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1.  Introduction1 
 
An important step in the evaluation of survey data 
estimates is the identification of macro-level 
outliers.  This identification process is used to 
determine whether outlying preliminary estimates 
are the results of uncorrected respondent or data 
capture errors or are values that provide useful 
information (e.g., indicators of change in target 
estimates).  Macro-editing is generally performed 
after the micro-level review phase, when the 
individual questionnaire returns are scrutinized and 
corrected on a flow basis.  During the macro-level 
review phase, distributions of tabulated cell 
estimates are scrutinized, within both the current 
collection period and in contrast to corresponding 
prior period estimates.   
 
Macro editing techniques rely on distributional 
analyses, attempting to isolate atypical data points 
(estimates) from the bulk of the observations.  
Survey data estimates rarely have known parametric 
distributions.   Moreover, quantitative economic 
data is often best assessed via ratio comparisons of 
totals, further complicating any parametric analysis.  
Consequently, macro editing techniques that utilize 
survey data must employ non-parametric or robust 
methods.    
 
Prior to macro-review, it is quite likely that a given 
set of survey estimates will contain multiple 
outliers. This can lead to two types of outlier-
identification problems:  masking and swamping.  
Masking occurs when the presence of several 
outliers makes each individual outlier difficult to 
detect. Swamping occurs when multiple outliers 
cause the procedure to erroneously flag too many 
observations as outliers.  To reduce the probability 
of these phenomena, I utilize outlier-resistant 
methods (Hoaglin et al, 1983); the resistance 
�breaks down� (exceeds the breakdown point) when 

                                                 
1 This report is released to inform interested parties 
of ongoing research and to encourage discussion of 
work in progress.  Any views expressed on 
statistical, methodological, or operational issues are 
those of the author and not necessarily those of the 
U.S. Census Bureau. 

the actual number of outliers exceeds the expected 
number of outliers in a given distribution 
 
Ratio comparisons are generally quite successful at 
identifying outliers.  In many cases, however, the 
same estimation cells are repeatedly identified using 
different sets of estimates (ratios).  A multivariate 
outlier detection method that simultaneously 
considers key estimates that identifies all (or most) 
outlying estimation cells could save considerable 
analyst research and processing time.  In this paper 
I investigate a variety of robust and resistant 
bivariate and multivariate methods for detecting 
macro-level outliers using survey estimates from 
the U.S. Census Bureau�s Annual Capital 
Expenditures Survey (ACES).   

 
2.  Outlier Detection Methods 

 
2.1. Bivariate Methods (Ratio Comparisons) 
 
In general, the macro-level bivariate analyses 
perform two types of (estimate) comparisons:  
current cell ratios and historic cell ratios.  Current 
cell ratios detect extreme observations within the 
current collection period (in the context of the entire 
survey) by comparing two different item estimates 
from the same data set (current period data) in the 
same estimation cells.  Historic cell ratios detect 
extreme fluctuations in corresponding survey 
estimates between consecutive time periods.   
Because of data limitations specific to ACES, only 
current cell applications are discussed in sections 
2.1.1 through 2.1.3 below. 
 
Both current cell ratios and historic cell ratios are 
ratio edits.  In a ratio edit, the ratio of two highly 
correlated items is compared to upper and lower 
bounds, known as tolerances. Ratios outside the 
tolerances are edit failures.  The usefulness of a 
ratio edit in detecting outliers is highly dependent 
on the strength of the statistical association between 
both items (Thompson, 1999).  A ratio edit implies 
a no-intercept regression model, where the 
numerator is the dependent variable.  If the 

regression model is given by ,��
iii XY εβ +=  εi ~ 

N(0, σ2),  then the correlation between the two ratio 
edit items is the appropriate measure of the 
statistical association of the two items.  More often 
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with economic data, however, the error increases 
proportionally to the independent variable, so that a 
more appropriate regression model is often given by 

,��
iii XY εβ += ),�,0(~ 2σε ii XN and the model-

R2 is the appropriate measure of statistical 
association.  Thompson et al (2001) found that the 
sample correlation will be higher than the 
corresponding model-R2 value in the presence of 
heteroscedasticity, but can be used as a very crude 
(always overestimating) proxy. 
 
Hidiroglou and Berthelot (1986) describe the 
masking effects present in the low correlation ratio 
edits. When the distribution of ratios is very 
positively skewed, then outliers on the left tail of 
the distribution are undetectable.  Second, unless 
ratio edit tolerances are developed within some type 
of unit-size classification, then the variability of the 
ratios will be quite large, and the tolerances will 
need to be accordingly wide.  Consequently, too 
many small units will be flagged as outliers, and not 
enough large units will be considered.  The authors 
refer to this as the �size masking effect� because the 
variability of ratios from small sample units is often 
legitimately larger than the variability of ratios from 
large sample units.  Their statistical edit is 
specifically designed to ameliorate this event. 
 
2.1.1. Robust Regression 
 
Bienias et al (1994) proposed using resistant 
regression methods for micro-level ratio 
comparisons.  I take a similar approach using the 
macro-level estimates as independent and 
dependent variables but instead employ a different 
regression estimator, the Least Trimmed Squares 
robust regression estimation method (Rousseuw, 
1984).  This resistant regression procedure 
minimizes the median of the squared residuals 
instead of the sum of the squared residuals and has 
a 50-percent breakdown point.  This method is 
fairly free of masking effects, but may be sensitive 
to swamping.   For each bivariate comparison, I fit 
the unweighted regression model (

iiCiC XY εβ += ,,
�� ) 

then performed a residual analysis.  Any value 
where absolute residual is greater than 3σ� (the 
robust M.S.E) is flagged as an outlier. 
 
2.1.2.  Resistant Fences 
 
Several programs in the Economic directorate of the 
U.S. Census Bureau use modifications of the 
Exploratory Data Analysis Resistant Fences 
methods to develop tolerances for micro-level ratio 

edits (e.g., Cornett et al (2006), Fescina et al (2004), 
Thompson et al (2001)).  Given an ordered 
distribution of current or historic cell ratios, let q25 
= the first quartile, q75 = the third quartile, m = the 
median, and H = (q75 � q25), the interquartile range.  
Resistant Fences flags ratios less than q25 - k× H or 
greater than q75 + k× H as outliers.  Asymmetric 
Fences flags ratios less than q25 - k× (m - q25) or 
greater than q75 + k× (q75 - m) as outliers. 
 
The value of k determines the fence�s �rule.�  For 
resistant fences, k  = 1.5 defines inner fences, k = 2 
defines middle fences, and k = 3 defines outer 
fences.  The standard Tukey boxplot is constructed 
using resistant inner fences rules.  For asymmetric 
fences, k =3 defines inner fences, k = 4 defines 
middle fences, and k = 6 defines outer fences 
(Thompson, 1999).  Since they are based on 
quartiles, resistant fences rules are designed to 
reduce masking; the statistician controls the 
swamping via the number of interquartile ranges 
between the quartiles and the fences.   
 
Resistant fences rules implicitly assume symmetry.  
When distributions of ratios are highly skewed, it 
can be helpful to symmetrize the original 
distributions of ratios with a power transformation 
such as the natural logarithm or the cube root prior 
to applying the resistant fences rules, then apply the 
inverse transformation to these fences to obtain the 
final tolerances (Thompson, 1999).  Note that 
resistant fences methods do not work for bimodal 
distributions or with distributions that have a non-
zero interquartile range.   
 
In practice, resistant fences methods are generally 
used to develop a �fixed� set of tolerances for 
micro-edits, where tolerances must be developed 
from prior-period data so that questionnaires can be 
edited as they are received.  In contrast, macro 
editing is dynamic, and new tolerances are 
developed for and from each studied data set. 
 
2.1.3.  Hidiroglou-Berthelot (HB) Edit 
 
The Hidiroglou-Berthelot (HB) edit is a procedure 
originally designed to detect outlying historic cell 
ratio values in periodically collected micro-data.  
This method is employed to obtain tabulation 
outliers for both historic and current cell ratio tests 
in the services sectors portion of the Economic 
Census (Sigman, 2005).  For current cell 
comparisons, the HB edit performs the following 
series of transformations on the original 
distribution of current cell ratios prior to outlier 
identification: 
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• Centering transformation  
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where m is the median of the ordered distribution of 
ratios as defined in Section 2.1.2. above. 
• Magnitude transformation  

U
iCiCii XRYMAXsE )��,�({ ,,=  

where R� is an industry-average or median current 

cell ratio (I use R� = m) and 0 ≤ U ≤ 1.  The industry-
average ratio ensures that both of the ratio items are 
converted to the same units of measure.   
 
The exponent U �provides control on the 
importance associated with the magnitude of the 
data� (Hidiroglou and Berthelot, 1986).  For 
example, U ≥ 0.5 will greatly compress large values 
of ratios (generally obtained from smaller units) and 
will leave smaller values of ratios virtually 
unchanged. Following the recommendations of 
Sigman (2005) and Banim (2000), I consider values 
of U = 0.30 and 0.50.  Outliers are identified as 
values smaller than (Em � CdQ1) or larger than (Em + 
CdQ3), where Em is the median value of the Ei, C is a 
parameter that controls the width of the acceptance 
interval (obtained subjectively, through trial and 
error), dQ1 = MAX(Em � EQ1,|A Em|) and dQ3 = 
MAX(EQ3 � Em,|A Em|).  The A parameter in the dQ1 
and dQ3 terms avoids nearly-zero limits when the 
absolute distance from the Em to EQ1 (the first 
quartile of the transformed ratios) or from Em to EQ3 
(the third quartile of the transformed ratios) is quite 
small.  I use A =0.05, as recommended in the 
original paper (Hidiroglou and Berthelot, 1986) and 
examine rules determined with C=10 and C=20. 
 
2.2.  Multivariate Outlier Detection Methods 
 
With multivariate outlier detection, I consider the 
variables jointly to identify estimation cells that 
have outliers in several different variables.  The 
Mahalanobis distance statistic is the classical 
method used to identify outliers in Rp (p =the 
number of covariates) from a randomly sampled 
dataset (X= {x1, x2, � xn}), where xi

/ = (xi1,,xip), 
assumed drawn from a multivariate normal 
distribution with mean µ and covariance Σ, 
estimated respectively by T(X) and C(X).  For each 
observation i, the Mahalanobis distance is computed 
as ))()(())(( ′−−= XXX TxCTxMD iii

. Outlying 

observations are identified by comparing each 

computed MDi to a 2
pχ critical value.  The 

assumption of multivariate normality with 
economic macro-data is somewhat questionable, 
although multivariate lognormality is common.   
 
The classical Mahalanobis distance is prone to 
masking effects because of the weak resistance 
from the parametric estimators for T(X) and C(X).  
Ghosh-Dastidar and Schafer (2006) describe using 
maximum-likelihood estimation (M-estimation) for 
T(X) and C(X).   A drawback of M-estimation is 
that one must estimate the unknown fraction of 
contaminated data and the variance inflation factor 
for contaminated data in advance.  Moreover, the 
M-estimation methods have a low breakdown point 
(at most 1/p), so that they become considerably less 
outlier-resistant as the number of covariates 
increases.   Rouseeuw and Zomeren (1990) 
proposed the use of a minimum volume ellipsoid 
(MVE) measure to develop robust estimates of T(X) 
and C(X) with approximately 50% breakdown 
points.  T(X) is determined from the center of the 
MVE covering half of the observations and C(X) is 
determined by the same ellipsoid after applying a 
correction factor.  Rousseeuw and Van Driessen 
(1999) developed an alternative algorithm that 
searches for the mimimum covariance determinant 
(MCD) that can be obtained from a subset of half 
the data then develops robust estimates of T(X) and 
C(X) with approximately 50% breakdown points 
that have better asymptotic properties than the MVE 
estimates.  Both the MVE and MCD methods 
should have low incidence of masking because of 
their high breakdown points. 
 

3.  The Annual Capital Expenditures Survey 
 
ACES collects data about the nature and level of 
capital expenditures in non-farm businesses 
operating within the United States.  Respondents 
report their expenditures for the calendar year in all 
subsidiaries and divisions for all operations within 
the United States.  ACES respondents report total 
capital expenditures, as well expenditures on 
Structures and expenditures on Equipment, 
hereafter referred to as Total, Structures, and 
Equipment.  All characteristics are further sub-
classified by New/Used purchases (e.g., New 
Structures, Used Structures). 
 
The ACES universe contains two sub-populations:  
employer companies and non-employer companies.  
Different forms are mailed to sample units 
depending on whether they are employer companies 
(ACE-1) or non-employer companies (ACE-2).  
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New ACE-1 and ACE-2 samples are selected each 
year, both with stratified SRS-WOR designs.  The 
ACE-1 sample comprises approximately seventy-
five percent of the ACES sample (roughly 46,000 
companies selected per year for ACE-1 and 15,000 
for ACE-2).  Responding firms account for 
approximately 88 percent of the total capital 
expenditures estimate.  More details concerning the 
ACES survey design, methodology, and data 
limitations are available online at 
www.census.gov/csd/ace. 
 
This paper examines data collected on the ACE-1 
form.  For the ACE-1 component of the survey, 
each company is classified into one industry for 
stratification, and these industry strata are 
subdivided into certainty and non-certainty size 
strata, based on primary source of revenue.   
Sampled units are asked to report their information 
by industry category for the industries in which the 
company participates.  This type of survey is 
referred to in-house as a �roster� survey, where the 
number (roster) of industries for a given sample unit 
is unknown until reported.  The roster data are 
tabulated by the sampled units� self-reported 
industries.  The ACES collects company level and 
roster data, but I consider only roster data items.  
 
The ACES data undergo extensive micro-review 
before macro-level analysis.  However, editing and 
imputation of capital expenditures micro-data 
present some unique challenges.  Standard 
economic data editing techniques such as ratio 
editing are generally not applicable at the individual 
company level.  Capital expenditures within the 
same company are generally characterized by low 
year-to-year correlation:  e.g.,, a company that 
purchases new computers one year is unlikely to 
invest much in new equipment expenditures in the 
following year.  This renders historic cell 
comparisons ineffective � at both the micro- and 
macro-levels.   Current cell ratio comparisons can 
also be quite misleading, since capital expenditures 
are often poorly correlated with available auxiliary 
data such as payroll or receipts (especially for small 
companies) and  the expenditure items within a 
given company can be poorly correlated, since 
structural expenditures and equipment expenditures 
are driven by different needs.  Consequently, ACES 
micro-editing procedures tend to focus on 
maintaining additivity between reported totals and 
associated details.  During a separate phase of the 
micro-level review, analysts compute a �robust� 
Mahalanobis distance using paired values structures 
and equipment; the production program iterates 
twice, first to eliminate potential outliers from T(X) 

and C(X) calculations by comparing the MDi 
statistic to a chi-squared critical value at the 10-
percent significance level, then to compute the T(X) 
and C(X) from the reduced data set.  I refer to this 
procedure hereafter as the �production-MD� 
method.  Outlying sample units are down-weighted.   
 
ACES publishes expansion estimates of totals.  
These expansion estimates are Horvitz-Thompson 
estimates adjusted for unit non-response via a 
weight adjustment procedure.  ACES also publishes 
year-to-year change estimates for key statistics. 
 

4.  Evaluation Study 
 
4.1. Preliminary Analysis and Classification 
 
This analysis uses data from the 2002 and 2003 
ACES data.  The input data are the unit non-
response adjusted weighted reported data, with 
edited values substituted for missing reported data 
items.  The final data are the unit non-response 
adjusted weighted edited/corrected data.   I 
calculated input data and final data estimates by 
summing the non-response adjusted weighted data 
(with outlier corrections) using the company-
reported industry as classification variable.  The 
2002 ACES data set contains 137 industry-level 
records; the 2003 ACES data set contains 148 
industry -evel records.  The input data estimates 
are my analysis variables, and the final data 
estimates are my gold standard� estimates (for 
evaluation).   To begin, I classified each separate 
estimate in the input data set into the following 
categories by comparing the percentage difference 
of the input data estimate to its corresponding final 
data estimate.  
 
Outlier (O).  The percentage difference between 
the input and final data estimates in this cell was 
greater than the 99th percentile of the distribution 
for the item in the collection period. 
Potential outlier (P).  The percentage difference 
between the input and final data estimates in this 
cell was between the 95th and 99th percentiles of the 
distribution  for the item in the collection period. 
Not an outlier (N) The item in this cell was not 
flagged as an �O� or �P.� 
 
An obvious limitation of this classification 
procedure is the subjective selection of the 95th 
percentile as an outlier �cut-off.� This decision was 
data-based and is not meant as a recommendation 
for other data sets. 
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A conservative evaluation classifies input data 
estimates as follows: 
 
Bivariate:  a ratio pair of estimates is an outlier if 
either the numerator or the denominator  is flagged 
as an outlier (O) and is not considered an outlier 
otherwise. 
Multivariate:  a set of industry estimates (within 
the same survey collection) is an outlier if at least 
one estimate is flagged as an outlier (O) and is not 
considered an outlier otherwise.   

 
An anti-conservative evaluation classifies input 
data estimates as follows: 
 
Bivariate:  a ratio pair of estimates is an outlier if 
either the numerator or the denominator is flagged 
as an outlier (O) or a potential outlier (P) and is 
not considered an outlier otherwise. 
Multivariate:  a set of industry estimates (within 
the same survey collection) is an outlier if at least 
one estimate is flagged as an outlier (O) or a 
potential outlier (P) and is not considered an 
outlier otherwise.  

 
Counts of estimate classifications for the bivariate 
and multivariate comparisons are available upon 
request.   
 
Once each record was classified as an outlier, I 
applied the bivariate and multivariate outlier 
detection methods to all input data estimates and 
used the (bivariate or multivariate) outlier 
classifications to compute the evaluation statistics 
described in Section 4.2.   
 
Neither the robust regression models nor the 
resistant fences methods can effectively identify 
outliers when the estimates being compared have 
weak statistical association.  To determine viable 
ratio tests for current cell ratios, I calculated 
Pearson correlation coefficients for each set of ratio 
tests proposed by our subject-matter experts using 
the final data industry-level estimates.  With these 
data sets, only two ratio tests were consistently 
highly correlated in both data sets:  New Structures 
to Structures and New Equipment to Equipment.  
Consequently, I restricted my analysis of the robust 
regression and resistant fences methods to 
comparisons of New Structures with Structures and 
New Equipment with Equipment.   Since the HB 
edit is designed to develop flexible limits in the 
presence of poorly-related or highly volatile ratios, I 
increased its evaluation set to include comparisons 
of Structures to Total, New Structures to Used 
Structures, and Equipment to Total. 

 
4.2. Evaluation Methodology 
 
To evaluate the bivariate methods, I calculated the 
following statistics for each individual test: 
 
Type I error rate.  The proportion of non-outlier 
estimates that are flagged as outliers by a given 
procedure.  
Type II error rate.  The proportion of outlier 
estimates that are not flagged as outliers by a given 
procedure.  
Hit rate.  The proportion of flagged estimates that 
are outliers.  
 
The Type I and Type II error rates consider each 
bivariate comparison to be a hypothesis test, where 
the null hypothesis is that neither of the tested 
estimates is an outlier (Thompson and Sigman, 
1999).  Type I error rates are computed with respect 
to non-outlier observations, and Type II error rates 
are computed with respect to outlier observations.  
Hit rates (Granquist, 1995) measure the operational 
efficiency of a given outlier-detection rule.  Type I 
and Type II error rates for individual tests are 
controlled by modifying test rule parameters.  
Thompson and Sigman (1999) note that when data 
items are subjected to more than one bivariate edit 
or are considered jointly in a multivariate outlier 
detection procedure, then individual Type I and 
Type II error rates are a poor measure of the 
unidentified outliers in the completely reviewed 
data set.   A better measure is the all-item Type II 
error rate, defined as the proportion of outlier 
estimates that are not flagged as outliers by any 
given procedure within a set of outlier detection 
procedures (with respect to the total set of identified 
outliers).   
 
Sets of �bad� multivariate observations differ, 
depending on the outlier-detection procedure.  For 
the joint set of resistant fences and robust regression 
tests, multivariate classification for a given set of 
industry estimates consider structures, new 
structures, equipment, and new equipment (the 
tested items). For the joint set of HB edit tests and 
the multivariate techniques, all six estimates are 
considered, since each is compared in at least one 
ratio test.   
 
For the multivariate analysis, I calculate Type I and 
Type II error rates, where the Type I error rate is the 
proportion of non-outlier records that are flagged 
as outliers (with respect to the total set of identified 
non-outliers).  The Type II error rate is calculated 
similarly as with the bivariate tests, but the 
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denominator is the set of records that contain at 
least one outlier estimate.  In this setting, the hit rate 
is equivalent to (1 - Type II error rate), i.e., the 
power of the multivariate test. 
 
To save space, I present only the anti-conservative 
results.  The complete set of comparisons is 
available upon request.  Throughout the remainder 
of the paper, I use the abbreviation of STRUCT for 
Structures and EQUIP for Equipment, and suffix 
with an _N (new) or _U (used) as applicable. 
 
4.3.  Results 
 
4.3.1. Bivariate Comparisons 
 
I began by examining the single test evaluation 
statistics for the current cell ratio tests from the 
2002 and 2003 data sets, respectively (results 
available upon request).  I found that an artifact of 
my estimate classification procedure was that the 
Type II error rates increase with the anti-
conservative method over the conservative while 
the Type I error rates may remain constant because 
many of the �potential� outlying estimates are 
relatively close to the majority of the distribution. 
 
I found no advantage in using robust regression 
methods over resistant fences methods for the two 
highly-correlated ratio tests.  In fact, the resistant 
regression approach is more prone to swamping 
than the other bivariate methods, with the slight 
decreases in the Type II error rates being offset by 
the corresponding increases in the Type I error 
rates.  For both the resistant fences and HB edit 
applications, there are clear advantages to defining 
a narrower outlier-detection range in terms of 
controlling the Type I error rate while decreasing 
the Type II error rate.  With the ACES data, 
symmetrizing distributions of ratios prior to 
applying resistant fences rules does not appear to 
further improve the effectiveness of the ratio edits.    
Of the remaining methods, the HB edit with U = 0.3 
and C = 10 best balanced the individual Type I and 
Type II error rates (although the individual Type II 
error rates are not small), while yielding fairly 
reasonable hit rates, although it does not outperform 
the asymmetric resistant fences applications for the 
high-correlation ratios.   
 
Because the estimates are tested in more than one 
ratio test, it is necessary to consider all tests jointly 
to assess the overall proportion of outliers left 
undetected after all ratio edits are examined.  Table 
1 presents the all-item Type II error rates for each 
method and data set 

 
Table 1:  All-item Type II Error Rates 

Outlier Method Items 2002 2003 
Robust 

Regression 
STRUCT, STRUCT_N, 

EQUIP, EQUIP_N 
0.57 0.43 

Asymmetric 
Inner Fences 

STRUCT, STRUCT_N, 
EQUIP, EQUIP_N 

0.36 0.37 

Asymmetric 
Outer Fences 

STRUCT, STRUCT_N, 
EQUIP, EQUIP_N 

0.42 0.39 

Symmetric 
Inner Fences 

STRUCT, STRUCT_N, 
EQUIP, EQUIP_N 

0.38 0.39 

Symmetric 
Outer Fences 

STRUCT, STRUCT_N, 
EQUIP, EQUIP_N 

0.47 0.43 

HB (U = 0.5, 
C=10) 

All Items but EQUIP_U 0.45 0.36 

HB (U = 0.5, 
C=20) 

All Items but EQUIP_U 0.52 0.42 

HB (U = 0.3, 
C=10) 

All Items but EQUIP_U 0.42 0.36 

HB  (U = 0.3, 
C=20) 

All Items but EQUIP_U 0.51 0.44 

 
The all-item Type II error rates for the robust 
regression, symmetric resistant fences, and HB edit 
tests with C = 20 are considerably higher than those 
from the asymmetric inner fences and HB edit (U = 
0.3, C=10) tests.  Although the all-item Type II 
error rates are quite good with the Symmetric Inner 
Fences data in 2002,   these same tests were not at 
all effective in terms of Type I error rates and do 
not test as many items as the joint set of HB edit 
tests.   Moreover, the HB edit tests outperform the 
asymmetric inner fences tests on the 2003 data sets, 
while comparing more items.   
 
4.3.2.  Multivariate Method Comparisons 
 
I considered two different sets of multivariate 
observations:{STRUCT,EQUIP}and {STRUCT_N, 
STRUCT_U, EQUIP_N,EQUIP_U}.  The first set 
is used in the ACES micro level outlier detection 
procedures.  The other set is intuitively appealing, 
being comprised of mutually exclusive estimates.   
Following the suggestion of Franklin, Thomas, and 
Brodeur (2000), I consider the MVE and MCD 
applications on log-transformed data (substituting 
0.000001 for the undefined log(0)) as well as on the 
original data.  For the MVE and MCE applications, 
I drop observations that consist of entirely-zero 
estimates (due to software limitations).   I apply the 
ACES �production-MD� to the full original data 
only; neither the log transformation nor the dropped 
entirely-zero estimates had any effect on the 
calculated statistics.   
 
The first set of comparisons on {STRUCT,EQUIP} 
were not promising, with each method characterized 
by an unacceptably high Type II error rate.  Table 2 
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presents the Type I and Type II error rates for the 
second set of Mahalanobis distance comparisons.   
 
Table 2:  Type I and Type II Error Rates 
{STRUCT_N, STRUCT_U, EQUIP_N,EQUIP_U} 

2002 2004 
Outlier Method 

Type I 
Type 

II 
Type I 

Type 
II 

Production-MD 0.00 0.88 0.00 0.89 

MCD (original) 0.45 0.47 0.36 0.28 

MVE (original) 0.39 0.48 0.33 0.30 

MCD (log) 0.04 0.59 0.03 0.65 

MVE (log) 0.03 0.62 0.05 0.56 

 
These results for the log-transformed MCD and 
MVE Mahalanobis distances are far less 
discouraging, since most of the flagged cases are 
indeed outliers.  Of the two resistant methods, the 
MVE results have a marginally better Type I 
Error/Type II Error balance.  Without using the log-
transformation prior to multivariate outlier 
identification, all �flavors� of Mahalanobis distance 
are very prone to swamping.  This is not 
unexpected, given the inherent assumption of 
multivariate normality (a weaker assumption for the 
robust methods). 
 
4.3.3.  Direct Comparison of Multivariate and 
Bivariate Methods 
 
The Type I and Type II error analyses presented in 
Sections 4.3.1. and 4.3.2. provide measures of 
overall effectiveness for each of the analysis 
techniques, but do not compare their respective 
performance.  Table 3 does this. When the bivariate 
and multivariate outcomes differ, the combination 
of HB edits flags more outliers than the 
multivariate methods.  Consequently, the all-item 
Type II error rates for the complete set of HB edits 
are lower than the corresponding MVE error rates 
(for the 2002 data, the anticonservative Type II rate 
is 0.47 (HB) and 0.62 (MVE); for the 2003 data, the  
anticonservative Type II rate is 0.36 (HB) and 0.56 
(MVE)).  Unfortunately, the jointly considered HB 
edits also have a higher Type I error rate than the 
MVE error rates, which has analyst workload 
implications.  Consequently, it would be difficult to 
recommend using this approach as the sole method 
of outlier detection. Nonetheless, the multivariate 
approach could be a promising first approach, 
which could be reinforced by examining a few of 
the current cell ratio tests (with the HB edit) after 
investigating the initial sets of multivariate-method 
flagged estimates. 
 

Table 3:  Comparison of Multivariate Outlier Procedure 
and (Joint) Bivariate Procedure 

HB Edit MVE 
Survey 
Year 

Outcome 
Total 
Cases 

Outlier 
Procedure 
Outcome 

True 
Outlier 

True 
Non- 

Outlier 

True 
Outlier 

True 
Non- 

Outlier

Not Outlier 27 67 27 67 
Same  116 

Outlier 20 2 20 2 

Not Outlier 8 0 18 6 
2002 

Different  32 
Outlier 18 6 8 0 

Not Outlier 17 69 17 69 
Same  110 

Outlier 22 2 22 2 

Not Outlier 2 2 13 5 
2003 

Different  22 
Outlier 13 5 2 2 

 
5. Discussion 

 
Our work would be simpler if one could apply a 
�one method fits all� approach to macro editing.  
That approach might even work if we could 
guarantee that our estimates � or pairs of estimates - 
have the same (or similar) distributions from sample 
to sample � or even within sample.  It is unlikely 
that the latter condition holds with the survey 
examined here, but may be quite realistic for 
another periodic survey.   
 
In this paper, I examined a set of bivariate and 
multivariate outlier detection methods on economic 
data that have inconsistent statistical association 
between items from one collection period to 
another.  With these data, one simply cannot �hard 
code� any limits:  all critical values must be 
determined by the data set at hand.  With the ACES 
data, dynamically standardizing the comparisons, 
then dynamically computing outlier limits did quite 
a bit to ameliorate the effect of distributional 
differences.  However, each method requires 
�rules� for setting the limits, and these rules may 
very well differ for each comparison.  Ultimately, 
flexibility will be key, since �rules� may need to be 
modified on a flow basis as a procedure identifies 
too many or two few outliers. 
 
For ACES, I believe that a hybrid approach to 
macro-level editing could be very effective: 
multivariate MVE outlier identification, followed 
by a current cell ratio comparison.  Along the same 
lines, an automatic procedure that flags bivariate 
pairs via the HB edit tests, then unduplicates 
records could be equally more effective, since more 
items are scrutinized.   For multivariate analysis, 
my best results were obtained by log-transforming 
the estimates, then using the minimum volume 
ellipsoid (MVE) Mahalanobis distance measure to 
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identify outliers.  In terms of bivariate analysis, my 
best results are obtained with some form of the HB 
edit.  
 
This paper examines one set of economic data and 
considers only two separate collections from this 
program.   To extrapolate my recommendations to 
other data sets would be foolish, especially 
considering the relatively atypical nature of the 
economic data and the subjectivity of the outlier 
classification methods.  These results need to be 
validated on other economic data sets � perhaps 
even a more typical periodic business survey or via 
a well-constructed simulation study. 
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