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Introduction 

• Nonlinear estimators are rule—not exception—in survey 

estimation 

• Means: ratios of estimated totals 

• Totals: nonlinear due to nonresponse adjustments, 

poststratification, other calibration estimation 

 

2

 



More Complex Examples 

• Price indexes 

Long-term index = product of short-term indexes across 

time periods 

Each short-term index may be ratio of long-term 

indexes 

• Regression parameter estimates from X-sectional survey 

• Autoregressive parameter estimates from panel survey 

• Time series models with trend, seasonal, irregular terms 
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Options for Variance Estimation 

• Linearization 

- Standard linearization 

- Jackknife linearization 

• Replication 

- Jackknife  

- BRR 

- Bootstrap 
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Examples of Establishment Survey Designs 

• Stratified, single-stage (often equal probability within strata) 

- Current Employment Statistics (US)  

- Occupational Employment Statistics (US) 

- Business Payrolls Survey (Canada) 

- Survey of Manufacturing (Canada) 

 

• Stratified, two-stage  

- Consumer Price Index (US); geographic PSUs 

- National Compensation Survey (US); geographic PSUs 

- Occupational Safety and Health Statistics (US); 

establishments are PSUs/injury cases sampled within 
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Goals of Variance Estimation 

• Construct confidence intervals to make inference 

about pop parameters 

• Estimate variance components for survey design 

• Desiderata 

- Design consistent under a design close to what 

was actually used 

- Model consistent under model that motivates the 

point estimator 

- Easy application to derived estimates (differences 

or ratios in domain means, interquartile ranges) 
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Example 

• Ratio estimator in srs 

ˆ ˆˆ ,  s
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β β= = . Motivated by model 

( ) ( ) 2;  varM k k M k kE y x y xβ σ= =  
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• Frequentist approach 

• Objections: piecemeal, every problem needs a new 

solution 

• Bootstrap is more general, frequentist solution for 

some problems—generate entire distribution of 

statistic 

Generate pseudo-population: 

Booth, Butler, & Hall, JASA (1994) 

Canty and Davison, The Statistician (1999) 

More specialized bootstraps: 

Rao & Wu JASA (1988) 

Langlet, Faucher & Lesage, Proc JSM (2003) 
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• (One) Bayesian solution 

- Generate entire posterior of population 

parameter; use to estimate mean, intervals for 

parameter, etc 

- Polya posterior: Ghosh & Meeden, Bayesian 

Methods for Finite Pop Sampling (1997) 

- Unknown in practice but theoretically interesting; 

not available for clustered pops 
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Practical Issues/Work-arounds 

• How to reflect weight adjustments in variance estimates 

- Unknown eligibility 

- Nonresponse 

- Use of auxiliary data (calibration) 

• Linearization: some steps often ignored (like NR 

adjustment) 

• Replication: Units combined into groups for jackknife, other 

methods 

- Loss of degrees of freedom; poor combinations can 

inject bias 

• Item Imputation: special procedures needed 
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More Practical Issues/Work-arounds 

• Design compromise: assume 1st stage units selected 

with replacement 

- Without replacement theory possible but not 

always practical 

- Joint selection probabilities not tracked or 

uncomputable in many (most?) designs 

• Adaptive procedures 

- Cell collapsing in PS, NR 

- Weight censoring 

 

11

 



 

• Some designs do not permit design-unbiased or 

consistent variance estimates 

- Systematic sampling from an ordered list 

- Standard practice is PISE (pretend it’s something 

else) 

• Replication estimators are often both model consistent 

(assuming independent 1st stage units) and design 

consistent (assuming with-replacement sampling of 1st 

stage units) 
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Basic Linearization Method 

• Write linear approx to statistic; compute (design or 

model) variance of approx 

( )

( )
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ˆ
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j jj
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g t t t
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…

 

Writing ˆ ˆ
h

j jhih i st t∈= ∑ ∑  and reversing PSU (i) and 

variable (j) sums and noting jt  is constant: 
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• The variance can be w.r.t. a model or design 

• Assuming units in different strata are independent 

(model) or sampling is independent from stratum to 

stratum (design): 

( ) ( )
ˆ1

ˆvar var

ˆ
ˆ

h
ih i s

p
i jhij

j

u

gu t
t

θ θ ∈

==

− ≅

⎛ ⎞∂
= ⎜ ⎟⎜ ⎟∂⎝ ⎠

∑ ∑

∑ t t

(linear substitute method) 

Variance is computed under whatever design or model 

is appropriate.  Assumption of with-replacement 

selection of PSUs not necessary but often used for 

design-based calculation. 
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• Issue of evaluating partial derivatives 

- when to substitute estimates for unknown 

quantities? 

• Binder, Surv Meth (1996) 

- Take total differential of statistic 

- Evaluate derivatives at sample estimates where 

needed 

- Leads to variance estimators with better conditional 

(model) properties 
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Example 

• More general ratio estimator: ˆ ˆ
ˆ
x

R y
x

tt t
t

=  

Evaluating partials at pop values gives “standard” 
linearization: 

ˆ ˆ ˆy
R y x k kk s

x

t
t t t t w r

t ∈− ≅ − = ∑  

kw  = survey base weight 

y
k k k

x

t
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t
= − x ; ( ) ˆˆ 1x xt t = =t t  in partials 

Binder recipe: 

ˆ
ˆ
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R k kk s
x
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Retains ˆx xt t  in variance estimate 
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• In case of srs without replacement  

Standard linearization: 
22
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⎛ ⎞= −⎜ ⎟ −⎝ ⎠

∑
 

Royal-Cumberland/Binder: 
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Design consistent (under srswor) and 

approximately model-unbiased (under model that 

motivates ratio estimator); special case of 

“sandwich” estimator 
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Problems in Panel Surveys 

• Estimating change over time—involves data from 2 or 

more time periods 

• Linear substitute useful in multi-stage design if PSUs 

same in all periods (true in US CPI) 

• Not clean solution in single-stage sample with 

rotation of PSUs (establishments)—need to worry 

about non-overlap, births, deaths when computing 

variance of change 
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Price Indexes in Panel Surveys—Hard to Use 
Linearization 
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• Jevons (geometric mean) price index of change from time 0 

to time t is product of 1-period price changes.  Each 1-

period change is estimated by a geomean: 
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• With t time periods, this is function of 1-period geometric 

means 
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• In case of US CPI, could expand sum over 1uk s +∈  in terms of 

strata and PSUs, reverse sum over time and samples.  Then 

get linear substitute.  Add to sum as time moves on. 

• Method would work (between decennial censuses) because 

PSU sample is fixed.  With single-stage establishment sample, 

may not be feasible. 
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Jackknife 

• Delete one 1st-stage unit at a time; compute estimate 

from each replicate 

• ( )( )21 ˆ ˆ
h

h
J hih i s

h

nv
n

θ θ∈
−

= −∑ ∑  

• Works for ( )1 2
ˆ ˆ ˆ ˆ, , , pg t t tθ = … ; smooth g, with-replacement 

sampling of 1st-stage units 

• Example: GREG estimator of a total 

( )ˆ ˆˆ ˆG x xt tπ ′= + −B t t  
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• Exact formula for jackknife for GREG is available 

(Valliant, Surv Meth 2004) for single-stage, unequal 

probability sampling 

• An approximation is 

( )
2

ˆ
1
k k k

J G s
k

w g rv t
h

⎛ ⎞
≅ ⎜ ⎟−⎝ ⎠

∑  

ˆ
k k kr y ′= − x B; x( ) ( )1 ˆ1k k x

−′ ′= + −x XWX t t  = g-weight g

kh  = weighted regression leverage 
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Jackknife Linearization Method 

• Yung & Rao, (Surv Meth 1996, JASA 2000) 

• General idea: get linear approximation to ( )
ˆ ˆ

hiθ θ−  and 

substitute in  Jv

• For GREG ( )2

1 h

h
JL hi hh i s

h

nv r r
n

∗ ∗
∈= −

−∑ ∑  

where 
hi

hi k k kk sr w g r∗
∈= ∑ ; 

h
h hi hi sr r n
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• In single-stage sampling 

( )( )2

1 h

h
JL k k k hh k s

h

nv w g r wgr
n ∈= −

−∑ ∑  (missing leverage 

adjustment, but good large sample design/model 

properties) 

 



 
More Advanced Linearization Techniques 

• Deville, Surv Meth (1999) 

- Formulation in terms of influence functions 

- Goal: estimate some parameter ( )T Fθ = , a function 

of the distribution function of y 

• ( )ˆ ˆT Fθ =  can be linearized near F  

- Compute variance of linear approx;  

- Deville (1999) gives many examples: correlation 

coefficient, implicit parameters (logistic ), Gini 

coefficient, quantiles, principal components 

β
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• Demnati & Rao, Surv Meth (2004) 

- Extension of Deville—unique way to evaluate 

partials 

- Estimating equations 

- Two-phase sampling 
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Accounting for Imputations 

• If imputations made for missing items, variance of 
resulting estimates (totals, ratio means, etc) usually 
increased.   

• Treating imputed values as if real can lead to severe 
underestimates of variances. 

• Special procedures needed to account for effect of 
imputing.  Some choices: 

Multiple imputation MI (Rubin) 

Adjusted jackknife or BRR (Rao, Shao) 

Model-assisted MA (Särndal) 
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To get theory for these methods, 4 different probabilistic 

distributions can be considered: 

Superpopulation model Sample design 

Response mechanism Imputation mechanism 

 

• Assumptions needed for response mechanism, e.g. random 

response within certain groups and, in the cases of MI and MA, 

a superpopulation model that describes the analysis variable. 

• How methods are implemented and what assumptions are 

needed for each depends, in part, on the imputation method 

used (hot deck, regression, etc). 
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Multiple Imputation 

• MI uses a specialized form of replication.  M imputed values 
created for a missing item ⇒ must be a random element to how 
the imputations are created. 

• )(ˆI kz  = estimate based on the k-th completed data set 

• ) = naïve variance estimator that treats imputed values as if 

they were observed.  ) could be linearization, replication, or 

an exact formula.   

(Î kV

Î kV (

• MI point estimator of θ  is 

 ( )
1

1ˆ ˆ
M

M I k
k

z z
M =

= ∑ , 
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• Variance estimator is 

1ˆ 1M M MV U B
M

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

, where  

( )
1

1
ˆM

M I kkU M V−
== ∑  and 

( ) ( )( )21

1
ˆ ˆ1

M

M MI k
k

B M z z−

=
= − −∑ .  

For hot deck imputation, the MI method assumes a uniform 
response probability model and a common mean model within 
each hot deck cell. 

• Overestimation in cluster samples—Kim, Brick, Fuller (JRSS-B 
2006) 
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Adjusted jackknife 

• Rao and Shao (1992) adjusted jackknife (AJ) variance estimator.  

In jackknife variance formula use  

( )1ˆ ˆˆ , ,I I Ipz g y y= …  = full sample estimate including any 

imputed values 

( ) ( ) ( )( )1ˆ ˆˆ , ,I hi I hi Ip hiz g y y= …  = an adjusted estimated with 

adjustment dependent on imputation method 
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• Example: 1-stage stratified sample  
- Hot deck method: cells formed and donor selected with 

probability proportional to sampling weight  
ŷ- Adjusted  value, associated with deleting unit hi, is  

( ) ( ) ( ) ( )
1

ˆ
Rg Mg

G

j jI hi j hi j hi j hi
g j A j A

y w y w y e∗

= ∈ ∈

⎧ ⎫⎪ ⎪⎡ ⎤= + +⎨ ⎬⎣ ⎦⎪ ⎪⎩ ⎭
∑ ∑ ∑  

g = hot deck cell (which can cut across strata) 

RgA , MgA  = sets of responding and missing units in g 

( )j hiw  = adjusted weight for unit j when unit i in stratum h is omitted  

jy∗ = hot deck imputed value for unit j  

( ) ( ) Rgj hi Rg hie y y= − , a residual specific to a replicate 

• The AJ method assumes a uniform response probability model within 
each hot deck cell.  
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Software 

 

• Options—Stata, SUDAAN, SPSS, WesVar, R survey 

package 

• Off-the-shelf software may not cover what you need 

Likely omissions: NR adjustment, adaptive collapsing, 

specialized estimates (price indexes), item imputations 

⇒ Write your own 
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Summary 

Linearization Replication 
Pros Pros 

- good large sample properties - good large sample properties 
- applies to complex forms of 

estimates 
- applies to complex forms of 

estimates 
- can be computationally faster 
than replication 

- sample adjustments easy to 
reflect in variance estimates 

- maximizes degrees of freedom - applies to analytic 
subpopulations 

- sandwich version is model-
robust 

- user does not need to know or 
understand sample design 

Cons Cons 

- separate formula for each type 
of estimate 

- computationally intensive 

- special purpose programming - may be unclear how best to 
form replicates 

- increased file sizes - hard to account for some 
sample adjustments, e.g., 
nonresponse, adaptive methods 

- sometimes applied in ways that 
lose degrees of freedom 
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