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WHERE WE ARE HEADED

(Nearly) Actual Example of Magnitude Table with Disclosures

167      317    1284 587  4490 3981 2442 1150      70 (21) 14488
57(1) 1487     172 667   1006   327 1683 1138      46 (7)    6583

616       202    1899  1098      2172 3825 4372  300(40)  787       15271
0     36(10)     0 16(4)       0       0     65 0  140(40)     257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599
Example 1: 4x9 Table of Magnitude Data & Protection Limits for the 7 Disclosure Cells (red)

 D       317    1284 D   4490 3981 2442 1150      D    14488
D     1487     172 667   1006   327 1679   D       D      6583

616       D   1899  1098      2172 3825 4371  D     787       15271
0     D          0 D         0       0     70 0  D        257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599
Example 1a: After Optimal Suppression: 11 Cells (30%) & 2759 Units (7.5%) Suppressed

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487     172 667   1006   327 1683 1138         39        6571

617       196    1899  1095      2172 3825 4372  260      797     15232
0     26          0   12         0       0     65 0  180        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592
Example 1b: After Controlled Tabular Adjustment



OUTLINE

1.  Describe statistical disclosure limitation in tables

2.  Describe complementary cell suppression

3.  Describe controlled tabular adjustment

4.  Describe one approach to preserving data quality and utility
     subject to controlled tabular adjustment:

Quality-Preserving Controlled Tabular Adjustment

5.  Describe a second approach to preserving data quality and
     utility subject to controlled tabular adjustment:

Minimum Discrimination Information
     Controlled Tabular Adjustment 



Statistical Disclosure Limitation (SDL)
for Tabular Data

Tabular data
* frequency (count) data organized in contingency tables
* magnitude data (income, sales, tonnage, # employees, ..)

organized in sets of tables
Tables

* there can be many, many, many tables (national censuses)
* tables can be 1-, 2-, 3-, .........up to many dimensions
* tables can be linked
* table entries:  cells (industry = retail shoe stores &

location = Washington DC)
* data to be published:  cell values (first quarter sales

for shoe stores in Washington DC = $17M)

What is disclosure?

Count data:    disclosure = small counts (1, 2, ...)
Magnitude data: disclosure = dominated cell value

Example: Shoe company # 1: $10M
Shoe company # 2: $  6M
Other companies (total): $  1M

Cell value:       $17M

# 2 can subtract its contribution from cell
value and infer contribution of #1 to within
10% of its true value = DISCLOSURE



Cells containing disclosure are called sensitive cells

How is disclosure in tabular data limited by statistical agencies?
* identify cell values representing disclosure
* determine safe values for these cells

Example: If estimation of any contribution to within 20% is
deemed safe (policy decision), then a safe value is $18M
viz., $18M - 6M = 12M > (120%) $10M

* traditional methods for statistical disclosure limitation
Count data: 

- rounding
- data perturbation
- swapping/switching
- cell suppression

Magnitude data:
- cell suppression

What is complementary cell suppression (CCS)?

  * replace each senstive cell value by a symbol (variable)
* replace selected other cell values by a symbol (variable)

to prevent narrow estimates of sensitive cell values
* process is complete when resulting system of equations

divulges no unsafe estimates of sensitive cell values



Some properties of CCS:

* based on mathematical programming
* very complex theoretically, computationally, practically
   viz., NP-hard even for 1-dimensional tables
* destroys useful information
* thwarts many analyses; favors sophisticated users

How does CCS address data quality?

CCS uses a linear objective function to control oversuppression
Namely, the mathematical program minimizes either:

* total value suppressed
* total percent value suppressed
* number of cells suppressed
* logarithmic function related to cell values (Berg entropy)
* etc.

These are overall (global) measures of data distortion
Further, individual cell costs or capacities can be set to control

individual cell (local) distortion

These are all sensible criteria and worth doing

However, they do not preserve statistical properties (moments)

Moreover, suppression destroys data and thwarts analysis 



Controlled Tabular Adjustment (CTA)

* recent method for SDL in tabular data
* perturbative method–changes, does not eliminate, data
* alternative to complementary cell suppression
* attractive for magnitude data & applicable to count data

Original CTA Method

* identify sensitive tabulation cells
* replace each sensitive value by a safe value–namely,

move the cell value down or up until safety is reached
* use linear programming to adjust nonsensitive values

in order to restore additivity (rebalancing)
         * if second and third steps are performed simultaneously,

a mixed integer linear program (MILP) results.
MILP is extremely computationally demanding

* otherwise (most often), the down/up decision is made
heuristically, followed by rebalancing via
linear programming (LP) which computes efficiently
even for large problems



(Nearly) Actual Example of Magnitude Table with Disclosures

167      317    1284 587  4490 3981 2442 1150      70 (21) 14488
57(1) 1487     172 667   1006   327 1683 1138      46 (7)    6583

616       202    1899  1098      2172 3825 4372  300(40)  787       15271
0     36(10)     0 16(4)       0       0     65 0  140(40)     257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599

Example 1: 4x9 Table of Magnitude Data & Protection Limits for the 7 Disclosure Cells (red)

 D       317    1284 D   4490 3981 2442 1150      D    14488
D     1487     172 667   1006   327 1679   D       D      6583

616       D   1899  1098      2172 3825 4371  D     787       15271
0     D          0 D         0       0     70 0  D        257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599

Example 1a: After Optimal Suppression: 11 Cells (30%) & 2759 Units (7.5%) Suppressed

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487     172 667   1006   327 1683 1138         39        6571

617       196    1899  1095      2172 3825 4372  260      797     15232
0     26          0   12         0       0     65 0  180        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592

Example 1b: After Controlled Tabular Adjustment



MILP for Controlled Tabular Adjustment

Original data:  nx1 vector a
Adjusted data:  nx1 vector 
T denotes the coefficient matrix for the tabulation equations
Denote  
Cells i = 1, ..., s are the sensitive cells
Upper (lower) protection for sensitive cell i denoted 

MILP for case of minimizing sum of absolute adjustments

Subject to:                        

i = 1, ... , s 

    (sensitive cells)

                             i = s+1, ... , n   
           (nonsensitive cells)  

Ii = 0, 1 (binary) 
       :  bounds on adjustments to sensitive cells   i iq p≥
     Capacities  on adjustments to nonsensitive cells
       are typically small, e.g., within measurement error



PRESERVING DISTRIBUTIONAL
PARAMETERS SUBJECT TO 

CONTROLED TABULAR ADJUSTMENT:

QUALITY-PRESERVING CONTROLLED
 TABULAR ADJUSTMENT (QP-CTA)

Joint work with:

James P. Kelly  Rahul J. Patil
    OptTek Systems, Inc.



Data Quality Issues

Based on mathematical programming, in like manner to cell
suppression, CTA can minimize any of:

* total (or max) of absolute values of adjustments
* total (or max) percent absolute adjustment
* number of cells changed
* logarithmic functions of absolute adjustments
* etc.

In addition, adjustments to nonsensitive cells can be
restricted to lie within measurement error

Still, this may not ensure good statistical outcomes, namely,

Objective

analyses on original vs adjusted data yield comparable results



Towards Ensuring Comparable Statistical Analyses

Verification of “comparable results” is mostly empirical
Many, many analyses are possible: Which analysis to choose?

We focus on preserving key statistics and linear models

In the univariate case, we seek to preserve:

* mean values
* variance
* correlation
* regression slope

between original and adjusted data

Preserve means that adjusted data approximate reasonably
well values for these quantities from original data 

Can do this using direct (Tabu) search

I will describe how to do so well in most cases using LP

For simplicity, assume that the down/up decisions for
sensitive cells have already been made (by heuristic)



Preserving Mean Values

When the LP holds a total fixed, it preserves the mean of the
cell values contributing to the total
e.g., fixing the grand total preserves the overall mean

In general, to preserve a mean, introduce (new) constraint:
(adjustments to cells contributing to the mean) = 0

Most of these are already expressed by the tabular constraints



Example:  Preserving the mean of the sensitive cell values

The MILP is:

Subject to:

i = 1, ... , s

i = s+1, ... , n
Ii = 0, 1(binary)

:   bounds on adjustments to sensitive cells 
         = linear cost fcn., e.g., sum of absolute adjust. 

If the down/up directions are pre-selected, this is an LP



Preserving Univariate Statistics

Preserving variances

Seek:  , assuming 

Define:  

L(y) is a linear function of the adjustments y

Typically,   Var(y)/Var(a) is small
Thus, variance is approximately preserved by minimizing

The absolute value is minimized as follows:

 * incorporate two new linear constraints in the system:

* minimize w



Assuring high positive correlation

Seek:  

Corr (a, a + y) = 

= 

Note:
1.  Denominator near one
2.   drives numerator to one



Preserving regression coefficients

Seek:  under ordinary least squares regression
 
of adjusted data Y = a + y on original data X = a,
we want (approximately):    and  

As , then   if   

This corresponds (approximately) to   (if feasible)
Note again: best result achieved for min 

Comment:    is motivated statistically because, 
   as solutions  y and  -y are equally good,
   data a and adjustments y must be uncorrelated



Examples

4x9 Table          
          
Original  Table         

167500 317501 1283751 587501 4490751 3981001 2442001 1150000 70000 14490006
56250 1487000 172500 667503 1006253 327500 1683000 1138250 46000 6584256

616752 202750 1899502 1098751 2172251 3825251 4372753 300000 787500 15275510
0 35000 0 16250 0 0 65000 0 140000 256250

840502 2042251 3355753 2370005 7669255 8133752 8562754 2588250 1043500 36606022

Protection (+/-)
0 0 0 0 0 0 0 0 21000

625 0 0 0 0 0 0 0 7800
0 0 0 0 0 0 0 40000 0
0 10500 0 4875 0 0 0 0 42000

Table 1: 4x9 Table of Magnitude Data and Protection Limits for Its Seven Sensitive Cells (in red)

         

166875 307001 1283751 587501 4490751 3981001 2442001 1150000 91000 14499881
56875 1487000 172500 667503 1006253 327500 1683000 1141875 38200 6580706

616752 202750 1899502 1103626 2172251 3825251 4372753 260000 816300 15269185
0 45500 0 11375 0 0 65000 36375 98000 256250

840502 2042251 3355753 2370005 7669255 8133752 8562754 2588250 1043500 36606022
min  |L-Bnd|
 (Variance)

         

167500 317501 1283751 587501 4490751 3981001 2442001 1150000 91003 14511009
55625 1487000 172500 667503 1006253 327500 1683000 1146675 38200 6584256

616752 202750 1899502 1098751 2172251 3825251 4372753 260000 787498 15235508
0 18791 0 8125 0 0 65000 0 191756 283672

839877 2026042 3355753 2361880 7669255 8133752 8562754 2556675 1108457 36614445

     max L      
     (Corr.)

         

167500 317501 1283751 587501 4490751 3981001 2442001 1129000 91000 14490006
55313 1499637 172500 667503 1006253 327500 1683000 1138250 34300 6584256

616752 202750 1899502 1098751 2172251 3825251 4372753 359884 787500 15335394
937 19250 0 8938 0 0 65000 0 94815 188940

840502 2039138 3355753 2362693 7669255 8133752 8562754 2627134 1007615 36598596

   min |L|
(Regress.)

         

167500 317501 1276439 587501 4490751 3981001 2442001 1150000 91000 14503694
55625 1487000 172500 667503 1006253 327500 1683000 1138250 34420 6572051

616752 202750 1899502 1106063 2172251 3825251 4372753 260000 787500 15242822
0 19250 0 8938 0 0 65000 0 194267 287455

839877 2026501 3348441 2370005 7669255 8133752 8562754 2548250 1107187 36606022

Table 2: Original Table After Various Controlled Tabular Adjustments Using Linear Programming
                       To Preserve Statistical Properties of Sensitive Cells Only



167      317    1284 587  4490 3981 2442 1150      70 (21) 14488
57(1) 1487     172 667   1006   327 1683 1138      46 (7)    6583

616       202    1899  1098      2172 3825 4372  300(40)  787       15271
0     36(10)     0 16(4)       0       0     65 0  140(40)     257

840      2042      3355  2368      7668 8133 8562 2588     1043      36599

Example 1: 4x9 Table of Magnitude Data & Protection Limits for the 7 Disclosure Cells (red)

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487     172 667   1006   327 1679 1138         39        6571

617       196    1899  1095      2172 3825 4371  260      797     15232
0     26          0   12         0       0     70 0  180        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592

Example 1b: Table After Controlled Tabular Adjustment

 167       317    1276 587   4490 3981 2442 1150       91    14501
56     1487     172 667   1006   327 1683 1138         35       6571

617       202    1899  1098      2172 3825 4372  260      787     15232
0     20          0     9         0       0     65 0  194        288

840      2026      3347  2361      7668 8133 8562 2548      1107     36592

Example 1c: Table After Optimal Controlled Tabular Adjustment (Regression)



Results for 4x9 table

Summary: 4x9 Table Linear Programmin
g

Sensitive Cells Corr. Regress.
Slope 

New Var. /
Original Var.

0.98 0.82 0.70
min |L-Bound| (Var.) 0.95 0.93 0.94

max L (Cor.) 0.97 1.20 1.52
min |L| (Reg.)* 0.95 0.93 0.95

All Cells
All 4 Functions 1.00 1.00 1.00

Table 3: Summary of Results of Numeric Simulations on
  4x9 Table Using Linear Programming



Results for 13x13x13 table

Summary:   13x13x13 Table Linear Programmin
g

Sensitive Cells Corr. Regress.
Slope

New Var. /
Original Var.

0.995 0.96 0.94
min |L-Bound| (Var.) 0.995 1.00 1.00

max L (Cor.) 0.995 1.00 1.21
min |L| (Reg.)* 0.995 1.00 1.01

All Cells
All 4 Functions 1.00 1.00 1.00

Table 4: Summary of Results of Numeric Simulations on
  13x13x13 Table Using Linear Programming



    PRESERVING MULTIVARIATE STATISTICS

Preserving the variance-covariance matrix

Data: a, b 
Adjustments: y, z

Variances approximately preserved by preserving means and adjoining
L (y) = 0 to CTA constraints; together =  univariate constraints

Cov (a + y, b+ z) = Cov (a, b) + Cov (y, b) + Cov (a, z) + Cov (y, z)

Thus, Cov (a + y, b + z) = Cov (a, b)    iff

Cov (a, z) + Cov (y, b) + Cov (y, z) = 0

Last term is nonlinear
Could use quadratic programming
We prefer to solve 

min |Cov (a, z) + Cov (y, b) + Cov (y, z)|
subject to univariate constraints 

as a sequence of LPs: for y = y0 (constant), solve optimal z = z0
fix  z = z0 (constant), solve optimal y = y1
Continue
STOP when sufficiently close to 0

Call this system the variance-covariance constraints



Preserving the simple linear regression coefficient

Simple linear regression of b on a
Simple linear regression coefficient   

So, we seek:

Variance-covariance constraints assure left-hand   side near 1 
Univariate constraints assure right-hand side near 1



Preserving correlations

Corr (a + y, b + z) =  Corr (a, b)     iff

and again this is assured by the variance-covariance constraints



COMPUTATIONAL RESULTS (multivariate)

Data

Three 4x9 tables (A, B, C) selected from a 4x9x9 table of actual data
Disclosure rule:  (1, 70)-dominance rule
Sensitive cells:       A (6)    B (5)    C (4)

Effect of CTA on univariate and bivariate statistics

Case    Covariance     Correlation     Reg.Coef. Var 1 Var 2

AB 3.15 1.09 5.94 -3.22  6.20
AC 1.13 2.63 1.14 -2.43  0.10
BC 3.60 6.12 6.70 -3.60 -1.89
Avg. 2.62 3.28 4.59 -3.08  1.47

 (in percent change)



QP-CTA:  SUMMARY

Controlled tabular adjustment (CTA) can

- provide disclosure-protected tabular data
- preserve additive tabular structure
- be implemented using linear programming (LP)

Univariate case

 CTA can be extended using LP to preserve

- means and variances
- correlation and regression between original and adjusted data

Multivariate case

Univariate CTA can be extended using LP to preserve

- multivariate variance-covariance matrix
- bivariate correlations
- bivariate simple linear regression coefficient

We call this method quality-preserving controlled tabular adjustment
(QP-CTA)
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PRESERVING STATISTICAL
DISTRIBUTIONS SUBJECT TO

CONTROLLED TABULAR ADJUSTMENT:

MINIMUM DISCRIMINATION
 INFORMATION CTA (MDI-CTA)

Joint work with:

Jean G. Orelien   Babubhai Shah
    SciMetrika, LLC



KULLBACK-LEIBLER DISTANCE

Kullback-Leibler is a probability-based distance function between
two distributions.  For tables, K-L is defined:

1.  Given a probability distribution  over the set of cells for a( )wπ
 table or space  such that , and a family ofΩ ( ) 1w

Ω

π =∑
distributions   which satisfies certain constraints{ }( )P p w
(e.g.,  ), K-L distance is given by( ) 1p w

Ω

=∑

 
( )( : ( ) log
( )

p wI p p w
wΩ

⎛ ⎞
π) = ⎜ ⎟π⎝ ⎠

∑

2.  The distribution  of   that is closest to  in terms of*( )p w P ( )wπ
 is the minimum discrimination information or MDI( : )I p π



Properties of MDI

1.  is a convex function, hence the procedure yields a( : )I p π
unique MDI solution

2. If   is the MDI, it can be shown that for any member*( )p w
 of  ( )p w P

3.  with equality if and only if ( : ) 0I p π ≥ ( ) ( )w p wπ =



Application of MDI to CTA

1. MDI-CTA: given a distribution (original values in a table),
select a combination of lower or upper safe values that yield
minimum discriminant information

2. In principle, given a table with n  sensitive cells, for each of
the   combinations, we would need to compute the2n

discriminant information to find the MDI
3. Because of the limitations of computing resources, so many

computations cannot be done in a timely manner
4. Therefore, we need heuristic steps



MDI-CTA Algorithm

Algorithm for a 3x3x3 table:

1. Within each row, for each combination of sensitive cells
compute the discrimination information. This requires that
we adjust the values of nonsensitive cells within that row (by
making the values of the nonsensitive cells add up to the total
of original values minus sensitive values in the row)

2. Choose the combination having the lowest value for the row
3. Repeat the steps above for each column and depth
4. The first heuristic solution is arrived at by majority rule: 

- for any cell, we choose a lower safe value if at least 2 of the
  dimensions had selected the lower safe otherwise we select

   the upper safe value; for even dimensions use a tie-breaker 
- we apply iterational proportional fitting (IPF) to obtain
   values for the non-sensitive cells



Improving the initial solution

1. Starting with this initial solution, we flip each of the sensitive
cell values one at a time, use IPF to obtain values for the
nonsensitive cells and compute the discriminant information.
If the resulting discriminant information is minimum, we
keep that combination. Otherwise, we discard it and keep the
one we had previously

2. We continue this until the flipping lead to no changes in the
discriminant information

3. The last value obtained is our solution



Illustration

Original table (sensitive cells marked yellow)

Col 1 Col 2 Col 3 Col 4 Col 5
4844.00   11958.00   10204.00    9100.00   25323.00
14628.00   16305.00   14984.00    3980.00   15565.00
12580.00   14464.00   20961.00   16993.00    9581.00
10282.00    7128.00   17178.00   21274.00   14893.00
21153.00    5088.00   20350.00   18186.00    5417.00

The first step is to find a local solution in each row and then in each
column

Assume (1, 4) entry 9,100.00   requires 1,365.00 units adjustment
Assume (1, 5) entry 25,323.00 requires 3,798.00 units 
Assume (4, 4) entry 21,274.00 requires 3,191.00 units 
Assume (5, 2) entry 5,008.00   requires    764.00 units 

How are solutions obtained?



Example row 1
In the first row, there are 4 possible combinations

Combination 1
4844.00   11958.00   10204.00   10465   21525.00

 +1365 -3798
Combination 2

4844.00   11958.00   10204.00   10465    29121
+1365 +3798

Combination 3
4844.00   11958.00   10204.00    7735.00      29121

-1365 +3798
Combination 4

4844.00   11958.00   10204.00 7735.00   21525.00
Deviation - 1365 - 3798



Consider the 3rd combination

4844.00   11958.00   10204.00    7735.00      29121
Sum of original values of nonsensitive
cells=27006

Sum of modified values
for sensitive cells=36856

Sum of the original values=61429

To preserve the total within that row, we need to modify the original
value of each nonsensitive cell by multiplying it by

Which yields:

4407.60   10880.69   9284.71    7735.00      29121



From these values, we compute the Kullback-Leibler for 
combination 3 in row 1:

4407.6 110880.7 9284.74407.6log 10880.7log 9284.7log
4844 11958 10204

7735 291217735log 29121log
9100 25323

K ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Performing the same operation for the other combination yield

For combination 1, K = 504.28
For combination 2, K = 897.55
For combination 4, K = 872.93

Hence in row 1, we choose combination 3



Initial solution for sensitive cells

After selecting the best combination in each row and column, we select
for each sensitive cell whether to adjust up or down by majority rule

Row  Col Org Data Adjustment
based on
rows

Adjustment
based on
columns

Selection

01 04 9100.00 - - -
01 05 25323.00 + + +
04 04 21274.00 + + +
05 02 5088.00 + + +



Using IPF to adjust nonsensitive cells

Within each row, modify the nonsensitive cells so that sum of the
modified values in that row equal the original total

Col 1 Col 2 Col 3 Col 4 Col 5
  
4844.00

 
11958.00

 
10204.00

  
7735.00

 
29121.00

 
14628.00

 
16305.00

 
14984.00

  
3980.00

 
15565.00

 
12580.00

 
14464.00

 
20961.00

 
16993.00

  
9581.00

 
10282.00

  
7128.00

 
17178.00

 
24465.00

 
14893.00

 
21153.00

  
5852.00

 
20350.00

 
18186.00

  
5417.00



In row 1, we need to modify each nonsensitive value by 

(Original row total - Sum sensitive Cells)
Total original nonsensitive cell values 

61429 36856 24573 0.91
27006 27006

=

−
= =

In row 4, we multiply each nonsensitive cell by

 70755 24465 0.93
49841
−

=

In row 5, we multiply each nonsensitive cell by

70194 5852 0.99
65106

−
=



This yields the table

4,407.60 10,880.69 9,284.71 7,735.00 29,121.00
14,628.00 16,305.00 14,984.00 3,980.00 15,565.00
12,580.00 14,464.00 20,961.00 16,993.00 9,581.00
9,618.92 6,668.32 16,070.20 24,465.00 13,932.56

20,904.78 5,852.00 20,111.20 17,972.59 5,353.43

Using above table (after adjusting nonsensitive values in each
row), we adjust values of the nonsensitive cells in each column so that
sum of values in each column add up to the original totals

Column 1 Column 2 Column3 Column 4 Column 5
Sum

orig.
cells 63,487.00 54,943.00 83,677.00 69,533.00 65,362.00 
Sum
sens.
cells

                   
 5,852.00                   32,200.00 29,121.00 

Sum
nonsen.
cells

      
62,139.30 48,318.01 

      
81,411.11 38,945.59 44,431.99 

Multiply
nonsen.
by 1.02 1.02 1.03 0.96 0.82



Second Iteration of IPF

We repeat the process by adjusting the nonsensitive cells within each
row from the resulting table

  
4503.19

 
11054.76

  
9543.13

  
7735.00

 
29121.00

 
14945.26

 
16565.85

 
15401.04

  
3815.20

 
14593.24

 
12852.84

 
14695.39

 
21544.40

 
16289.38

  
8982.84

  
9827.54

  
6775.00

 
16517.48

 
24465.00

 
13062.72

 
21358.17

  
5852.00

 
20670.95

 
17228.41

  
5019.21



IPF Solution

4399 10840 9334 7735 29121
61429

14968 16651 15439 3815 14589
65462

12885 14787 21619 16299 8989
74579

9846 6813 16567 24465 13064 70755
21389 5852 20718 17219 5016 70194

63487 54943 83677 69533 70779 342409

The marginal totals are preserved



PERFORMANCE OF THE ALGORITHM

1. We verify how good the solution is by generating at least
5,000 combinations at random and compare our solution
against the lowest discriminant information from that sample

2. Simple linear regression parameters between the modified
and original tables should yield   and  0 0b ≈ 1 1b ≈

3. Formal tests such as Kolmogorov-Smirnov can be used to
detect whether the original and modified values have the
same statistical distribution



                 Comparison with a random sample

Table
Dim

Perc
Sen
Cell

MDI for
Solution

MDI from random sample
 (or all combinations)

(Q2.5, Q97.5)
10x10 5% 67.82 67.82 (67.82, 85.16)
10x10 10% 1695.72 1617.17 (1695.93, 2130.84)
10x10 20% 201.25 200 (213.38, 366.91)
10x10 30% 191.55 181.13 (198.95, 308.56)

20x20x20 10% 24542.62 26790.78 (27177.76, 28002.92)
20x20x20 20% 25167.26 27750.5 (27824.3, 28678.9)
20x20x20 30% 75290.4 85086.48 (86221.08, 89707.66)

30x30  175.196 174.47 (177.90, 181.32)
13x13x13  158.87 163.045 (166.456, 373.301)

Green Color=All combinations were computed
Yellow Color=Example from Salazar 
No. of random samples = 5000 

These results show that the algorithm leads to a solution that’s
almost always better than selecting the best solution from
a sample of 5,000 solutions



                       Preservation of original distribution
 

Table Dim.

Percent
Sens.
Cell

 0b
regress. 
adjusted

on original 
 1b

Correlation

Mean pct. chng.
to non-sens cells
     (min, max)

10x10 5% -0.02 1.02 0.99 -0.00 (-0.04, 0.03)
10x10 10% 0.02 0.98 0.99 -0.00 (-0.03, 0.04)
10x10 20% -0.00 1.00 0.99 0.00 (-0.05, 0.05)
10x10 30% 0.00 1.00 0.95 -0.01 (-0.11, 0.13)

20x20x20 10% -0.01 1.00 0.97 -0.00 (-0.06, 0.05)
20x20x20 20% 0.00 1.00 0.97 -0.00 (-0.05, 0.05)
20x20x20 30% 0.01 0.99 0.92 -0.00 (-0.09, 0.09)

30x30  0.00 1.00 1 0.00 (-0.00, 0.00)
13x13x13  0.00 1.00 1 0.00 (-0.00, 0.15)



   Preservation of original distribution: statistical tests

Table
Dim.

Percent
Sens. 

K-S p-values: 
adjust & orig.

from same distrib.
(unconditional)

Kuiper 
p-values

(uncondit.)

  Chi-square 
    p-values 
(conditional)

10x10 5% 1.00 1.00 1.00
10x10 10% 1.00 1.00 0.00
10x10 10% 0.97 0.98 1.00
10x10 30% 0.97 0.91 0.87

20x20x20 10% 0.60 0.16 1.00
20x20x20 20% 0.51 0.21 1.00
20x20x20 30% 0.056 0.00 0.00

4x9  0.88 0.97 0.00
30x30  0.00 0.00 0.00

13x13x13  0.00 0.00 1.00



LIMITATIONS/FUTURE IMPROVEMENT

1. A more optimal solution could be found by replacing values of
sensitive cells with a value beyond the lower or upper bound

2. Marginal totals are held fixed. Sometimes a better solution could be
found by allowing fluctuations in the marginal total

3. Heuristics may need to be improved when the dimensions of the table
are even

4. Changes sometimes should be allowed to zero cells
5. Once, we have arrived at a final solution, it would be ideal to

determine how much better it is compared to the solution coming
from the random sample or to compute the probability of obtaining a
better solution

6. Software developed is limited to a 30x30x30 table.  Future version of
the program should attempt to make it functional at least for a county
level data set (one dimension of the table with equal or greater to
3,000)



CONCLUDING COMMENTS

• We presented a new algorithm for CTA based on Kullback-Leibler MDI
• Advantages of the method

- always a unique solution
- additivity to marginals preserved
- original distribution preserved

• Results show that the algorithm leads to a solution that preserves the
statistical distribution of the original values

• Future improvement will seek to obtain a more optimal solution and
quantify how good the solution obtained is
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