

Multivariate Outlier Detection and Treatment in Business Surveys

Beat Hulliger
University of Applied Sciences Northwestern Switzerland FHNW

Montréal, 21 June 2007 ICES-III

Content

Introduction

Multivariate Outlier Detection Methods

Influential observations

Winsorization and Imputation

Some Conclusions

Introduction

Multivariate outliers with missing values

- Outlier with missing values: If the outlier direction is not observed, the outlier cannot be detected!
- If values are missing because they are outlying we may not detect the outlier.
- We need a missing at random assumption (MAR) to impute missing values.
- ► MAR includes that, conditionally on observed data, unobserved outliers do not influence missingness.

Mahalanobis distance with missing values

- Assume m an estimate of the mean and C an estimate of the covariance matrix
- ▶ For an observation x_i let C_{ioo} denote the sub-matrix of the covariance matrix with entries corresponding to x_{io}
- Marginal MD (Little and Smith 1987):

$$d_{io} = MD_{marg}^{2}(x_{i}) = \frac{p}{q_{i}}(x_{io} - m_{io})^{\top}(C_{ioo})^{-1}(x_{io} - m_{io})$$

 $(q_i \text{ the number of observed values})$

An observation x_i is an outlier if $d_{io} > k$ for a constant k to be chosen.

Multivariate Outlier Detection Methods

BACON for complete non-sampling data

Lit: Billor, N., Hadi, A.S., and Vellemann, P.F. (2000)

Multivariate normal distribution: outlier=large Mahalanobis distance for robust center and scatter.

> Add non-outlying points to a small subset of good data as long as possible.

- Robust: High breakdown point
- Tolerates a few outliers in the good subset
- Computationally fast
- Needs roughly elliptical distribution

BACON-EEM algorithm

- Adapt BACON-algorithm to sampling: weighted mean and weighted covariance estimator
- ► Adapt EM-algorithm to sampling: estimate the quasi-likelihood from the sample (EEM)
- Combine BACON and EEM efficiently

Béguin and Hulliger (Submitted 2007 to Survey Methodology)

ER-algorithm

- ► M-step of EM-algorithm: Do one robustification step (weights) (Little and Smith 1987)
- Non-robust start for robustification step!
- Original proposal without weights
- ▶ Here: Implementation in R with weights (EER).

Transformed Rank Correlations

- 1. Calculate pairwise covariances with MAD and Spearman Rank Corelation (Gnanadesikan and Kettenring 1972).
- 2. Transform data to space of eigenvectors of S.
- 3. Calculate componentwise median and MAD and transform back into original space.

Maronna and Zamar 2002: iterate to convergence.

Béguin and Hulliger 2004: sampling and missing values.

GIMCD

Robustify after non-robust EM-algorithm

- 1. Non-robust EM algorithm (unweighted): m and C
- 2. Gaussian imputation under multivariate normal distribution with m and C.
- 3. MCD algorithm on imputed data.

MU281

- RMT85, ME84 and REV84 are divided by P85.
- ▶ Log of REV84/P85 and of P75.
- ▶ MAR with decreasing missingness for increasing P75.
- ▶ Hypothetical weighting: $w_i = 10$ if P75 ≤ 20, otherwise $w_i = 1$.
- ▶ There are outliers in the original data: representative outliers.
- Additional artificial outliers: non-representative outliers.

Detection of outliers in MU281

miss. rate	outliers	ER	BEM	TRC	GIMCD
10.7	34	18	24	27	20
10.7	85	43	66	69	71
30.1	85	42	61	44	64
30.1	108	56	85	65	43

- ER worst and slowest.
- GIMCD better than expected
- ► TRC good for low missingness rate
- ► BACON-EEM best when high missingness and outlyingness.

Influential observations

Influence

- ► Theory: Influence function (Hampel 1974).
- Sensitivity curve for sampling: Reaction of a statistic T to a value x replacing the value y_i observed for observation i in sample S.
- Sensitivity curve at $x = y_i$: Impact

$$SC(y_i; T, y_S, i) = n (T(y_S) - T(y_{S\setminus i}))$$

- ▶ $T(y_{S\setminus i})$ is the estimator T evaluated at the sample without observation i, i.e. we treat i as a complete non-response.
- T can be a statistic on a sub-population.
- ► T can be simple (Horvitz-Thompson) or complex (Quintile Share Ratio, Spearman Rank Correlation).

$\mathsf{n}|w$

Impact on Horvitz-Thompson type estimator

$$SC(y_i; T_{HT}, y_S, i) = nw_i(y_i - \hat{y}_i),$$

where $\hat{y}_i = \frac{\sum_{k \in S \setminus i} w_k y_k}{\sum_{k \in S \setminus i} w_k}$ is the Hajek-estimator based on the rest of the observations.

Impact and selective editing

- Scores and impacts are closely related: Replace \hat{y}_i in HT-impact by \tilde{y}_i to obtain the local score $s_i = w_i(y_i \tilde{y}_i)$:
- ► Some scores are very complex (e.g. Hidiroglou-Berthelot score) and relation to impact is unclear.
- Only particular impacts are covered by the scores: No guarantee for limitation of impact on other estimators!

EDIMBUS-RPM: Project of ISTAT, CBS, SFSO to develop a manual on Editing and Imputation for Cross-Sectional Business Surveys. Partially funded by Eurostat.

Impact on HTE of rev84

Impact on RHTE of rev84, robustified on rev84

Impact on RHTE of rev84, robustification on Ire84

Winsorization and Imputation

Winsorization

- ► Mahalanobis distance of observed part of outlier d_{io} with m and C robust.
- ▶ Robustness weight u_i : $u_i = k/d_{io}$ if $d_{io} > k$ for a tuning constant k, otherwise $u_i = 1$.
- ▶ Winsorization for observations with $u_i < 1$:

$$\hat{x}_{io} = m_o + u_i (x_{io} - m_o).$$
 (1)

For $d_{io} \leq k$, i.e. $u_i = 1$ we have $\hat{x}_{io} = x_{io}$, i.e. no change.

► We may choose another tuning constant for imputation than for detection to allow for representative outliers.

Gaussian imputation

- Imputation of missing values given the observed values under the multivariate normal model with or without error term.
- $\triangleright \hat{x}_i = (\hat{x}_{io}, \hat{x}_{im})^{\top}$, with $\hat{x}_{im} = m_m + C_{mo} C_{oo}^{-1} (\hat{x}_{io} - m_o) + \epsilon_m$
- ▶ Implementation with package norm of R.
- ▶ To prevent imputation of outliers: Winsorize before imputation!

MU281: Weighted means with TRC

data	rmt85	me84	lre84	lp75
complete	6.92	49.86	2.061	1.059
complete winsorised	6.90	49.53	2.044	1.061
raw	6.94	49.97	2.062	1.059
raw winsorised	6.93	49.80	2.049	1.060
imputed	6.91	49.70	2.047	1.060

MU281: Weighted correlations with TRC

data	rmt85,me84	rmt85,lre84	me84,lre84
complete	0.630	0.151	0.182
complete winsorised	0.624	0.159	0.005
raw	0.625	0.120	0.130
raw winsorised	0.627	0.098	0.022
imputed	0.671	0.083	-0.036

$\mathbf{n}|w$

Some Conclusions

Methods

- MOD: BACON-EEM, TRC
- GIMCD should be researched better
- Gaussian imputation after winsorization is relatively simple but more research is needed, e.g. comparison with Nearest Neighbour Imputation with robust metric (POEM).

Influence and outliers

- ► The scores of selective editing often are particular instances of impacts: Selective editing cannot protect all possible statistics.
- Outliers and influential observations do not necessarily coincide, in particular not, when the model involves transformations.
- Check outliers and impacts on the result of your interest during macro-editing, even if selective editing was applied.

