
d

A  is a Np ×+ )2(  matrix with 

thk  column 
k

d . Following the implicit differentiation 

method of Demnati and Rao (2004), 

dbkbk
f

AA
bAz =∂∂= |/)(  is evaluated as: 

 

 ),,(
321

T

k

T

k

T

k

T

k
zzzz = , (4.6) 

with 

 

)ˆ()ˆ,(ˆ])ˆ(ˆ[ *1

1
αxxαeBθJz T

kk

TT

k
p−= , 

( )
k

T

k

TT

k

T

k

T

k
GF xαeBtβlBβtαxθJz )ˆ,(ˆ)ˆ,(ˆ)ˆ()ˆ(])ˆ(ˆ[ *1

2
+−= −

p

T

k

T

k

T

k
GF IβtαxθJz )ˆ()ˆ(])ˆ(ˆ[ 1

3

−= , 

 

where 

 

( ) )ˆ()(~)(~),(ˆ
1

θltβtttβtβlB T

kk

T

kk

T

kk

T

kk
gwgw ∑∑=

−
, 

)(/]/)([])(ˆ[),(ˆ 2*1* αxexααxαQαeB T

k

T

kk

T

kkk
pprd ∂∂∑= −

]/)([)(ˆ TT

kkk
pd ααxxαQ ∂∂∑= , 

and 

])ˆ,(ˆ)ˆ([)ˆ(*

k

T

k

T

kk
G tβlBθlβte −= . 

 

The DR linearization variance estimator of θ̂  is given 

by 

 
ttk

T

kDR
zddzθ ),cov()ˆ( ∑∑=ϑ , (4.7) 

where 

 

 

,/)1(

)ˆ()ˆ()ˆ(0

)ˆ(10

000

ˆ/)ˆˆˆ(

))ˆ(),ˆ((cov00

000

000

ˆ/ˆˆ

),cov(

T

tkktktkt

T

tkk

T

tkttkkttkkt

tkm

kttktkkt

tk

d

rrd

rrd

vv

θlθlθl

θl

θlθl

dd

ωω

ξξξξ

ξξξ

−+

















−+

















=

(4.8) 

 

)(ˆˆ
krk
rE=ξ , )(ˆˆ

tkrkt
rrE=ξ , TT

kkkk
rr ))ˆ(,,1( θlv = , 

and 
r
E  is the response expectation. Substituting (4.8) 

in (4.7), we get 

 

 

,

]/)1([

]ˆ/)ˆˆˆ([

))ˆ(),ˆ((cov]ˆ/ˆˆ[)ˆ(

;;

;;

;;

srm

st

T

skktktkt

rt

T

rkkttkkttkkt

mttkm

T

mkkttktkktDR

d

rrd

rrd

ϑϑϑ

ωω

ξξξξ

ξξξϑ

++≡

−∑∑+

−∑∑+

∑∑=

zz

zz

zθlθlzθ

(4.9) 

where 

 

p

T

k

T

k

T

mk
GF IβtαxθJz )ˆ()ˆ(])ˆ(ˆ[ 1

;

−= , 

( )
k

T

k

T

k

T

rk
F xαeBeαxθJz )ˆ,(ˆ)ˆ(])ˆ(ˆ[ **1

;
−= − , and 

( )])ˆ([)ˆ,(ˆ)ˆ(])ˆ(ˆ[ **1

;
αxxαeBeαxθJz T

kkk

T

k

T

kk

T

sk
prFr −−= −

 

Note that the first component, 
m

ϑ , corresponds to the 

model, the second component, 
r

ϑ , corresponds to the 

response and the third component, 
s

ϑ , corresponds to 

the sampling design. 

 

We generated 000,1=R  populations, each of size 

000,1=N , using Hansen et al. (1983) model where 

xxyE
m

25.04.0)|( +=  and 2/30625.0)|( xxyVar
m

=  

with both x  and y  having gamma distributions. The 

values of x  were generated for the first population 

only and maintained fixed during the simulation. We 

used 
k

T

k
x04.01−=αx , which leads to an average 

response rate of about 64% where T

kk
x ),1(=x . The 

estimating equation for element k  is 

)()( θxcθ T

kkkk
yl −=   with T

kkk
xx ),( 2/12/3 −−=c  and 

the vector parameter is TT ),()25.0,4.0(
10

θθ≡=θ . 

From each population one simple random sample of 

size 100=n  is drawn. To implement the adjustments 

we used in both adjustments the same vector of 
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auxiliary variables 
kk

xt = . For the complete 

nonresponse adjustment, we used (4.2) with 

)1,0(),( =ublb ; and for the second weight 

adjustment, we used TXN ),(=T  in combination 

with 
)exp()1()1(

)exp()1()1(
)(

βt

βt
βt

T

k

T

kT

k
Alu

Aluul
G

−+−

×−+−
= , where 

])1)(1([/)( luluA −−−= , T),(
10

ββ=β , 6.0=l  and 

4.1=u . The estimator of model parameter is given 

by 
kkk

T

kkk
yww cxcθ ∑∑= -1][ˆ . Only 720 cases 

converged. The nonconvergence is mainly due to 

nonresponse adjustment. For the 720 cases, the bias 

in the estimation of θ  is negligible: 4.0
0
=θ  vs. 

40248.0ˆ
0
=θ  and 25.0

1
=θ  vs. 25069.0ˆ

1
=θ , 

where 
0

θ̂  and 
1

θ̂  denote the average values of  
0

θ̂  

and 
1

θ̂ . We have the following results on the average 

values 
DR

ϑ , 
m

ϑ , 
r

ϑ , and 
s

ϑ  compared to simulated 

)ˆ(θV : 

015.)ˆ(
0
=θV , 021.)ˆ(

0
=θϑ

DR
, 020.)ˆ(

0
=θϑ

s
, 

0004.)ˆ(
0
=θϑ

r
, 0009.)ˆ(

0
=θϑ

m
, 

0007.)ˆ(
1
=θV , 0009.)ˆ(

1
=θϑ

DR
, 0009.)ˆ(

1
=θϑ

s
, 

00002.)ˆ(
1
=θϑ

r
, 00003.)ˆ(

1
=θϑ

m
 

0023.)ˆ,ˆ(
10

−=θθV , 0031.)ˆ,ˆ(
10

−=θθϑ
DR

, 

0029.)ˆ,ˆ(
10

−=θθϑ
s

, 00008.)ˆ,ˆ(
10

−=θθϑ
r

, 

0001.)ˆ,ˆ(
10

−=θθϑ
m

. The percent coverage of 95% 

normal theory confidence intervals associated with 

DR
ϑ  are 94.4 for 

0
θ  and 96.3 for 

1
θ . 
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Figure 1: Averages of variance estimates for selected sample sizes compared to estimated MSE of the ratio 

estimator.  DRϑ =DR var. est., sϑ = Sampling component 
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Figure 2: Conditional relative bias of the expansion and ratio estimators 
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Figure 3: Conditional relative bias of variance estimators DRϑ , cusϑ  and mixϑ  
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Figure 4: Conditional coverage rates of normal theory confidence intervals based on DRϑ , cusϑ , mixϑ  and sϑ  

for nominal level of 95% 
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