

An Overview of the Pros and Cons of Linearization versus Replication in Establishment Surveys

Richard Valliant
University of Michigan
and
Joint Program in Survey Methodology
University of Maryland

Introduction

- Nonlinear estimators are rule—not exception—in survey estimation
- Means: ratios of estimated totals
- Totals: nonlinear due to nonresponse adjustments, poststratification, other calibration estimation

More Complex Examples

- Price indexes

Long-term index = product of short-term indexes across time periods

Each short-term index may be ratio of long-term indexes

- Regression parameter estimates from X-sectional survey
- Autoregressive parameter estimates from panel survey
- Time series models with trend, seasonal, irregular terms

Options for Variance Estimation

- Linearization
 - Standard linearization
 - Jackknife linearization
- Replication
 - Jackknife
 - BRR
 - Bootstrap

Examples of Establishment Survey Designs

- Stratified, single-stage (often equal probability within strata)
 - Current Employment Statistics (US)
 - Occupational Employment Statistics (US)
 - Business Payrolls Survey (Canada)
 - Survey of Manufacturing (Canada)
- Stratified, two-stage
 - Consumer Price Index (US); geographic PSUs
 - National Compensation Survey (US); geographic PSUs
 - Occupational Safety and Health Statistics (US);
establishments are PSUs/injury cases sampled within

Goals of Variance Estimation

- Construct confidence intervals to make inference about pop parameters
- Estimate variance components for survey design
- Desiderata
 - Design consistent under a design close to what was actually used
 - Model consistent under model that motivates the point estimator
 - Easy application to derived estimates (differences or ratios in domain means, interquartile ranges)

Example

- Ratio estimator in srs

$$\hat{T}_R = N\bar{X}\hat{\beta}, \hat{\beta} = \frac{\bar{y}_s}{\bar{x}_s}. \text{ Motivated by model}$$

$$E_M(y_k) = \beta x_k; \text{ var}_M(y_k) = \sigma^2 x_k$$

- Design-consistent but not model-consistent estimator:

$$v_L = \frac{N^2}{n} \left(1 - \frac{n}{N}\right) \frac{\sum_s r_k^2}{n-1}, \quad r_k = y_k - x_k \hat{\beta}$$

- Both design-consistent and model-consistent:

$$v_2 = \left(\frac{\bar{X}}{\bar{x}_s} \right)^2 v_L$$

- Frequentist approach
 - Objections: piecemeal, every problem needs a new solution
 - Bootstrap is more general, frequentist solution for some problems—generate entire distribution of statistic

Generate pseudo-population:

Booth, Butler, & Hall, *JASA* (1994)

Canty and Davison, *The Statistician* (1999)

More specialized bootstraps:

Rao & Wu *JASA* (1988)

Langlet, Faucher & Lesage, *Proc JSM* (2003)

- (One) Bayesian solution
 - Generate entire posterior of population parameter; use to estimate mean, intervals for parameter, etc
 - Polya posterior: Ghosh & Meeden, *Bayesian Methods for Finite Pop Sampling* (1997)
 - Unknown in practice but theoretically interesting; not available for clustered pops

Practical Issues/Work-arounds

- How to reflect weight adjustments in variance estimates
 - Unknown eligibility
 - Nonresponse
 - Use of auxiliary data (calibration)
- Linearization: some steps often ignored (like NR adjustment)
- Replication: Units combined into groups for jackknife, other methods
 - Loss of degrees of freedom; poor combinations can inject bias
- Item Imputation: special procedures needed

More Practical Issues/Work-arounds

- Design compromise: assume 1st stage units selected with replacement
 - Without replacement theory possible but not always practical
 - Joint selection probabilities not tracked or uncomputable in many (most?) designs
- Adaptive procedures
 - Cell collapsing in PS, NR
 - Weight censoring

- Some designs do not permit design-unbiased or consistent variance estimates
 - Systematic sampling from an ordered list
 - Standard practice is PISE (pretend it's something else)
- Replication estimators are often both model consistent (assuming independent 1st stage units) and design consistent (assuming with-replacement sampling of 1st stage units)

Basic Linearization Method

- Write linear approx to statistic; compute (design or model) variance of approx

$$\begin{aligned}\hat{\theta} - \theta &= g(\hat{t}_1, \hat{t}_2, \dots, \hat{t}_p) - \theta \\ &\approx \sum_{j=1}^p \left(\frac{\partial g}{\partial \hat{t}_j} \Big|_{\hat{\mathbf{t}}=\mathbf{t}} \right) (\hat{t}_j - t_j)\end{aligned}$$

Writing $\hat{t}_j = \sum_h \sum_{i \in s_h} \hat{t}_{jhi}$ and reversing PSU (i) and variable (j) sums and noting t_j is constant:

$$\text{var}(\hat{\theta} - \theta) \approx \text{var} \left[\sum_{h,i \in s_h} \sum_{j=1}^p \left(\frac{\partial g}{\partial \hat{t}_j} \Big|_{\hat{\mathbf{t}}=\mathbf{t}} \right) \hat{t}_{jhi} \right]$$

- The variance can be w.r.t. a model or design
- Assuming units in different strata are independent (model) or sampling is independent from stratum to stratum (design):

$$\text{var}(\hat{\theta} - \theta) \cong \sum_h \text{var}\left(\sum_{i \in s_h} u_i\right)$$

$$u_i = \sum_{j=1}^p \left(\frac{\partial g}{\partial \hat{t}_j} \Big| \hat{\mathbf{t}} = \mathbf{t} \right) \hat{t}_{jhi} \quad (\text{linear substitute method})$$

Variance is computed under whatever design or model is appropriate. Assumption of *with-replacement* selection of PSUs not necessary but often used for design-based calculation.

- Issue of evaluating partial derivatives
 - when to substitute estimates for unknown quantities?
- Binder, *Surv Meth* (1996)
 - Take total differential of statistic
 - Evaluate derivatives at sample estimates where needed
 - Leads to variance estimators with better conditional (model) properties

Example

- More general ratio estimator: $\hat{t}_R = \frac{t_x}{\hat{t}_x} \hat{t}_y$

Evaluating partials at pop values gives “standard” linearization:

$$\hat{t}_R - t \cong \hat{t}_y - \frac{t_y}{t_x} \hat{t}_x = \sum_{k \in s} w_k r_k$$

w_k = survey base weight

$$r_k = y_k - \frac{t_y}{t_x} x_k; \left(t_x / \hat{t}_x \right) \Big|_{\hat{\mathbf{t}}=\mathbf{t}} = 1 \text{ in partials}$$

Binder recipe:

$$\hat{t}_R - t \cong \frac{t_x}{\hat{t}_x} \sum_{k \in s} w_k r_k$$

Retains t_x / \hat{t}_x in variance estimate

- In case of srs without replacement

Standard linearization: $v_L = \frac{N^2}{n} \left(1 - \frac{n}{N}\right) \frac{\sum_s r_k^2}{n-1}$

Royal-Cumberland/Binder:

$$v_2 = \left(\frac{\bar{X}}{\bar{x}_s} \right)^2 v_L$$

Design consistent (under srswor) and approximately model-unbiased (under model that motivates ratio estimator); special case of "*sandwich*" estimator

Problems in Panel Surveys

- Estimating change over time—Involves data from 2 or more time periods
 - Linear substitute useful in multi-stage design if PSUs same in all periods (true in US CPI)
 - Not clean solution in single-stage sample with rotation of PSUs (establishments)—need to worry about non-overlap, births, deaths when computing variance of change

Price Indexes in Panel Surveys—Hard to Use Linearization

- Jevons (geometric mean) price index of change from time 0 to time t is product of 1-period price changes. Each 1-period change is estimated by a geomean:

$$\hat{P}_J(\mathbf{p}_t, \mathbf{p}_0) = \prod_{u=0}^{t-1} \hat{P}_J(\mathbf{p}_{u+1}, \mathbf{p}_u, s_{u+1}) \text{ where}$$

$$P_J(\mathbf{p}_{u+1}, \mathbf{p}_u, s_{u+1}) = \prod_{k \in s_{u+1}} \left(p_k^{u+1} / p_k^u \right)^{w_k E_k^a}$$

E_k^a = proportion of expenditure due to item k at a

reference period a . s_{u+1} = set of sample items at $u+1$.

- With t time periods, this is function of 1-period geometric means

$$\begin{aligned}\log \left[\hat{P}_J (\mathbf{p}_t, \mathbf{p}_0) \right] &= \sum_{u=0}^{t-1} \log \left[\hat{P}_J (\mathbf{p}_{u+1}, \mathbf{p}_u, s_{u+1}) \right] \\ &= \sum_{u=0}^{t-1} \sum_{k \in s_{u+1}} w_k E_k^a \log \left(p_k^{u+1} / p_k^u \right)\end{aligned}$$

- In case of US CPI, could expand sum over $k \in s_{u+1}$ in terms of strata and PSUs, reverse sum over time and samples. Then get linear substitute. Add to sum as time moves on.
- Method would work (between decennial censuses) because PSU sample is fixed. With single-stage establishment sample, may not be feasible.

Jackknife

- Delete one 1st-stage unit at a time; compute estimate from each replicate
- $v_J = \sum_h \frac{n_h - 1}{n_h} \sum_{i \in s_h} \left(\hat{\theta}_{(hi)} - \hat{\theta} \right)^2$
- Works for $\hat{\theta} = g(\hat{t}_1, \hat{t}_2, \dots, \hat{t}_p)$; smooth g , with-replacement sampling of 1st-stage units
- Example: GREG estimator of a total

$$\hat{t}_G = \hat{t}_\pi + \hat{\mathbf{B}}' (\mathbf{t}_x - \hat{\mathbf{t}}_x)$$

- Exact formula for jackknife for GREG is available (Valliant, *Surv Meth* 2004) for single-stage, unequal probability sampling
- An approximation is

$$v_J(\hat{t}_G) \approx \sum_s \left(\frac{w_k g_k r_k}{1 - h_k} \right)^2$$

$$r_k = y_k - \mathbf{x}'_k \hat{\mathbf{B}}; \quad g_k = 1 + \mathbf{x}'_k (\mathbf{X}' \mathbf{W} \mathbf{X})^{-1} (\mathbf{t}_x - \hat{\mathbf{t}}_x) = g\text{-weight}$$

h_k = weighted regression leverage

Jackknife Linearization Method

- Yung & Rao, (*Surv Meth* 1996, *JASA* 2000)
- General idea: get linear approximation to $\hat{\theta}_{(hi)} - \hat{\theta}$ and substitute in v_J
- For GREG $v_{JL} = \sum_h \frac{n_h}{n_h - 1} \sum_{i \in s_h} \left(r_{hi}^* - \bar{r}_h^* \right)^2$
where $r_{hi}^* = \sum_{k \in s_{hi}} w_k g_k r_k$; $\bar{r}_h^* = \sum_{i \in s_h} r_{hi}^* / n_h$
- In single-stage sampling

$$v_{JL} = \sum_h \frac{n_h}{n_h - 1} \sum_{k \in s_h} \left(w_k g_k r_k - \overline{(wgr)}_h \right)^2 \text{ (missing leverage adjustment, but good large sample design/model properties)}$$

More Advanced Linearization Techniques

- Deville, *Surv Meth* (1999)
 - Formulation in terms of influence functions
 - Goal: estimate some parameter $\theta = T(F)$, a function of the distribution function of y
- $\hat{\theta} = T(\hat{F})$ can be linearized near F
 - Compute variance of linear approx;
 - Deville (1999) gives many examples: correlation coefficient, implicit parameters (logistic β), Gini coefficient, quantiles, principal components

- Demnati & Rao, *Surv Meth* (2004)
 - Extension of Deville—unique way to evaluate partials
 - Estimating equations
 - Two-phase sampling

Accounting for Imputations

- If imputations made for missing items, variance of resulting estimates (totals, ratio means, etc) usually increased.
- Treating imputed values as if real can lead to severe underestimates of variances.
- Special procedures needed to account for effect of imputing. Some choices:

Multiple imputation MI (Rubin)

Adjusted jackknife or BRR (Rao, Shao)

Model-assisted MA (Särndal)

To get theory for these methods, 4 different probabilistic distributions can be considered:

Superpopulation model

Sample design

Response mechanism

Imputation mechanism

- Assumptions needed for response mechanism, e.g. random response within certain groups and, in the cases of MI and MA, a superpopulation model that describes the analysis variable.
- How methods are implemented and what assumptions are needed for each depends, in part, on the imputation method used (hot deck, regression, etc).

Multiple Imputation

- MI uses a specialized form of replication. M imputed values created for a missing item \Rightarrow must be a random element to how the imputations are created.
- $\hat{z}_{I(k)}$ = estimate based on the k -th completed data set
- $\hat{V}_{I(k)}$ = naïve variance estimator that treats imputed values as if they were observed. $\hat{V}_{I(k)}$ could be linearization, replication, or an exact formula.
- MI point estimator of θ is

$$\hat{z}_M = \frac{1}{M} \sum_{k=1}^M \hat{z}_{I(k)},$$

- Variance estimator is

$$\hat{V}_M = U_M + \left(1 + \frac{1}{M}\right) B_M, \text{ where}$$

$$U_M = M^{-1} \sum_{k=1}^M \hat{V}_{I(k)} \text{ and}$$

$$B_M = (M-1)^{-1} \sum_{k=1}^M \left(\hat{z}_{I(k)} - \hat{z}_M \right)^2.$$

For hot deck imputation, the MI method assumes a uniform response probability model and a common mean model within each hot deck cell.

- Overestimation in cluster samples—Kim, Brick, Fuller (*JRSS-B* 2006)

Adjusted jackknife

- Rao and Shao (1992) adjusted jackknife (AJ) variance estimator.

In jackknife variance formula use

$\hat{z}_I = g(\hat{y}_{I1}, \dots, \hat{y}_{Ip})$ = full sample estimate including any imputed values

$\hat{z}_{I(hi)} = g(\hat{y}_{I1(hi)}, \dots, \hat{y}_{Ip(hi)})$ = an adjusted estimate with adjustment dependent on imputation method

- Example: 1-stage stratified sample
 - Hot deck method: cells formed and donor selected with probability proportional to sampling weight
 - Adjusted \hat{y} value, associated with deleting unit hi , is

$$\hat{y}_{I(hi)} = \sum_{g=1}^G \left\{ \sum_{j \in A_{Rg}} w_j(hi) y_j + \sum_{j \in A_{Mg}} w_j(hi) \left[y_j^* + e_{j(hi)} \right] \right\}$$

g = hot deck cell (which can cut across strata)

A_{Rg}, A_{Mg} = sets of responding and missing units in g

$w_j(hi)$ = adjusted weight for unit j when unit i in stratum h is omitted

y_j^* = hot deck imputed value for unit j

$e_{j(hi)}$ = $\bar{y}_{Rg(hi)} - \bar{y}_{Rg}$, a residual specific to a replicate

- The AJ method assumes a uniform response probability model within each hot deck cell.

Software

- Options—Stata, SUDAAN, SPSS, WesVar, R survey package
- Off-the-shelf software may not cover what you need

Likely omissions: NR adjustment, adaptive collapsing, specialized estimates (price indexes), item imputations

⇒ Write your own

Summary

Linearization Pros

- good large sample properties
- applies to complex forms of estimates
- can be computationally faster than replication
- maximizes degrees of freedom
- sandwich version is model-robust

Cons

- separate formula for each type of estimate
- special purpose programming
- hard to account for some sample adjustments, e.g., nonresponse, adaptive methods

Replication Pros

- good large sample properties
- applies to complex forms of estimates
- sample adjustments easy to reflect in variance estimates
- applies to analytic subpopulations
- user does not need to know or understand sample design

Cons

- computationally intensive
- may be unclear how best to form replicates
- increased file sizes
- sometimes applied in ways that lose degrees of freedom