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K.R.W. Brewer suggests that when estimating the total of a single item for which there is control (auxiliary) data, one employ
a ratio or regression estimator and draw the sample using probabilities proportional to the control values raised to a power
between 1/2 and 1.  Brewer's sample selection scheme can be expanded to multiple targets by drawing overlapping Poisson
samples for a number of items simultaneously using permanent random numbers (PRN's).   We can call the result an example
of "Maximal Brewer Selection" (MBS).   This paper develops the theory behind MBS and the calibration estimator rendering
it practical.  It  goes on to describe how this estimation strategy is being used at the National Agricultural Statistics Service.
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1.  INTRODUCTION

K.R.W. Brewer’s (1963) article in the Australian Journal of Statistics is one of the truly remarkable works in the survey
sampling literature.  It discusses a model-based approach to survey sampling theory, contrasts that approach with the
conventional randomization paradigm, and shows how the two can be used in tandem.  All this seven years before
Royall (1970) set the survey world buzzing with prediction theory (another name for the model-based approach) and
almost three decades before the publication of Särndal et al. (1992) made model-assisted survey sampling (which uses
models and randomization in tandem)  the new conventional wisdom.

This paper builds on one small result in Brewer’s impressive opus and some of his work since then.  Suppose we are
interested in estimating a population (P) total, T = �P yi, with a random sample (S) of size n.  We suspect that the yi
follow the model 

                                                yi  = βxi + kεi,                                                                                     (1)

where E(εi |xi) = E(εiεj |xi, xj) = 0 (i�j), and Var(εi |xi) = σi
2  is known for all i (but k need not be known).   

Equation (1) is a useful model for many establishment surveys.    Whether or not it is correct, the following estimator
is nearly randomization unbiased for large n (and randomization consistent under a number of sampling designs), 

                                                            t = (�P xi)�S (yi /πi)/�S (xi /πi),

where πi is the selection probability of unit i.  Of course, in order for t to be practical, the population sum �P xi must be
known, and the individual xi must also be known for all units in the sample.  In what follows, we further require xi to
be known for all units in the population.  Such an x is called a "control" variable for the target variable y.   

Brewer showed that when  πi � σi  the randomization-expected model variance of t was (asymptotically) minimized for
fixed sample size n.  In this sense,  πi = nσi / �P σk � if less than or equal to 1 for all i � is the optimal selection scheme
given sample size n and estimator t .   Godambe (1955) has a similar result for randomization unbiased estimators.

It is sometimes assumed that the σi have the form xi
g, where 0 �  g � 1.  If that is the case, then when g = 1, the optimal

selection scheme  (i.e., randomization-expected model-variance minimizing) is probability proportional to size,   πi =
nxi / �P xk  , and t collapses into the Horvitz-Thompson mean-of-ratios estimator (n-1 �S (yi /πi); this is Godambe's 1955
result).  When g = 0, the optimal sampling scheme is self-weighting,  πi = n/N.  For establishment surveys, however, g
is usually between ½ and 1.  Brewer has said (out loud, if not in print) that a sensible value for g in many surveys is 3/4.
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Sadly,  Brewer's suggestion that the unit selection probabilities be in proportion to some known control value, xi, raised
to the 3/4 power has not been implemented much in practice.  One problem is that many real establishment surveys have

multiple targets of interest with varying relevant control values.  Recently, however, several survey organizations have
come to use calibration estimators in place of traditional expansion and ratio estimators.  This has allowed the National
Agricultural Statistics Service (NASS) to begin implementing a multivariate version of Brewer's suggestion in its
Crops/Stocks Survey (CS).   Internally, NASS calls this procedure "multivariate probability proportional to size"
sampling.  A better name would be "Maximal Brewer Selection" (MBS).  This method of sample selection has proven
more flexible than the stratification approaches NASS has traditionally used (see Bosecker 1989). 

Section 2  fills out the theory of Brewer selection when there is a single target and control.  Section 3 describes a simple
extension for multiple targets each with its own control variable.  Briefly, a Brewer selection probability is assigned to
each population unit for every target variable of interest.  The largest of these for each unit is then used for the actual
sample selection.    Section 4 addresses a several questions that NASS needed to resolve before making MBS practical
to use.  Poisson PRN sampling allows the agency to focus on different combinations of target variables in different
survey periods.   Section 5 further describes NASS's experience with this new sampling scheme.  Section 6 offers some
comments including one that describes a method for co-ordinating samples to minimize overlap.  

2.   BREWER SELECTION   

2.1. Some Theory

Suppose we have target values, yi, which we believe (roughly) obey the model in equal (1).   We will call tC = �S aiyi,
based on a sample S with n members, a  calibration estimator for T if the calibration equation 

                                                                          �S aixi = �P xi                                                                                                                                               (2)

is satisfied, and each ai = πi 
-1[1 + OP(1/�n)], where πi is (again) the selection probability of unit i, and OP refers to an

asymptotic probability order with respect to the randomization rather than the model (see Isaki and Fuller 1982 for a
development of asymptotics in a finite population context).   This is a bit of a generalization of the definition of a
calibration estimator in Deville and Särndal (1992).  

One obvious choice for the ai is  πi 
-1(�P xk /�S[xk /πk]).  This renders tC equal to t in Section 1.  The choice satisfies the

calibration equation, and the ai are  sufficiently close to  the πi
-1  as long as the  design and  population are  such that 

(�S[xk /πk]  � �P xk)/�P xk  is OP(1/�n). 

The model variance of tC as an estimator of T is

                                                            Eε[(tC � T)2]  =  Eε[(�S aiyi � �P yi)2]
                                                                                 =  Eε[(�S aiεi � �P εi)2]
                                                                                 =  �S ai

2σi
2 � 2�S aiσi

2 + �P σi
2.                                                    (3)

Since each ai � 1/πi,  Eε[(tC � T)2] � �S σi
2 /πi

2 � 2�S σi
2 /πi + �P σi

2 

Technically, the relative difference between the left and right hand sides of the above equation is OP(1/�n).  For our
purposes, this defines when the two sides of an equation are approximately equal.    

The randomization expectation (denoted using the subscript "P") of the model variance of tC is

                                                          EP{ Eε[(tC � T)2]} � �P σi
2 /πi �  �P σi

2.                                                               (4)

Under mild conditions, this is the same as the model expectation of the randomization means squared error of tC.  Isaki
and Fuller called that last quantity the "anticipated variance" of  tC, presumably meaning “the anticipation under the
model of the randomization mean squared error or variance” (randomization mse and variance are virtually identical
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under the designs Isaki and Fuller had in mind).   We will use their term here, but keep in mind an alternative meaning
for “anticipated variance:” the model variance anticipated before sampling.        

If we restrict ourselves to a randomization estimator like tC, a sensible policy is to choose selection probabilities so that
the right hand side of equation (4) is minimized for a given sample size n.  Since n = �P πi, it is a simple matter to set
up a Langrangian equation, the solution to which is πi = nσi/�P σk.  For this solution to be valid each πi must be no greater
than 1.  We assume that to be the case for the time being.

The anticipated variance of  tC  is  (asymptotically)  minimized  by setting the  unit probabilities of selection  equal to
nσi/�P σk no matter which method it used to draw the sample.   In fact, the same minimum variance is obtained if the
sample size itself is allowed to be random with an expected value equal to n.  Poisson sampling is a simple example of
a sampling scheme with a random sample size.  

2.2.  The Selection Scheme  

Suppose we have a working assumption about the σi in equation (1).  In particular, suppose σi is believed to be
proportional to xi

g for some g between 1/2 and 1.  Let us reparameterize the model as 

                                                                     yi = β(xi + [�P xk /�P xk
g]xi

gεi),                                                                 (5)

where (again) E(εi |xi) = E(εiεj |xi, xj) = 0 (i�j), and (now)  Var(εi |xi) = σ2 .  We have chosen this parameterization so that
σ is invariant to changes in scale (units of measurement) of the yi and xi.  Notice that when g =1, σ2 is the relative
variance of yi under the model.  Thus, σ2 for any g is in some sense a generalized relative variance for yi. 

Observe that σi
2 in equation (4) now equals β2 [�P xk /�P xk

g]2xi
2gσ2.  Since under the model T � β �P xk, the relative

anticipated variance of tC is 

                                                        EP{ Eε[(tC � T)2]}          �P xi
2g(πi

-1
� 1)

                                                        ������������������   �  ����������������  σ2.
                                                                 Eε(T2)                       (�P xi

g)2 

Similarly, the asymptotic anticipated coefficient of variance for tC under the model in equation (5) can be defined as
 
                                                                            [�P xi

2g(πi
-1 
� 1)]1/2

                                                         ACV(tC) =  �������������������  σ.                        (6)
                                                                                    �P xi

g

Observe that ACV(tC) decreases, all other things held constant, as any of the πi increases.

The  right hand  side of  equation (6)  attains  its minimum  for a  fixed  expected sample size, nE = �P πi, when πi =
nExi

g/�P xk
g if all these selection probabilities are bounded by 1.  Furthermore, at that minimum,  ACV(tC) �  σ/�nE.  Near

equality holds when all nExi
g/�P xk

g << 1.

Equation (6) further tells us that if we knew  σ, we could be assured of meeting meeting an ACV target, say, C.  We do
this by setting  πi = min{1, nTxi

g/�P xk
g} and  nT  � (σ/C)2.   

We can call nT the “targeted sample size.”  The expected sample size, nE = �P πi, is less than or equal to nT.  Equality
holds only when all the nTxi

g/�P xk
g are bounded by 1, which we are not requiring.  Nevertheless, setting the selection

probabilities at πi = min{1, nTxi
g/�P xk

g}  assures  ACV (tC) � σ/�nT under the model in equation (5) .

In practice σ2 must be guessed at or estimated from previous data, say by 
 
                                                                            �f wixi

gei
2           

                                                                   s2  =   ���������� ,
                                                                             �f wixi

g
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where  f  denotes  the  previous  sample, wi is the  weight  for unit i  in that  sample, ei  =  [�F xk
g /�F xk](yi - bxi)/(bxi 

g),
b = �f wiyi /�f wixi,  and F is the previous population.  Alternatively, 

                                                                       (�f wkxk
g) �f wi(yi - bxi)2/xi

g

                                                            s2  =   �����������������������������   .
                                                                                       (�f wiyi)2

When the  model holds,  ei � εi.    That is one justification of our choices  for the  ei and s2.   Another follows.  If the
selection probabilities were πi =  n*xi

g/�P xk
g << 1 for all i, then the relative randomization variance of tC as an estimator

for �F yi  under Poisson sampling (which is what NASS uses) would be roughly [�F (yi - Bxi)2/πi]/(�F yi)2, where B =
�F yi /�F xi.  This can be reasonably estimated with the sample actually drawn by [�f wi(yi - bxi)2/πi]/(�f wiyi)2 = s2/n*.
Thus, our choice for defining s2 is in some way robust to model failure. 

We will call the a sample selection procedure where each πi = min{1, nTxi
g/�P xk

g} and ½ �g � 1  “Brewer selection.”
This name applies whether or not the choice of nT depends on σ in equation (5). 

3.  MULTIPLE TARGETS

Suppose we have M target variables, and yim denotes the unit i y�value for the m’th target.  Each target has its own
(maybe unique, maybe not) control variable, and xim denotes the unit i x�value for the m’th control.    Furthermore,
suppose each target/control pair is believed to obey the following model:

                                                             yim = βm(xim + [�P xkm /�P xkm
g]xim

gεim),                                                           (7)

where E(εim |xim) = E(εimεjm |xim, xjm) = 0 (i�j), and Var(εim |xim) = σm
2 for all m.

A set of weights, {ai}, can often be constructed for a sample S that satisfies the M calibration equations

                                                                       �S aixim = �P xim,     m = 1, ...., M, 

such that every ai = πi
-1[1 + OP(1/�n)], where πi is (again) the selection probability of unit i.  Each calibration estimator

tC(m) = �S aiyim provides a model unbiased estimator for Tm = �P yim under the model in equation (7).

One potential way to construct these weights is with the formula inspired by linear regression:

                                                           ai = πi
-1 + (�P xk � �S πk

-1xk)(�S ckπk
-1xk’xk)-1ciπi

-1xi’,                                       (8) 

where xi = (xi1, xi2, ..., xiM) is a row vector, and the choice for the ci is arbitrary as long as �S ckπk
-1xk’xk is invertible.

Popular choices are ci = 1/xi1 when M = 1 (so tC becomes t from Section 1), and  ci = 1 (when one xim is constant across
i).   Brewer (1994) suggests ci = (1 � πi)/zi, where zi is some composite measure of size across the M controls.  We will
return to this question of setting the ci  in Section 4.
 
Given target ACV’s (denoted Cm) for all M target variables under the model in equation (7) and known σ-values (σm)
for each variable, we can be assured of meeting these target ACV’s when every

                                                                 πi = min{1, max{nT1hi1 
(g), ..., nTmhiM 

(g)}},             (9)

where nTm = Cm /σm, and him 
(g) = xim

g/�k xkm
g.

Observe that πi in equation (9) can also be expressed as
 
                                                                                   πi = max{πi1, ..., πiM},                                                            (10)

where πim = nTmhim
(g) is Brewer selection for variable m.  Consequently, the selection scheme in equation (10) can be

called “Maximal Brewer Selection (MBS).”  This name applies whether or not each target sample size  nTm is set equal
to Cm /σm.
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4.  APPLYING MBS

4.1.  Poisson PRN Sampling

Brewer selection can be shown to minimize ACV(tC) for a fixed nE under the model in equation (5) and conversely to
minimize the expected sample size given a target ACV.  Maximal Brewer selection when M > 1 does not necessarily
minimize the expected overall sample size given M target ACV’s.  Sigman and Monsour (1995) sketch a method for
determining selection probabilities that are optimal (i.e., expected-sample-size minimizing) in this sense.

Although not optimal, MBS is relatively simple and conveniently flexible when combined with Poisson Permanent-
Random-Number (PRN) sampling (Ohlsson 1995 uses the term “PRN;” the concept can be found in Brewer et al. 1972).
In such a design, every population unit i is independently assigned a random number pi � a PRN � from the uniform
distribution on the interval [0, 1). Unit i is selected  for the sample if and only if pi < πi.

Poisson sampling, whether employing PRN’s or not,  has the well-known property that the joint selection probability
of two distinct units i and k is equal to the product of their individual selection probabilities; that is, πik = πiπk.  This
greatly eases randomization variance estimation.  This method of sampling also assures that �S zi /πi � �P zi, since the
relative variance of �S zi /πi is less than (�P zi

2/πi)/(�P zi)2, which is O(1/n) under very mild restrictions on the zi and πi
(see Isaki and Fuller 1982). 

Poisson PRN sampling furthermore allows us to think of a sample drawn with MBS inclusion probabilities as the union
of M Poisson PRN samples each drawn using the same PRN’s and individual Brewer selection probabilities.  This is
convenient when we are interested in estimates of different combinations of target variables in different surveys.   

For example, NASS makes estimates for potatoes in Minnesota in June and December, row crops (e.g., soybeans and
corn)  in March, June, and December, and small grains (e.g., wheat and barley) in March, June, September, and
December.  It wants to contact the same farms throughout the year, but has little interest in sampling a farm for the
September survey if it has not historically had small grains.  Thus, Poisson PRN samples of farms using the same PRN’s
can be drawn for potatoes, row crops, and small grains, each with its own Brewer selection probabilities.  The union
of all three is the overall sample in June.  Similarly, the union of the row-crops and small-grains samples is the overall
sample in March.  Bailey and Kott (1997) discuss NASS’s use of MBS and Poisson PRN sampling in Minnesota in
greater detail.  

Two additional points should be made at this time.  One is that NASS actually draws the row-crops sample itself using
MBS with individual row crops (soybeans, corn, etc.) serving as the target variables.  The other is that MBS as practiced
by the agency is the result of individual Brewer selections and Poisson PRN sampling.  MBS  is the cart and the
individual Brewer selections the horse. 

The overall MBS sample may not be the most efficient (expected-sample-size minimizing) way to meet multiple ACV
targets. It is, however, the most efficient way of combining individual Brewer-selected samples. 

4.2.  A Count Control Variable

One potential target variable in an establishment survey is the number of units in P that still exist during the survey
period.  An obvious control variable for this target is unity, which can be assigned to each unit in P.   Such a control is
called a “count variable.”

Whether or not the number of units still in existence is really of direct interest to survey managers, setting one
component of xi, say xi0 equal to 1 for all i is a sensible policy.   For one thing, it assures us that tC(m) will be
randomization unbiased when yim > 0, but xim = 0; that is to say, when survey managers are surprised that unit i has a
positive quantity of  target variable m.   

4.3. Calibration and Variance Estimation

NASS determines its calibration weights by first employing equation (8) with ci = 1 � πi. Brewer (1994) calls such a
weighting  scheme  “cosmetic calibration,”  because  the estimator  can be put  in  prediction form  ( tC(m)  =  �S yim +
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(�P xi � �S xi)bm, where bm is defined below equation (11)) when xi contains a count-variable component.  He argues
that with cosmetic calibration individual weights rarely fall below unity.   Weights below unity are deemed undesirable
by many.  

Under the weighting that results from employing equation (8) with ci = 1 � πi, when πi is 1, ai is also 1.  Cosmetic
calibration weights lower than unity, although rare, can still occur.  NASS uses an iterative process described below that
has, so far, successfully eliminated  all weights less than unity.  When plugging  ci = 1 � πi into equation (8) produces
an aj < 1, πj in the equation is set equal to unity, and the equation run again for all i.  This process is continued  until
all ai � 1.  
 
The estimator tC(m) is model unbiased not only under the model in equation (7), but also under the more general model:

                                                                                  yim = xiγm + uim, 

where γm is an unspecified M-vector, and E(uim|xi) = 0.    

In order to be able to estimate the model variance of  tC(m),  we need to add  the assumptions E(uimujm|xi, xj) = 0,  and
E(uim 

2|xi) = σim
2 < �.   In sharp contrast to the design stage, we are allowing the unit variances to be unspecified as long

as they are finite.   

Following the same reasoning that produced equation (3) leads to 

                                                          Eε[(tC(m) � Tm)2]  =   �S ai
2σim

2 � 2�S aiσim
2 + �P σim

2.                                         (3') 

When n is large, we can make use of the near equalities � S aiσim
2 � �S σim

2/πi � �P σim
2, and conclude 

                                                         Eε[(tC(m) � Tm)2]  =  �S (ai
2 � ai)σim

2   <  �S ai
2σim

2.

For a Poisson sample, the randomization mean squared error of tC(m) is 

                                                                 EP[(tC(m) � Tm)2]  �  �P ëim
2(πi

-1 � 1), 

where ëim = yim � xiBm,  and  Bm = (�P ckxk’xk)-1 �P ckxk’ykm   (since  �S aiyim � �P yim  =  �S aiëim � �P ëim  =  �S ëim /πi + 
(�P xk � �S πk

-1xk)(�S ckπk
-1xk’xk)-1�S ciπi

-1xi’ëim � �P ëim �  �S ëim /πi  +  (�P xk � �S πk
-1xk)(�S ckπk

-1xk’xk)-1�P cixi’ëim  �
�P ëim = �S ëim /πi � �P ëim).  When the ck are all equal, the vector Bm is often called the “finite-population” or “census”
regression coefficient.

An estimator for both the model variance and  randomization mean squared of tC(m) is

                                                                             v(t(m)) =  �S (ai
2 � ai)eim

2.                                                              ( 11 )

where eim = yim � xibm, and bm = (�S ckπk
-1xk’xk)-1 �S ckπk

-1xk’ykm are the sample analogues of ëim and Bm, respectively.

4.4.  The Delete-a-Group Jackknife

The problem with v in equation (11) is that is requires eim to be calculated separately for each target variable.   That is
one reason why NASS uses a delete-a-group (DAG) jackknife variance estimator (Kott 1998).  The DAG jackknife is
also convenient when estimating the variances of domain totals and of ratios. 

 The Poisson sample is randomly divided into 15 replicate groups, denoted S1, S2, ..., S15 (some groups can have one
more member than others).  The complement of each Sr is called the jackknife replicate group S(r) = S � Sr.  NASS  then
creates 15 sets of replicate weights.  For the rth set: ai(r) = 0 when i 	Sr; and 

                                                          ai(r) =  ai  + (�P xk � �S(r) akxk)(�S(r) ckakxk’xk)-1ciaixi’
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otherwise.  This choice assures ai(r) � ai for i 	 S(r) when 15 is deemed large.  Moreover, these two equalities will prove
helpful.  Under the model, because the εim are uncorrelated across units,   

            �S ai(r)εim  � �S aiεim  =  � �Sr aiεim + (�P xk � �S(r) akxk)(�S(r) ckakxk’xk)-1�S(r) ciaixi’εim � � �Sr aiεim.  

Even without the model, 

             �S ai(r)ëim � �S aiëim  =  � �Sr aiëim + (�P xk � �S(r) akxk)(�S(r) ckakxk’xk)-1�S(r) ciaixi’ëim  
                                            �  � �Sr aiëim + (�P xk � �S(r) akxk)(�S(r) ckakxk’xk)-1�S(r) ciπi

-1xi’ëim  
                                            �  � �Sr aiëim + (�P xk � �S(r) akxk)(�S(r) ckakxk’xk)-1�S ciπi

-1xi’ëim   
                                            �  � �Sr aiëim + (�P xk � �S(r) akxk)(�S(r) ckakxk’xk)-1�P cixi’ëim 
                                            =  � �Sr aiëim 

when 15 is deemed large.

The DAG variance estimator for tC(m) is :

                                                                vJ(tC(m)) = (14/15)  �15 (�S ai(r)yim � tC(m))2,                                                    (12)

which WESVAR (Westat 1997) calls JK1.

It is easy to see that under the model in equation (7)  and the error structure assumed above, the model expectation of
vJ(tC(m)) when 15 (as well as n) is assumed to be large is approximately  �S ai

2σim
2  (since �S ai(r)yim � tC(m) = �S ai(r)yim �

�S aiyim = �S ai(r)εim � �S aiεim � ��Sr aiεim).  

We sketch below a proof that  the randomization expectation of vJ(tC(m)) is approximately  �P ëim
2πi

-1  when  �P ëim � 0.
This last near equality  obtains  exactly when  ci = 1/(γxi’)  for some  row vector γ (since then �P ëim = �P γxi’ciëim =  γ�P
cixi’ëim = 0).  In practice, NASS does not deliberately choose a ci with this property, however.  This can cause the DAG
jackknife to be randomization-biased.  NASS sets ci = 1 � πi and includes within xi (for calibration purposes) a
component xi0 = 1.  Thus, when all the πi are small,  ci � 1 = 1/(γxi’) for γ = (1, 0,  ..., 0).  When some πi are large,  the
randomization  mean squared error is smaller than �P ëim

2πi
-1, so whatever small bias in vJ(tC(m)) is caused by �P ëim  not

being  near zero is likely  to be overwhelmed  by �P ëim
2πi

-1 being  larger than �P ëim
2(πi

-1 � 1).

Let nr be the size of Sr.   When 15 is large, n/nr � 15 and 14/15 � 1.  The replicate group  Sr  can be viewed  as a  random
subsample of S, and qr = (n/nr)�Sr ëim /πi is a nearly randomization-unbiased estimator of �S ëim /πi, which is
approximately 0 when �P ëim = 0.  The randomization variance of qr  with respect to the subsampling  is  approximately
(n/nr)�S ëim 

2/πi  for each r.   Now �S ai(r)yim � tC(m) � �S ai(r)ëim � �S aiëim  � ��Sr ëim /πi � �qr /15.  We can conclude that the
randomization expectation of  vJ(tC(m)) in equation (12) with respect to the subsampling when �P ëim = 0  is approximately
�S ëim 

2/πi.   

5. MORE ON THE NASS EXPERIENCE

NASS prepares different samples in the various US states.    NASS integrated its crops, stocks, and livestock surveys
in the mid 1980s.  Stratified simple random samples were drawn using a priority stratification scheme.  For example,
Stratum 1 might be large hog farms, Stratum 2 large crop farms that are not large hog farms, and so on, depending on
the priorities of the target variables.  Simple expansion estimates were generated from the sample data.   Livestock
variables were removed from the integrated Crops/Stocks (CS) Survey in the mid 1990s. 

In the 1997/98 growing year, NASS drew a MBS Poisson PRN sample for the CS in one state, Minnesota.  This proved
very successful (Bailey and Kott 1997) .   In 1998/99, this selection method was used in four states.  By 1999/2000, 14
states had MBS Poisson PRN samples.  Plans are to use MBS exclusively in the following year. 

Rather than explicitly adding xi0 to the other xim in selection equation (9), NASS has set a minimum value for πi at
roughly 0.01.  For the most part, the same control variables have been used in the selection equation and the calibration
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(equation (8)), although a count (intercept) variable has been added to every calibration.   Figure 1 provides a chart of
how many control variables were used in each of the 14 1999/2000 CS states.

NASS has set g in equation (9) equal to 0.75.  Brewer (1999) seems to show a slight preference for g = .6. Table 1
reports estimated  s-values in one state (PA) based on June 1999 survey data and various values for g.  Crop and stock
target variables for a single commodity (e.g., corn)  use the same control value.  One thing to notice is the s seems to
increase as the fraction of the sample with positive x-values (called “the commodity population”) and positive y-values
decreases.  The second is that NASS’s choice of g = .75 everywhere needs to be explored more thoroughly. In principle,
the best choice for g minimizes s asymptotically.   

Nonresponse has been handled using the pre-existing imputation scheme, which relies on the old priority stratification.
DAG jackknife variances are estimated treating non-response as a second phase of sampling and pretending that
respondents were reweighted using the priority strata as the reweighting groups.   If the models supporting the
imputation scheme are correct, this will (if anything) bias mean squared error estimates upward.    

6.  COMMENTS 

The change in the Crops/Stocks Survey from an estimation strategy featuring stratified simple random sampling and a
simple expansion estimator to Poisson PRN sampling with maximal Brewer selection probabilities and a (cosmetic)
calibration estimator has proven very successful at NASS.   The Agency is currently exploring the use of the new
strategy in other surveys as well.   In the interest of honest disclosure, NASS actually uses collocated sampling (Brewer
et al., 1972) sampling rather than Poisson sampling.  This modestly reduces the sample-size variability.  Mean squared
errors are estimated as if Poisson samples were drawn.  

Kott and Fetter (1999) show how Poisson PRN sampling can easily to adapted to limit the number of times a single unit
is selected across co-ordinated surveys.   Let πi

 (q) be the unit i selection probability for survey q ( = 1, 2, ... Q).  Unit i
is in the sample for survey q when its PRN, pi, is in the interval [τi,q -1, τi,q), where τi,0 = 0, and τi,f = πi

(1) + ... + πi
(f).   

For this sequential interval Poisson (SIP) sampling  methodology described above to work, τi,q cannot exceed unity.
Fortunately, it is a simple matter to generalize SIP sampling a bit.  We can redefine τi,f as  πi

(1) + ... + πi
(f) � I(i), where I(i)

is the largest integer less than πi
(1) + ... + πi

(f).   When τi,q -1 > τi,q, the interval [τi,q -1, τi,q) is similarly redefined as the union
of [τi,q -1, 1) and [0, τi,q).    

The larger I(i)  the greater the number of survey samples in which unit i can find itself (that number will either be I(i) or
I(i) + 1) .   This is another reason NASS needs to explore the value at which g in equation (9) is set.  The smaller the
value, the less likely a particular unit with large control values with be selected for a sample.         

It may also be that the best choice for g varies by target variable.  Worse, Var(εim) � xim
 g may not even be the appropriate

specification.   Oddly, this widely used specification began as an approximation of  axim + bxim 
2 (see Cochran, 1963,

p. 256), which has prompted the belief  that ½  must be the lower bound of g in practice.  In the NASS application, the
quality of control information is better for larger values.  Consequently, it is possible that the best  g for some target
variables is, in fact,  less than ½.
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           Figure 1: Number of Control Variables in Each State

Table 1:  Target Variable Calculations in PA With Different Values for g

Commodity  
Commodity 
Population 

Survey:
Response

Rate

Survey:
Positive
Reports

Survey:
% with

Item
s  with
 g = 0.5

s  with 
g = 0.6

s  with 
g  =0.75

s  with
g = 0.9

Alfalfa Acres 18006   84.3% 372  60.7%  1.26 1.26 1.27 1.31 
Wheat Stocks 8079   84.4% 29  6.2%  16.88 14.93 12.59 10.82 
Barley Acres 5206   84.3% 122  46.0%  1.39 1.40 1.45 1.55 
Corn Stocks 21268   82.4% 314  36.1%  2.64 2.51 2.43 2.47 
Corn Acres 21268   84.3% 559  78.5%  0.75 0.74 0.76 0.81 
Oat Stocks 11824   84.4% 114  22.2%  2.81 2.85 2.95 3.13 
Oat Acres 11824   84.3% 250  54.8%  1.39 1.41 1.47 1.55 
Other Hay 19478   84.3% 446  65.5%  1.30 1.28 1.27 1.31 
Potato Acres 829   84.3% 67  59.4%  0.82 0.82 0.87 0.99 
Rye Acres 4210   84.3% 103  40.5%  1.95 1.98 2.08 2.24 
Soybean Stocks 7030   83.9% 79  18.4%  3.90 3.73 3.56 3.48 
Soybean Acres 7030   84.3% 234  67.1%  0.95 0.95 0.96 1.00 
Tobacco Acres 979   84.3% 9  33.3%  1.33 1.35 1.41 1.48 
Wheat Acres 3836   84.3% 230  67.9%  0.98 1.03 1.14 1.29 
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ESTIMATORS FOR USE WITH POISSON SAMPLING AND RELATED SELECTION PROCEDURES

K.R.W. Brewer, Australian National University and Timothy G. Gregoire, Yale University
Ken Brewer, Dept of Statistics and Econometrics, ANU, ACT 0200, Australia. <Ken.Brewer.anu.edu.au>

ABSTRACT

Estimators of total devised for use with Poisson Sampling and related selection procedures have so far been treated as
completely unconditional.  Their variances have been defined and estimated over the complete range of all possible
samples.  In this paper we analyze Poisson and collocated samples conditionally on their achieved sample size, as though
that size had been fixed beforehand.  The performances of the conditional Horvitz-Thompson estimator (known to foresters
as 3P7) and of some other related estimators are investigated in this context, both analytically and empirically. The
consequences of using these estimators in the contexts of randomly and deliberately ordered systematic sampling are also
subjected to scrutiny.

Key Words: Conditional estimation; Cosmetic calibration; Forest surveys; Horvitz-Thompson estimator;
Regression estimation; Systematic sampling.

1. UNCONDITIONAL AND CONDITIONAL DESIGN-BASED INFERENCE

Design-based inference is usually unconditional.  Expectations and variances are defined over the set of all possible
samples that could have been selected given the selection procedure used.  Where the sample size n  is a random
variable, however, estimates of the unconditional variance or mean squared error are not appropriate measures of
spread for the particular sample estimate obtained.  In Poisson sampling, for instance, the sample size can range
from zero to N , (the population size), and the Horvitz-Thompson (HT) estimator , ˆ Y •HT , of the population total
Y• , defined by

ˆ Y •HT = Σ i ∈sYiπi
−1, (1)

where Yi  is the value of the item y  for the i th population unit, π i  is its (a priori) first order inclusion probability
and s  is the set of population units included in sample, tends to be proportional to n .  Because of this, the design-
variance of ˆ Y •HT , defined by

V 2( ˆ Y •HT ) = E( ˆ Y •HT −Y•HT)2 , (2)
where E  is the expectation operator over all possible samples, is typically far more dependent on the variability of
the sample size than on the variability in the contributions Yiπi

−1 .

The estimator referred to in Forestry as 3P7 (Grosenbaugh 1964, 1965), namely
ˆ Y •3P7 = {E(n)/ n}Σ i∈sYiπ i

−1 (3)

which compensates for the random variability in n , is therefore far preferable to ˆ Y • HT .  It can be viewed as the
special case of the HT ratio estimator

ˆ Y •HTR = {X• / ˆ X •HT} ˆ Y •HT , (4)
(Brewer 1963) when the auxiliary variable Xi  is equal to π i  for all i . The estimator of variance suggested for it by
Brewer, Early and Joyce (1972) was the standard one based on the Taylor approximation to the variance of this ratio
estimator.  It was, therefore, an estimator of the unconditional variance of that ratio estimator, defined over all
possible Poisson samples that could be selected with those π i , regardless of the achieved sample size.  Estimates
based on (3) and (4), however, are still likely to be more accurate if n > E(n) , than if n < E(n) , so the standard
variance estimator is more relevant to a sample of size E(n) than to one of size n .

The other obvious way in which 3P7 can be interpreted is as an HT estimator conditioned on the achieved sample
size, n .  In order for this interpretation to be meaningful, however, it is necessary to postulate the existence of
"adjusted inclusion probabilities" (Furnival, Gregoire and Grosenbaugh 1987).  The relationship between the actual
inclusion probability π i  and the adjusted inclusion probability 

�

��π i  is

�

��π i ={n / E(n)}π i , (5)
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and the 3P7 estimator can conveniently be written as

�

ˆ Y •3P7 = Σ i ∈sYi
��π i

−1 .  (6)
This is in the form of the HT estimator, but with 

�

��π i  taking over the role of π i .  In this paper we will be using the
estimator (6) and estimating its variance conditional on the achieved sample size, n , using the adjusted inclusion
probabilities, 

��

��π i , as though they had been the actual inclusion probabilities.

(Simple random sampling without replacement (srswor) theory provides a close analogy to the analysis described
here in its use of the poststratification technique.  The poststratified estimator is technically a ratio estimator with the
auxiliary variable Xi  set equal to unity for all i  within the stratum, but it is usually analyzed as though the sample
within the poststratum had been selected using srswor with the sample size fixed.)

2. ESTIMATION OF THE DESIGN-VARIANCE CONDITIONED ON ACHIEVED SAMPLE SIZE

There is a serious problem associated with estimating the variance of the HT estimator, namely that the traditional
variance estimators (Horvitz and Thompson 1952, Sen 1953, Yates and Grundy 1953) are crucially dependent on
knowledge of the joint or second order inclusion probabilities of pairs of units in sample, π ij .  These quantities are
usually awkward to evaluate and it is common practice to circumvent the need for them either by invoking the
jackknife or by using some other indirect approach (Särndal 1996, Brewer 1999).

In the “conditioned estimation” context described towards the end of Section 1 the problem is even sharper in that
the "adjusted" first order inclusion probabilities are themselves fictitious.  Any attempt to create similarly fictitious
"adjusted" second order inclusion probabilities is bound to be arbitrary (and therefore suspect) and is also likely to
be awkward into the bargain.

Here we have avoided this problem by finding estimators of an approximation to what we call the "natural" variance
of the HT estimator.  By this we mean the variance that estimator has when the π ij  are not deliberately manipulated
to reduce the HT variance below (or, perversely, to increase it above) that "natural" level.  The basic variance
estimator we use differs from equation (2.3) in Deville (1999), but has features in common with it and is similar in
intent.  For the details, see Brewer (2000).

The most important case where the HT estimator does not have that "natural" value is where the sample is selected
systematically with unequal probabilities from a deliberately ordered population.  This case is also dealt with
separately in the same reference.

3. A MONTE CARLO EXERCISE

There are two principal dangers that could arise in the use of the approach described in Sections 1 and 2.  Both these
dangers stem from the fact that the randomization distribution of an unequal probability sample selected with
expected size E(n)  and achieved size n ≠ E(n)  differs from that of an unequal probability sample drawn with
fixed size n .  When n < E(n) , this is typically because fewer small units have been chosen than would have been
expected, and vice versa.

Suppose then that we observe n < E(n) .  Let Yi  be the actual survey variable of interest and Xi  a known measure
believed to be roughly proportional to it. The first danger is that if (as is frequently the case with populations of
establishments) the smaller units are relatively more variable than the larger ones in their values of Yi / Xi ,  a
relative scarcity of small units in the sample might lead to some underestimation of the variance.  The second and
more important danger occurs when Yi / Xi  is not roughly constant over the whole range of Xi  but actually tends
to increase (decrease) with Xi .  Then a relative scarcity of small units in the sample can lead to an
over(under)estimate of that ratio itself, and the contribution to MSE made by squared bias could become important.



281

Poisson sampling is frequently used in forestry, so this is an important special case.  The context in which
comparisons are being made here is that of sampling trees from a forest; in particular, a population of 14,443
loblolly pine trees from Alabama  (Gregoire and Williams 1992, Gregoire and Valentine 1998) with an aggregate
bole volume of Y• = 8,985.8m3.  Consider the case when Xi ≡ Ai , where Ai  is the cross-sectional area of the stem
at breast height.  The Yi / Ai  values in this population are nearly homoskedastic.  Homoskedasticity in Yi / Ai
eliminates the first of the two problems described above but the second remains.

Since Yi / Ai  tends to increase with Ai  the ratio estimation bias can be appreciable.  To remedy this we

experimented with different powers of basal area.  We were able to establish empirically that A4/ 3 , was a suitable
choice for this population of loblolly pine trees.  In addition to basal area, we had records of tree heights, but these
were poorly determined in comparison with basal area.  We therefore used a power of height as a secondary
supplementary variable when using regression estimation.  Denoting height by H , we had both Y ∝ AH  and
Y ∝ A4/ 3 , from which it followed logically that Y ∝ H 4 , a relationship that accorded well with our data, so we
initially chose H 4  as our secondary supplementary variable; i.e. we used X1i = Ai

4/ 3
 and X2i = Hi

4
.  (Other

species were found to require different models.)  We found later, however, that it was even better to use the product
of squared diameter and height as a single regressor. This “cylindrical” model could well be appropriate for other
species, also.

We used four selection procedures, Deliberately Ordered Systematic (DS), Randomly Ordered Systematic (RS),
Poisson (PS), and Collocated (CS).  In each case the sampling was with inclusion probabilities proportional to size,
π i ∝ Ai , and without replacement.  (In no instance did the largest Ai  on the population exceed the skip interval.)
The DS samples were selected from the population of 14,443 trees described above, in ascending order of Ai .  The
RS samples were selected from the same population, but randomly ordered.  In Poisson sampling, the i th
population unit is independently selected with probability πi .  It is allotted a random number ri  in the interval [0,1)
and included in sample if and only if ri < π i .  For Collocated sampling the ri  are uniformly spaced over [0,1)
instead (Brewer, Early and Hanif 1984).

For each of these four selection procedures we selected from this population 100,000 samples with E(n) = 144 units;
and we did the same for samples with E(n) = 48 and E(n) =24 units also.  To be circumspect, we repeated the
simulation samplings with different random number seeds. Results from these repeated runs varied little; the results
presented in the following section were each obtained from a single run of 100,000 samples for each expected
sample size.

(The RS and CS runs involved a complete new random ordering of the population prior to the selection of each of
the 100,000 samples.  Experimental runs were also obtained for RS using the same random population ordering for
each sample.  The observed (or Monte Carlo) root mean squared errors (RMSEs) differed from ordering to ordering
but were typically lower by about 5%, as the first stage component of variance, that between orderings, had been
eliminated.  The experiment was dropped when the estimated variances were found to be no smaller than for the
standard RS runs, and it was realised that the more meaningful definition of the RS variance included the first stage
component.)

We next calculated the means and variances (over each set of 100,000 samples) for a number of different estimators
of total volume, Y• .  The first was the 3P7 of (6) above. The remaining estimators all had certain features in
common.  They were generalized regression estimators (GREGs) and they were almost in the standard model-
assisted survey sampling form (Särndal, Swensson and Wretman 1992 Section 6.4).  The only differences from that
standard form were (i) that theπ i

−1  in the formula for the implicit regression coefficient was replaced by (π i
−1 −1)

and (ii) that Deville and Särndal's (1992) qk  weight, which in this paper is represented by zi , was chosen to be in
the sample space of the regressor variables.  These two features combined ensured that the GREG estimators were
cosmetically calibrated or interpretable in terms of design-based and prediction-based inference simultaneously
(Brewer 1999).  The formula for a cosmetically calibrated estimator of Y•  is

ˆ Y •COSCAL = ′ 1 nΠΠΠΠs
−1Ys + ( ′ 1 N X − ′ 1 n ΠΠΠΠs

−1Xs ) ˆ β β β β (7)
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where ˆ β β β β = })({})({ 11111
snssssnsss YIZXXIZX −Π′−Π′ −−−−− . (8)

Here ΠΠΠΠs  is the diagonal matrix of the sample πi , Ys  is the column vector of the sample yi , and X , Xs  are  the
N × p , n × p  population and sample matrices, respectively, of the regressor or supplementary variables.

The cosmetically calibrated estimator is on average marginally less efficient than the standard GREG.  Its interest
lies partly in the fact that it is readily interpretable both as a design-based and as a prediction-based estimator
(Brewer 1999) and partly in the ease with which negative and other undesirably small sample weights can be
removed (Brewer 1999, Kott and Bailey 2000).  The fact that the efficiencies of the estimators are hardly affected by
the choice of Z  is a probable indication that the choice of Z  to be a linear function of the column sums of X  (a
necessary requirement for cosmetic calibration) involves no appreciable penalty.

Seven specific estimators in this category are set out below, with their regressor variable sets indicated in brackets:
Coscal (1, A)  and Coscal (A, H) , both with zi = Ai ; Coscal (A4 / 3) , Coscal (1, A4 / 3 ) , Coscal(A4 / 3, H 4 )  and

Coscal ),,1( 43/4 HA , all four with zi = Ai
4 / 3 ; and Coscal )( 2 HD  with ii HDz 2= , which corresponds to the

cylindrical model mentioned earlier. Of these, the first two are the only survivors from a long list of potential
alternative estimators, retained less for their performance than for their a priori attractiveness.  The next two are the
best performing estimators that we could construct using only the basal area data.  The last three were the best we
could construct using all the data available to us, namely basal area and height.  In this paper we shall be focusing
particularly on 3P7 and the coscal estimator with the cylindrical model.

Since the primary aim of this exercise was to determine whether it was possible to estimate with acceptable
accuracy the variance of an estimator conditioned on n , all the variance estimators used were either already suited
to this requirement or constructed specifically to meet it.  In the first category there were two estimators that we
denote by vS and BEJ, both of which had originally been devised to estimate the variance of the estimator 3P7, vS
by foresters (Furnival, Gregoire and Grosenbaugh 1987), and BEJ by statisticians (Brewer, Early and Joyce 1972).

The other variance estimators used were specifically devised for this exercise in Brewer (2000). For selection
procedures other than DS, a set of variance estimators has been used that is appropriate for the situation where the
joint inclusion probabilities have not been manipulated with the aim of reducing the variance of the estimator of
total, but retain their “natural” values.  The simplest of these other estimators has been adapted from equations (6)
and (8) of Brewer (2000). Its formula is

��

˜ ˆ V 2( ˆ Y •3P7 ) = Σ i =1
n (c−1 −

��π i)(Yi
��π i

−1 − ˆ Y •3P7n
−1 )2 (9)

where 
��

��π i = πin / E(n)  is the adjusted inclusion probability and c = (n −1) /(n − n−1Σk=1
N π k

2 ) .

The remaining estimators in this group resemble ˜ ˆ V 2( ˆ Y •3P7 )  closely, but in each case the factor 
��

(Yi
��π i

−1 − Y•n
−1)2  is

replaced by a factor 
��

(Yi − ˆ Y i )
2 ��π i

−2 where ˆ Y i  is the prediction model estimate of a prediction expectation Y i  of Yi .

For instance, in the formula for ˜ ˆ V 2(1, A) , the value of ˆ Y i  is arrived at by using Coscal (1, A) , the cosmetically
calibrated prediction model with the intercept term and the basal area as the regressor variables.  Special forms of
these estimators are also given in Brewer (2000) for use with DS, where the ordinary variance estimators could be
expected to overestimate severely.  These are:
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ˆ V DS
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Here ˆ Y k = Xk
ˆ β β β β  is the prediction estimator of the prediction mean Y k = Xkββββ  of Yk .
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4. SOME EMPIRICAL RESULTS

The standard deviations of n  for E(n) = 144 are 12.0 for Poisson and 7.9 for collocated sampling.  The
corresponding figures for E(n) = 48 are 6.9 and 4.0.  For E(n) =24 they are 4.9 and 3.2.

Table 1. Observed percentage bias of Horvitz-Thompson and coscal estimators of total volume
based on 100, 000 samples for each combination of sampling design and expected sample size.

Estimator Poisson Collocated
Randomly
Ordered

Systematic

Deliberately
Ordered

Systematic

----------- E(n) = 144 ----------

HTY•̂ 0.02 -0.02 0.00 0.00

73
ˆ

PY• 0.00 -0.05 0.00 0.00
Coscal (1, A) -0.07 -0.08 -0.07 0.00

Coscal (A4/3, H4) 0.11 0.09 0.11 0.08
Coscal (1, A4/3,

H4)
0.12 0.11 0.12 0.09

Coscal (D2H) -0.01 -0.02 0.00 -0.01

----------- E(n) = 48 ----------

HTY•̂ 0.02 -0.02 -0.03 0.00

73
ˆ

PY• -0.02 -0.07 -0.03 0.00
Coscal (1, A) -0.27 -0.21 -0.28 -0.05

Coscal (A4/3, H4) 0.32 0.33 0.32 0.29
Coscal (1, A4/3,

H4)
0.36 0.37 0.36 0.29

Coscal (D2H) -0.03 -0.01 -0.03 0.00

----------- E(n) = 24 ----------

HTY•̂ 0.01 0.01 0.00 -0.01

73
ˆ

PY• -0.01 -0.18 0.00 -0.01
Coscal (1, A) -0.59 -0.47 -0.59 -0.18

Coscal (A4/3, H4) 0.67 0.63 0.61 0.55
Coscal (1, A4/3,

H4)
0.78 0.73 0.71 0.55

Coscal (D2H) -0.03 -0.04 -0.06 -0.04

The largest observed Monte Carlo biases in the estimator of total are (in absolute magnitude) 0.12% for E(n) = 144,
0.37% for E(n) = 48 and 0.78% for E(n) = 24 (Table 1).  There is a strong tendency for them to be positive,
especially for the more accurate estimators.  The largest percentage contributions of the squared bias term to the
MSE are about 1% for E(n) = 144, 5% for E(n) = 48 and 14% for E(n) = 24.

Table 2 displays the root mean square errors (RMSE), expressed as a percentage of Y•  The observed RMSEs of
3P7 are of the same order of magnitude for all selection procedures, but naturally lowest for DS. GREG estimation
using supplementary variables is capable of reducing the RMSEs well below the 3P7 levels.  Regression on HD 2

is signally superior to any alternative.  The addition of an intercept term appears to increase the biases slightly while
hardly changing the RMSEs.  Adding an intercept term to the regression on A4/ 3  by itself is also somewhat
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counterproductive.  In other circumstances, however, the addition of an intercept term can help considerably. One
possible inference is that for a good or even reasonably good model, adding the intercept term is unlikely to help,
but that adding the intercept to a poor model can sometimes make it better than certain reasonably good models.
The topic seems to be worth investigating further.

Table 2: Observed percentage root mean square error of Horvitz-Thompson and coscal estimators of total
volume based on 100,000 samples for each combination of sampling design and expected sample size.

Estimator Poisson Collocated
Randomly
Ordered

Systematic

Deliberately
Ordered

Systematic

----------- E(n) = 144 ----------

HTY•̂ 8.72 6.62 2.87 2.12

73
ˆ

PY• 2.87 2.73 2.87 2.12
Coscal (1, A) 2.26 2.26 2.26 2.15

Coscal (A4/3, H4) 1.61 1.60 1.61 1.67
Coscal (1, A4/3,

H4)
1.59 1.59 1.59 1.69

Coscal (D2H) 1.42 1.41 1.41 1.48

----------- E(n) = 48 ----------

HTY•̂ 15.07 11.51 5.00 3.74

73
ˆ

PY• 5.04 4.76 5.00 3.74
Coscal (1, A) 4.01 3.96 3.97 3.67

Coscal (A4/3, H4) 2.86 2.83 2.84 2.90
Coscal (1, A4/3,

H4)
2.83 2.81 2.81 2.92

Coscal (D2H) 2.50 2.50 2.50 2.49

----------- E(n) = 24 ----------

HTY•̂ 21.47 16.30 7.07 5.36

73
ˆ

PY• 7.22 6.75 7.07 5.36
Coscal (1, A) 5.91 5.72 5.79 5.21

Coscal (A4/3, H4) 4.18 4.08 4.07 3.90
Coscal (1, A4/3,

H4)
4.22 4.09 4.08 3.92

Coscal (D2H) 3.63 3.56 3.54 3.41

The 3P7 variance estimators—vS, BEJ and ˜ ˆ V 2( ˆ Y •3P7 )—vary in performance from one selection procedure to

another (See Table 3). ˜ ˆ V 2( ˆ Y •3P7 )  in particular is nearly unbiased for PS and RS at all three sample sizes. vS and
BEJ are nearly unbiased for PS and RS at the largest E(n). The difference between PS and CS is that under PS the
π ij  all take the “natural” value πiπ j , but for Collocated sampling those πij  are  modified to a small extent.  Hence
there is a difference between the PS and the CS variances of the order of 10%, even when conditioned on the
achieved sample size, and because this is not reflected in the variance estimator, vS and BEJ overestimate the CS
variance to that extent.

The ˜ ˆ V 2  variance estimators tend to underestimate variance (and this is more noticeable for the smaller sample
sizes).  This seems to be because the factor n /(n − p)  is insufficient for bias correction when the sampling is not
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simple random.  If so, the problem could be removed by using model-unbiased estimators of the individual squared
residuals. The 2v̂ ( D2H ) estimator is based on this principle, and it seems to work well; we intend to introduce this
estimator of variance in greater detail in a later version of this paper.

Table 3: Observed percentage bias of variance estimators of total volume, based on
100,000 samples for each combination of sampling design and expected sample size.

Estimator Poisson Collocated
Randomly
Ordered

Systematic

Deliberately
Ordered

Systematic

            ----------- E(n) = 144 ----------
vS 0.6 11.5 0.6 84.2

BEJ -1.0 9.8 -1.0 81.4
˜ ˆ V 2( ˆ Y •3P7 ) 0.4 11.0 -0.3 2.1

˜ ˆ V 2 (A4/3, H4) -1.8 -1.1 -1.7 -17.2
2v̂ ( D2H ) 0.1 0.7 0.0 -6.7

           ----------- E(n) = 48 ----------
vS -1.4 10.9 0.0 81.6

BEJ -3.8 8.2 -2.3 77.4
˜ ˆ V 2( ˆ Y •3P7 ) 0.4 11.7 -0.3 3.2

˜ ˆ V 2  (A4/3, H4) -4.1 -3.5 -4.8 -15.6
2v̂  ( D2H ) 0.1 1.4 0.1 1.7

           ----------- E(n) = 24 ----------
vS -4.0 9.5 -0.4 78.1

BEJ -8.3 4.7 -4.0 70.4
˜ ˆ V 2( ˆ Y •3P7 ) 0.2 11.6 -0.2 2.8

˜ ˆ V 2  (A4/3, H4) -8.7 -6.4 -7.1 -1.7
2v̂  ( D2H ) -0.4 1.6 0.8 9.3

5. TESTING WHETHER THE ESTIMATORS MEASURE CONDITIONAL VARIANCE

The estimators selected for this analysis were 3P7 regarded as an conditional version of the Horvitz-Thompson
estimator and of the best performing of the Coscal estimators, namely Coscal )( 2 HD .  Results are presented for
individual quintiles of the sample sizes in Tables 4 through 9.  They confirm that the conditional variance estimators
used in this study do faithfully reflect the variability of the conditional variances with n.  They also indicate,
however, the price being paid for the reduction in variance when using CS instead of PS; there is an appreciable
quintile-specific bias to the 3P7 estimator, as high as 2% for E(n) = 24.  For Coscal )( 2 HD , however, the CS bias
is more consistent over quintiles, smaller, and often actually smaller than the quintile-specific biases to be found in
PS.
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Table 4: Performance of  ˆ Y •3P7  and Coscal (D2H) estimators of total volume based on 100, 000
Poisson samples of expected size E(n) = 144; results are summarized by quintiles of increasing sample size.

ˆ Y •3P7 Coscal (D2H)Quintile Average
n Bias% SE% Est. SE% RMSE% Bias% SE% Est. SE% RMSE%

1 127.6 0.04 3.04 3.05 3.04 -0.01 1.53 1.53 1.53
2 137.6 0.03 2.93 2.93 2.93 -0.01 1.47 1.47 1.47
3 143.9 0.00 2.87 2.87 2.87 -0.01 1.44 1.43 1.44
4 150.2 -0.02 2.78 2.81 2.78 -0.02 1.40 1.40 1.40
5 160.9 -0.03 2.72 2.71 2.72 0.00 1.36 1.36 1.36

Table 5: Performance of  ˆ Y •3P7  and Coscal (D2H) estimators of total volume based on 100, 000
collocated samples of expected size E(n) = 144; results are summarized by quintiles of increasing sample

size.
ˆ Y •3P7 Coscal (D2H)Quintile Average

n Bias% SE% Est. SE% RMSE% Bias% SE% Est. SE% RMSE%
1 133.0 -0.88 2.78 3.00 2.92 -0.06 1.49 1.50 1.49
2 139.8 -0.34 2.71 2.91 2.73 -0.02 1.45 1.46 1.45
3 143.9 -0.04 2.67 2.87 2.67 -0.02 1.43 1.43 1.43
4 148.1 0.27 2.62 2.82 2.63 0.00 1.40 1.41 1.40
5 155.1 0.75 2.56 2.76 2.67 0.03 1.38 1.38 1.38

Table 6: Performance of  ˆ Y •3P7  and Coscal (D2H) estimators of total volume based on 100, 000
Poisson samples of expected size E(n) = 48; results are summarized by quintiles of increasing sample size.

ˆ Y •3P7 Coscal (D2H)Quintile Average
n Bias% SE% Est. SE% RMSE% Bias% SE% Est. SE% RMSE%

1 38.6 -0.03 5.55 5.60 5.55 -0.05 2.78 2.80 2.78
2 44.2 0.03 5.18 5.20 5.18 -0.03 2.61 2.61 2.61
3 47.8 -0.02 5.05 5.01 5.05 -0.03 2.53 2.51 2.53
4 51.6 -0.02 4.79 4.82 4.79 -0.03 2.41 2.41 2.41
5 57.8 -0.04 4.55 4.56 4.55 -0.02 2.29 2.28 2.29

Table 7: Performance of  ˆ Y •3P7  and Coscal (D2H) estimators of total volume based on 100, 000
collocated samples of expected size E(n) = 48; results are summarized by quintiles of increasing sample size.

ˆ Y •3P7 Coscal (D2H)Quintile Average
n Bias% SE% Est. SE% RMSE% Bias% SE% Est. SE% RMSE%

1 41.7 -1.50 5.05 5.41 5.27 0.22 2.66 2.70 2.66
2 45.5 -0.55 4.80 5.15 4.83 -0.01 2.56 2.57 2.56
3 47.9 -0.08 4.62 5.01 4.63 -0.02 2.48 2.51 2.48
4 50.4 0.49 4.49 4.87 4.52 0.02 2.43 2.44 2.43
5 54.5 1.28 4.33 4.68 4.51 0.05 2.34 2.34 2.67
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Table 8: Performance of  ˆ Y •3P7  and Coscal (D2H) estimators of total volume based on 100, 000
Poisson samples of expected size E(n) = 24; results are summarized by quintiles of increasing sample size.

ˆ Y •3P7 Coscal (D2H)
Quintile Average

n Bias% SE% Est. SE% RMSE% Bias% SE% Est. SE% RMSE
%

1 17.4 0.05 8.39 8.35 8.39 -0.04 4.24 4.19 4.24
2 21.3 0.02 7.46 7.51 7.46 -0.04 3.76 3.77 3.76
3 23.9 0.01 7.08 7.10 7.08 -0.02 3.53 3.55 3.53
4 26.5 -0.02 6.80 6.74 6.80 -0.02 3.39 3.37 3.39
5 31.0 -0.03 6.19 6.24 6.19 -0.04 3.11 3.12 3.11

Table 9: Performance of  ˆ Y •3P7  and Coscal (D2H) estimators of total volume based on 100, 000
collocated samples of expected size E(n) = 24; results are summarized by quintiles of increasing sample size.

ˆ Y •3P7 Coscal (D2H)
Quintile Average

n Bias% SE% Est. SE% RMSE% Bias% SE% Est. SE% RMSE
%

1 19.6 -2.29 7.40 7.94 7.74 -0.19 3.92 3.96 3.93
2 22.2 -0.85 6.89 7.40 6.94 -0.03 3.65 3.69 3.65
3 23.9 -0.11 6.59 7.11 6.59 -0.02 3.54 3.56 3.54
4 25.7 0.57 6.33 6.84 6.36 0.01 3.40 3.42 3.40
5 28.6 1.76 5.95 6.47 6.20 0.04 3.22 3.25 3.22

6. SUMMARY

Estimation of the volume of timber available from a forest can be substantially improved by using regression
estimators based on careful modelling of individual tree volume as a non-linear function of basal area and height.

Monte Carlo experiments have confirmed that collocated and even Poisson sampling, despite the random nature of
their sample sizes, do not detract appreciably from the efficiency with which the volume of available timber in a
forest can be measured—provided of course that the estimator used is one that adjusts appropriately for the achieved
sample size.

Although some improvements appear possible, the conditional variances of the estimator 3P7 and of generalized
regression estimators can already be estimated reasonably well, for both Poisson and collocated sampling, using the
estimators of approximate conditional variance suggested in Brewer (2000).  These estimators performed
particularly well for 3P7 under Poisson sampling.  When used with collocated sampling, they tended to
overestimate.
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A User's Guide to Pareto ππππps Sampling
Bengt Rosén
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ABSTRACT
A vehicle for utilization of auxiliary information is to employ a πps scheme, i.e. to sample with inclusion probabilities
proportional to given size values. Pareto πps is a scheme for selection of a list sample with predetermined size. It has a
number of attractive properties, in particular the following. As regards point estimate accuracy it is, in our best under-
standing, optimal among schemes which admit objective assessment of sampling errors. Simple procedures for variance
estimation and non - response adjustment are available. The scheme admits efficient sample coordination by permanent
random numbers. A sampling - estimation strategy with particularly good properties is obtained by combining Pareto πps
and generalized regression estimation.

Key words : Pareto ππππps, order ππππps, point and variance estimation, non - response adjustment.

1  Introduction
The following situation will be considered. Information about a population characteristic is to be gained from
observations on a probability sample from the population U = (1, 2 ,... , N). List sampling is used, from a frame that
one - to - one corresponds with the units in U, and also contains unit - wise auxiliary information. Until Section 7 the
auxiliary data are assumed to be size values s = (s1, s2, … , sN), sk >  0, which typically are positively correlated with the
study variable y =  (y1, y2, … , yN). (Example : unit = enterprise, y = sales during Mach 2000, s = number of employees.)
As is well known , estimation precision for a population total (or mean) often benefits from use of a ππππps scheme, i.e.
a scheme with sample inclusion probabilities π1, π2 , … , πN such that ;

πk is proportional to sk ,  k = 1, 2, ... , N.      (1.1)

A well - known πps scheme is Poisson sampling , which has simple sample selection and estimation procedures.
However, it and various other πps schemes have the drawback of random sample size. It is generally desirable that a
sampling scheme has fixed sample size, and we confine to schemes with that property. Then (1.1) leads to the
following desired inclusion probabilities λ1, λ2 , … , λN, where n is sample size and τ(s) =  s1 + s2 + ... + sN  ;

λ τk k j k
j

N

n s s n s= ⋅ = ⋅
=
�/ / ( )s

1

,    k = 1, 2, … , N. (1.2)

Formula (1.2) may yield λ : s exceeding 1, which is incompatible with being probabilities. If so, some adjustment has
to be made, usually by introducing a "take all" stratum. In the sequel is presumed that λk < 1, k  = 1, 2, … , N.

A scheme with inclusion probabilities according to (1.2) has the following Horvitz - Thompson estimator for the
population total τ(y)  =  y1 + y2  + ... + yN ;

�( / ( ( /τ λ τy s) y ) /n ) y sk k

k Sample

k k

k Sample

= = ⋅
∈ ∈

� � . (1.3)

A "perfect" πps scheme shall satisfy πk =  λk , k  = 1, 2, … , N. We will be a bit more generous, though, and accept a
sampling scheme as a ππππps schemes  if (1.4) below is met ;

πk ≈ λk   holds with good approximation for   k  =  1, 2, ... , N.      (1.4)
The literature offers several πps schemes , and the statistician must choose. The main desired properties
of a ππππps scheme, besides having fixed sample size, are listed below.
  -  The scheme has simple sample selection. (1.5)
  -  The scheme yields good estimation accuracy. (1.6)
  -  The scheme admits objective assessment of  sampling errors (consistent variance estimation). (1.7)

  - Variance estimators are available, the simpler the better.
  - Variance estimates never become negative.

  -  The scheme admits sample coordination over time and between surveys. (1.8)
The πps scheme which is most frequently used in practice is systematic ππππps. This is in fact is a whole family of
schemes generated by different frame ordering rules , whereby random frame order (rfo) and frame ordered by size
(sfo) are chief possibilities. Sunter ππππps, Sunter (1977) , is highlighted in Särndahl et al. (1992).
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This paper focuses on Pareto ππππps, a member in the family of order ππππps schemes specified in Section 2.2. The aim is
to (hopefully) demonstrate that Pareto πps meets the desires formulated above particularly well and, accordingly, to
recommend it for practical use. Rigorous justifications of subsequent claims require quite sophisticated theory,
though, which is not presented in this paper. We confine to just giving references.

2.  Order ππππps schemes, notably Pareto ππππps
2.1.  Pareto ππππps

DEFINITION 2.1 : Pareto ππππps with size values s = (s1, s2, … , sN) and sample size n  generates a sample
as follows.

 1. Desired inclusion probabilities λλλλ = (λ1, λ2 , ... , λN) are computed by (1.2).
 2. Independent random variables R1, R2, ... , RN with uniform distributions on the interval [0 , 1]

are realized, and ranking variables Q are computed as follows ;

   Q
R (1 )

(1 R )k
k k

k k

=
⋅ −
⋅ −

λ
λ

,     k  = 1, 2, ... , N. (2.1)

 3. The sample consists of the units with the n smallest Q - values.

The somewhat fancy name Pareto is explained in next section. When all sk (or equivalently all λk ) agree, Pareto πps
is nothing but simple random sampling (SRS).

All order πps schemes and , hence, also Pareto πps are based on asymptotic considerations. They are approximate
πps schemes in the (1.4) sense, having perfect πps properties only for "infinite" samples. In particular, desired and
factual inclusion probabilities do not agree exactly for finite samples. However, as discussed in Section 5, these
imperfections have negligible effects in most practical survey situations , even for quite small sample sizes.

Pareto πps certainly meets desire (1.5), as is illustrated by the SAS - program below. It selects a Pareto πps sample
with sample size SAMPZ from the records in the SAS data set FRAME , equipped with desired inclusion
probabilities in the variable LAMB.

Data RANKING ;  Set FRAME ;  R =  ranuni(SEED) ;
Q = R*(1 -  LAMB) / (LAMB*(1 - R)) ;  Proc SORT ; By Q ;  Run ;
Data SAMPLE ; Set RANKING ; If _N_ < = SAMPZ  then output ;  Run ;

2.2  Order ππππps
As stated , Pareto πps is a particular member in the family of order πps schemes introduced in Rosén (1997b), which
is defined below. H(⋅) denotes the distribution function of a probability distribution with density.

DEFINITION 2.2 : Order ππππps with size values s  =  (s1, s2 , … , sN) , sample size n and shape distribution
H(⋅) generates a sample by the same type of steps as in Definition 2.1, with the following modification
of step 2. The ranking variables Q are computed by (2.2) below, where H -1 denotes inverse function ;

Qk = H -1 (Rk) / H -1 (λk),    k = 1, 2, ... , N. (2.2)

It is by no means obvious that Definition 2.2 leads to πps schemes even in the (1.4) sense. However, Rosén (2000)
proves that this is the case under general conditions on the shape distribution H.

Pareto πps is the particular order πps scheme given by the shape distribution ;
H t t t t t( ) / ( ) , ( ) / ( )= + = +1 1 1 2   which has density  h ,  0  ≤  t  < ∞ . (2.3)

Definition 2.2 introduces a whole family of sampling schemes , different H yield different schemes (although not in
an entirely one - to - one fashion). To distinguish order πps schemes they are named by their shape distribution. The
distribution in (2.3) seems to have no well - established name, though. After literature consultation we follow Feller
(1966) and call it a Pareto distribution. Hence, the name Pareto πps.
Hitherto studies of order πps schemes have paid special attention to , besides Pareto πps , uniform order ππππps given
by the uniform shape distribution H(t)  =  min(t , 1) , 0  ≤  t <  ∞ , and exponential order ππππps given by the exponential
shape distribution H(t) = 1 - e- t , 0  ≤  t  <  ∞ . The former scheme was first studied by Ohlsson (1990 , 1998).
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He calls it sequential Poisson sampling . Ohlsson's work provided background for the generalized notion "order
πps". As regards Pareto πps , the author and Saavedra (1995) independently came across that scheme. Saavedra calls
it odds ratio sequential Poisson sampling. Exponential order sampling is considered in the literature under the name
successive sampling, see e.g. Rosén (1997a).

3  Estimation from observations on Pareto ππππps samples
Procedures for point and variance estimation are, of course, crucial in practical application of a sampling scheme.
The following discussion is confined to the key estimation problem, estimation of the characteristic "population
total", denoted τ(y) = y1 + y2 + ... + yN . As is well known , if this problem can be handled the estimation problem is
solved for the vast majority of practically interesting characteristics , including ratios and domain characteristics . We
first consider the ideal situation when all sampled units respond.

3.1  Estimation under full response
3.1.1  Point estimation
Since a πps scheme is presumed to satisfy (1.4) it is natural to use the estimator (1.3) , which is re - stated in (3.1)
below. However, under (1.4) it is not a "perfect", unbiased HT - estimator, rather a "quasi" HT - estimator, afflicted
with some bias. The bias issue for Pareto πps is discussed in Section 5, with the conclusion that the bias is negligible
almost always in practice.

�
∈

λ=τ
mpleaSk

kky)(ˆ y (3.1)

3.1.2  Estimator variance
At least in survey planning it is of interest to have an expression for the theoretical estimator variance. The following
approximate variance formula, derived in Rosén (1997a , b), is asymptotically correct ;
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3.1.3  Assessment of sampling error
Formula (3.2) is theoretical and involves y - values for all population units. In practice an estimator � [�( )]V τ y  of
V[ �( )]τ y  must be exhibited , which together with approximate normal distribution for the estimator justifies the fol-
lowing type of (approximate) level 100 ⋅⋅⋅⋅  (1 - αααα ) % confidence interval for τ(y) , δα / 2 denoting the standard normal 1 -
α/2 fractile ;

�( ) � [�( )]/τ δ ταy y± ⋅2 V . (3.3)

Consistent estimation of V[ �( )]τ y  is provided by, see Rosén (1997b) ;
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Formula (3.4) may look cumbersome at first glance. However, it is quite innocent from a computation point of view,
as is seen from the formulas below. Note that only "single - summations" are involved.

� [�( )] ( / )V
n

n 1
τ y =

−
⋅ −A B C2 ,   where (3.5)
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� ( / )y (1- )k kλ λ ,   C
k Sample

=
∈

� (1- )kλ . (3.6)

Formulas (3.4) - (3.6) show that Pareto πps meets both desires in (1.7), simple and non - negative variance estimation.
Moreover, in Rosén (1997b) is proved that �( )τ y is asymptotically normally distributed under Pareto πps.

3.2  Estimation when non - response occurs
Practical surveys are seldom ideal , in particular non - response almost always occurs. Then formulas (3.1) and (3.4)
cannot be used straight away, some adjustment for non - response has to be made. The following results are
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taken from Rosén & Lundqvist (1998) , where adjustment procedures for uniform, exponential and Pareto πps are
presented , with theoretical as well as numerical justifications.

Non - response adjustment must be based on some model (= assumption) about response behavior. The simplest, and
most commonly used , is the simple MAR (Missing At Random) model stated below.

Simple MAR model :  Sampled units respond independently, all with the same response propensity. (3.7)

Under (3.7) adjustment is achieved by a recipe which somewhat sweepingly can be formulated as follows.
Use (3.1) and (3.4) with "number of sampled units" exchanged for "number of responding units". (3.8)

More precisely, under (3.7) point estimation is carried out as follows. With
n' = number of responding units , (3.9)
modified inclusion probabilities :  ′ = ⋅λ λk kn n( ' / ) = n' sk⋅

=�/ s jj

N

1
,   k = 1, 2, … , N, (3.10)

R sample = the collection of responding units , (3.11)
the following counterpart to the estimator in (3.1) works with negligible bias ;
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Moreover, the confidence interval (3.3) works with the variance estimator ;
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Formulas (3.5) and (3.6) have the following counterparts ;

� [�( )] ( ' ' / ' )V
n'

n' 1
τ y =

−
⋅ −A B C2 ,   with A', B' and C ' as in (3.5) - (3.6) with λ changed to λ'. (3.14)

A more elaborate response model runs as follows.
MAR model with several response homogeneity groups : With the population partitioned into (known)
disjoint groups G1 , G2 , … , GG , the following holds. Sampled units respond independently, and units in
the same group have the same response propensity, which may vary between groups. (3.15)

Under response model (3.15) , adjustment for non - response is achieved by the following post - stratification pro-
cedure. For g  = 1, 2, ... , G , ng denotes the number of sampled units from Gg , n'g the number of responding units and
ℜgsample the set of responding units. Set ℜsample = ℜ1sample ∪ ℜ2sample ∪ ... ∪ ℜGsample. Modify the λ:s
according to (3.16) below, where g(k) is the index for the group to which unit k belongs. The somewhat intriguing
operation min( ⋅ , 1) is introduced for the following reason. Without it, it can happen, although only in exceptional
cases, that one or more λ'k becomes greater than 1.

)1,ssnmin()1,nmin(
)k(g)k(g j

jk)k(g

j

jk)k(gk ��
∈∈

⋅′=λλ⋅′=λ′
GG

,   k  = 1, 2, ... , N. (3.16)

After these λ - modifications, (3.12) works and also the confidence interval (3.3) with the variance estimator ;
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Numerical computation of variance estimates by (3.17) is simplified by expansion of the squares, which leads to
formulas analogous to (3.5) and  (3.6). Moreover, formulas (3.13) - (3.17) show that both desires in (1.7) are met also
under non - response adjustment.

4  Estimation accuracy
The accuracy of an estimator depends on its variance and possible bias. As already mentioned , �( )τ y in (3.1) is
afflicted with some bias which , however, is negligible in almost all practical contexts. Therefore, we confine the dis-
cussion of estimation accuracy to estimator variance. In the sequel notions as "optimal", "better", etc. relate to
V[ �( )]τ y . The following result from Rosén (1997b) explains why Pareto πps is of special interest.
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Pareto πps is asymptotically (as n → ∞) optimal among order πps schemes with the same size values
and sample size, uniformly over study variables y. Moreover, optimality holds not only for estimation
of totals, it holds for all "usual" types of characteristics, including ratios and domain characteristics. (4.1)

The result (4.1) tells that Pareto πps at least asymptotically performs better than other order πps schemes. However,
there are other "competing" schemes, notably those at the end of Section 1, as well as small sample situations. To
compare schemes we use the measure relative (to Pareto πps) variance increase (RVI) ;

RVI (for scheme )
V[ ( )] under ps scheme 

V[ ( )] under Pareto ps 
1S S

= −
�

�

τ π
τ π
y

y
. (4.2)

Factors that affect RVI significantly are : (i) The sampling fraction n / N. (ii) The relation between the size and study
variables s and y. As regards this relation , ideal for πps is when s and y are exactly proportional , then τ(y) is in fact
estimated without error. In that case the (s , y) - values lie along a straight line through the origin. In practice this
never occurs, though , the (s , y) - values scatter more or less around a trend , which is assumed to be increasing. Chief
possibilities for trend type are proportional trend (= linear through the origin), convex and concave trend (when y
grows relatively faster respectively slower than s). If the trend is flat or decreasing , πps sampling is non - favorable
compared with SRS.

Table 4.1 presents examples of RVI - values for different schemes in certain sampling situations (N, s and y). As
seen, the compared schemes are uniform and exponential order πps , Sunter πps , systematic πps(rfo) and πps(sfo)
and SRS. Pareto πps is covered implicitly with all RVI  = 0. SRS is included as a benchmark. The figures in the table,
which come from Rosén (1997b), are based on Monte Carlo simulations. The considered sampling situations were
generated with (s , y) - relation according to model (4.3) below, where α determines the trend shape (proportional for
α  = 1, convex for α  > 1, concave for α < 1) and σ the magnitude of scatter.

s k,    y c (s Z sk k k k k= = ⋅ + ⋅ ⋅α ασ ) ,   c > 0,   σ ≥ 0,   the Zk being iid N(0 , 1),  k = 1, 2, ..., N. (4.3)

Table 4.1 RVI - values (in %) for situations (4.3) with N = 100 and αααα , σσσσ as stated below
Uniform ππππps Exponential ππππps Sunter ππππps Systematic ππππps(rfo)

Sampling
fraction

αααα = 1.5
σσσσ = 2

αααα = 1
σσσσ = 2

αααα = 0.7
σσσσ = 0.5

αααα = 1.5
σσσσ = 2

αααα = 1
σσσσ = 2

αααα = 0.7
σσσσ = 0.5

αααα = 1.5
σσσσ = 2

αααα = 1
σσσσ = 2

αααα = 0.7
σσσσ = 0.5

αααα = 1.5
σσσσ = 2

αααα = 1
σσσσ = 2

αααα = 0.7
σσσσ = 0.5

0.1 0.2 4⋅10-4 0.1 0.1 1⋅10-4 0.03 5.8 2.6 25 2.2 2.4 3.4
0.2 1.3 2⋅10-3 0.7 0.3 6⋅10 -4 0.2 62 58 43 1.0 -3.5 -0.4
0.3 4.2 6⋅10-3 1.9 0.9 2⋅10 -3 0.5 262 181 103 0.7 0.6 -0.6
0.4 12 0.02 4.7 2.3 7⋅10 -3 1.7 653 280 141 21 -2.2 7.3
0.5 39 0.04 12 4.7 0.03 2.0 1457 401 180 29 -3.3 13

Systematic ππππps(sfo) SRS
αααα = 1.5
σσσσ = 2

αααα = 1
σσσσ = 2

αααα = 0.7
σσσσ = 0.5

αααα = 1.5
σσσσ = 2

αααα = 1
σσσσ = 2

αααα = 0.7
σσσσ = 0.5

-74 +3.6 -34 1083 450 246
-75 -16 -52 1095 446 229
-73 +88 -9.2 1130 440 213
-86 -21 -52 1222 432 197
-73 +12 -47 1538 421 186

The main conclusions from the full collection of numerical findings in Rosén (1997b) are stated in (4.4) - (4.6).

Under proportional (s , y) - trend the order πps schemes perform very similarly, with a slight edge for
Pareto πps . Under non - proportional trend Pareto πps performs better than the other, the edge is small ,
though , for small sampling fractions but may be considerable for high ones. (4.4)
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This result tells : (i) The optimality result (4.1) holds not only asymptotically , in essence it holds for quite small
samples. (ii) Among order πps schemes, Pareto πps provides an ”insurance without premium”, it never performs
worse than other order πps schemes and in some situations considerably better.

Next comparison is made with schemes outside order πps, which admit objective assessment of sampling error (as all
order πps schemes do), with Sunter πps and systematic πps(rfo). The chief finding is as follows.

(4.4) holds with "order πps" exchanged for "πps scheme which admits consistent variance estimation". (4.5)

The findings from comparison with systematic πps(sfo) (i.e. systematic πps with frame ordered by the s - values) are
more complex. The strong side of this scheme is that it sets two variance reducing forces in action , πps and "implicit
stratification". Its well - known weakness is that it does not admit assessment of sampling errors. The following rather
confusing comparison picture arose.

Systematic πps(sfo) often yields dramatically better estimation accuracy than Pareto πps , notably in
situations with non - proportional (s , y) - trend,. In situations with fairly proportional (s , y) - trend the
ranking between systematic πps(sfo) and Pareto πps seems to be erratic, they take turn to be best. (4.6)

To the best of our understanding it is hard to tell in advance which of Pareto πps and systematic πps(sfo) that is
advantageous in a particular sampling situation .

5  Approximation accuracy, notably estimator bias
5.1  Some basic notions
As mentioned several times , since Pareto πps is based on asymptotic considerations desired and factual inclusion
probabilities do not agree exactly, which in turn afflicts �( )τ y  in (3.1) with some bias. When discussing these issues
we use the performance measures in (5.1) and (5.2) below. First a comment on notation. Inclusion probabilities
depend on population size N, size values s = (s1, s2, … , sN) and sample size n. In the sequel these parameters often are
exhibited in notations like πk(n ; N ;  s) and λk(n ; N ;  s).

Maximal absolute relative error for inclusion probabilities :
Ψ( ; ; ) max | ( ; ; ) / ( ; ; ) |n N n N n N

k k ks s s= −π λ 1 . (5.1)

Absolute relative estimator bias : AREB E[ �( )] [�( )] / ( )τ τ τy y y= − 1 . (5.2)

The above concepts are related as follows , which is demonstrated e. g. in Rosén (2000 a) ;

��
�

�
��
�

�
τ⋅Ψ≤τ �

=

)(|y|);N;n()](ˆ[AREB
N

1k
k ysy . (5.3)

If the study variable is non - negative, i.e. if yk ≥ 0 , k  = 1, 2, ... , N, which is the case in most practical surveys , the
last factor in (5.3) equals 1, and (5.3) takes the simple form ;

AREB n N[ �( )] ( ; ; )τ y s≤ Ψ . (5.4)

The AREB bounds in (5.2) and (5.3) are often fairly conservative , as discussed in Rosén (2000 a).

Ψ(n ; N ; s) is defined in terms of approximation accuracy for inclusion probabilities, a rather theoretical topic.
However, by (5.3) and (5.4) Ψ also provides information about estimator bias, which makes it interesting also from
survey practical point of view. Before entering bias questions we present some results about the asymptotic behavior
of inclusion probabilities.

5.2  Asymptotic behavior of inclusion probabilities
Rosén (2000 a) proves that (5.5) below holds under general conditions for Pareto, uniform and exponential πps ;

|1);N;n(/);N;n(|max kkk
−λπ ss   is (at most) of order  O n n(log / ) . (5.5)
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Results of type (5.5) are used to study the asymptotics of inclusion probabilities, in the usual frame - work for finite
population asymptotics : A sequence of populations with sizes tending to infinity. In particular, the result (5.6) below
is proved for the schemes mentioned above. It tells that desired and factual inclusion probabilities agree
asymptotically. It is conjectured that (5.6) holds generally for any order πps scheme.

π λk kn N n N( ; ; ) / ( ; ; )s s → 1  as n → ∞   (and hence also N → ∞ ) . (5.6)

5.3  On estimator bias
5.3.1  Factors that affect the bias magnitude
When considering use of Pareto πps in practice , a crucial question for the statistician is ;

Will the Pareto πps point estimator bias be negligible in my particular survey situation ? (5.7)

In search for answers to (5.7) , available theoretical bounds of type (5.5) , regrettably only add to the general ex-
perience that theoretical error bounds seldom are sharp enough to yield practically valuable information on the small
sample performance of a large sample procedure. The bound O(logn/√n) in (5.5) is too crude for that purpose. In our
understanding , practically useful information can only be gained by numerical investigations, exact computations
or/and Monte Carlo simulations. The results presented in the sequel come from Aires & Rosén (2000), which reports
on an extensive numerical study of exactly computed Pareto πps inclusion probabilities.

Answers to (5.7) are with necessity a bit involved , since the bias depends on several factors. The study variable is of
course one of them. On this point we confine to the case with non - negative study variables , which is the most
common in practice. By (5.4) , Ψ can then be interpreted as an AREB bound. Other factors that affect whether the
bias is negligible or not are : (i) The tolerance limit for "negligible". (ii) The variation of the size values. (iii) The
population size. (iv) The sample size. These factors are discussed below.

Tolerance limit for negligibility
There is of course no unanimous answer to how large a "negligible" bias may be. This depends on the intended use
of the statistic and on the magnitude of sampling errors and other survey errors. We believe that most survey
statisticians regard 1% , and even 2% , as a negligible relative bias.

Dependence on size values
When all size values are equal , Pareto πps is SRS with πk =  λk =  n/N. Hence, for bias to be at hand the size values
must show variation. In the following , the size values s are presumed to be normed so that average size is 1, i.e. so
that (5.8) below is met. A normed s is referred to as a size pattern.

( / )1 1
1

N sk
k

N
⋅ =

=
� . (5.8)

The maximal and minimal normed s - values are denoted smax and smin. The size pattern range is specified by the
interval [smin , smax]. Another aspect on s - value variation is the size pattern shape, which concerns how size values
spread over [smin , smax] . Following Aires & Rosén (2000), where precise definitions are given , three "extremal" shape
types are considered. (i) The s - values are fairly evenly spread over [smin , smax]. (ii) The majority of s - values lie in
the middle of [smin , smax] . (ii) The majority of s - values lie at the boundaries of [smin , smax] .
Figures 5.1 illustrates how Ψ( ⋅ ; N ; s) - sequences may differ for different pattern shapes with the same N, smin and
smax . In particular it illustrates the following general circumstance. When the sample size is not "very small", the
boundary shape is most adverse to good agreement between desired and factual inclusion probabilities.
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The statements in (5.9) and (5.10) below are based on our experience of size value patterns met in practice.

We believe that smax seldom is larger than 5 and that smin seldom is smaller than 0.1. (5.9)
The boundary shape is very unusual in practice. Most practical size pattern shapes resemble the
even spread shape, in the sequel referred to as "lying in the vicinity of  even spread ". (5.10)

Some background for (5.9) and (5.10) is as follows. (i) The surveyor disposes of the size values , preliminary values
may be modified. If the frame comprises units with very small preliminary size values, such units are often either
definition - wise excluded from the survey population or given larger s - values in the sample selection.

(ii)  If size values vary very much over the entire population, there are often subject matter grounds for stratification
by size before sampling , followed by drawing independent samples from the strata. (An example is an enterprise
survey with "number of employees" as size. It is usually natural to divide into strata of type "very big", "big" and
"small" enterprises. Mostly the "very big" stratum is totally inspected.) The strata then take population roles, and smax
and smin  in the strata are usually considerably smaller / larger than in the entire population.

Table 5.1 below introduces, for later use, a broad categorization of size value patterns.

Table 5.1                            Some categories of size value patterns
Category A Category B Category C Category D

Size pattern
shape

In the vicinity of
even spread.

In the vicinity of
even spread.

No restriction. No restriction.

smax ≤ 5 ≤ 10 ≤ 5 ≤ 10
smin ≥ 0.1 ≥ 0.05 ≥ 0.1 ≥ 0.05

Comments on
occurrence in

practice

Most practical situ-
ations are believed to
fall in Category A.

"Normal" pattern shape,
while smax and/or smin
may be extreme

”Normal” smax and smin ,
while shape may be extreme
(e.g. of boundary type).

Pattern shape as well
as smax and/or  smin
may be extreme.

Dependence on population size
The numerical findings show that for given size value pattern s and sample size n , Ψ(n ; N ; s)  decreases as the
population size N increases, i.e. desired and factual inclusion probabilities come closer to each other.

Dependence on sample size
The assumption λk< 1 constrains sample sizes as stated in (5.11), where [⋅] denotes integral part, and - "less than".
The quantity nm is called the maximal sample size , and an n which satisfies (5.11) is said to be admissible.

n n n N N sm m≤ = = −( ; ) [ / ]maxs : . (5.11)

Since Pareto πps is based on asymptotic considerations, one expects in the first round that conditions for small Ψ
(hence, for small bias) would be of the type "provided that n is at least ...". However, as illustrated in Figure 5.1,
conditions for small Ψ, which encompass all types of size pattern shapes, inclusive the unpleasant boundary shape
type, rather are of the form "provided that n is at most ..." (For pattern shapes in the vicinity of even
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spread, though , Ψ typically decreases as n increases .) This aspect is handled technically as follows. An α is
specified, 0 < α < 1, and is used to determine an αααα  - maximal sample size nm , α as follows ;

n N N sm, max( ; ) [ / ]α αs := ⋅ . (5.12)

Conditions to the effect "sample size is at most ..." are formulated by stating that n must not exceed nm, α .

5.3.2  Conditions which imply negligible estimator bias
The numerical findings in Aires & Rosén (2000) are condensed in Table 5.2 below. More detailed information is
provided in the full report. Population sizes smaller than 25 were not considered in that study.

Table 5.2.           Sample sizes that imply negligible bias
N = population size,  αααα states that sample size must not exceed nm, α in (5.12).
n0 specifies a sufficiently large sample size, under the αααα - restriction, for negligible bias
with specified tolerance. Study variables are presumed to be non - negative.

Size Pattern Tolerance limit for negligibility
category 2% 1% 0.5%

See Table 5.1 N αααα n0 N αααα n0 N αααα n0

≥ 25 1 1 ≥ 40 1 1 ≥ 80 1 1
A [25 , 40) 1 3 [50 , 80) 1 3

[40 , 50) 1 4

≥ 80 1 1 ≥ 80 1 1 ≥ 125 1 1
B [25 , 80) 1 2 [40 , 80) 1 3 [100 , 125) 1 3

[80 , 100) 1 4

≥ 100 1 1 ≥ 125 1 1 ≥ 175 1 1
C ≥ 80 0.9 1 ≥ 100 0.9 1 ≥ 150 0.9 1

≥ 40 0.8 1 ≥ 80 0.8 1 ≥ 100 0.8 1

≥ 25 0.5 1 ≥ 40 0.5 1 ≥ 80 0.5 1

≥ 150 0.9 1 ≥ 175 0.8 1 ≥ 125 0.5 1
D ≥ 125 0.8 1 ≥ 80 0.5 1 [100 , 125) 0.5 3

≥ 80 0.5 1
[50 , 80) 0.5 2

Earlier remarks imply that the sufficient sample sizes n0 in Table 5.2 in most practical situations are conservative and
, hence, "overly safe". In particular, one should not conclude that the bias necessarily is larger than "guaranteed" for
sample sizes that are smaller then stated n0   - values. However, even with the above conservative bounds the
conclusion is that the bias in almost all practical situations is negligible for all admissible sample sizes.

6  On sample coordination and adjustment for overcoverage
Ohlsson (1990, 1995, 1998) emphasizes that uniform order πps has the attractive properties which are discussed
below. These properties are shared by all order πps schemes, hence also by Pareto πps.

For an order πps scheme positive coordination of samples (to achieve great sample overlap) drawn at different
occasions in time from the "same" (but updated) frame is obtained by associating permanent random numbers to
the frame units, to be used at successive draw occasions , i.e. by letting the Rk in Definition 2.2 be permanent.
Similar technique can be used for positive or negative coordination of simultaneously drawn samples to different
surveys. Negative coordination is achieved for example if  Rk in one sample selection is exchanged for 1 -  Rk in
another selection.

When the frame contains overcoverage (out - of - scope units) , a sample of predetermined size from the (unob-
servable) list of in - scope units can be selected as follows . Order the frame units by the Q : s in Definition 2.2 , and
start observing them in that order. Exclude successively encountered out - of - scope units until a sample of in-  scope
units of prescribed size is obtained. This procedure yields an order πps sample from the in - scope units.
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One looses full control of the inclusion probabilities, though, since the size sum over the in - scope list is unknown.
However, if the task is to estimate a ratio τ(y) / τ(x) , as is the case in e.g. price index surveys, this does not matter
since the unknown size sums in the estimates of nominator and denominator cancel. In the general case the unknown
size sum is readily estimated.

7  Pareto ππππps as component in optimal sampling - estimation strategies
So far available auxiliary information has consisted of size values s = (s1, s2, … , sN) . Here we turn to a more
elaborate situation , with auxiliary information in conjunction with a superpopulation model . The general version of
the simple model below provides background for generalized regression estimation , as described in Chapter 6 in
Särndal et al. (1992) . The study variable y relates to (here one - dimensional) auxiliary data x1 , x2 , … , xN according
to the following superpopulation model ;

yk = β ⋅ xk + εk ,   k  =  1, 2, ... , N, (7.1)

where ε1, ε2, … , εN satisfy the following conditions , with E , V and C for superpopulation expectation , variance and
covariance : E [εk] = 0,  V [εk] 2

kσ=  and C [εk , εl] = 0,  k ≠  l,  k , l  = 1, 2, ... , N. The parameters σ1, σ2 , … , σN are part of
the auxiliary information, and are regarded as known modulo a proportionality factor.

Some notation. Subscript HT signifies Horvitz - Thompson estimators. Algebraic operations on variables shall be
interpreted as component  - wise. For y  =  (y1, y2, … , yN) and x  =  (x1, x2, … , xN) ,  y ⋅⋅⋅⋅ x  = (y1  ⋅ x1 , y2 ⋅ x2 , ... , yN  ⋅ xN,) ,
y / x  =  (y1 / x1 , y2 / x2 , ... , yN / xN ) , x2

1
2

2
2 2= ( , ,..., )x x xN .

Next we state a result due to Cassel et al (1976) . An admissible (sampling - estimation) strategy is a pair [P, �( )τ y ] of
a sample design P and a linear, design unbiased estimator �( )τ y . They showed that optimal strategies, relative to
minimization of E (V[ �( )τ y ] ) , are characterized by the following properties ;

P is a πps scheme with size values proportional to σσσσ  =  (σ1, σ2, … , σN) . (7.2)
The estimator �( )τ y is of the form  ])(ˆ)([)(ˆ HTHT xxy τ−τ⋅β+τ . (7.3)

Since the Cassel et al. paper much effort has been devoted to the estimator  part of the optimal strategy, leading to
the generalized regression estimator (GREG) ;

�( ) �( ) � [ ( ) �( ) ]τ τ τ τy y x xGREG HT HTB= + ⋅ −     where    HT
2

HT
2 )/(ˆ/)/(ˆB̂ σxσxy 2τ⋅τ= . (7.4)

However, only little attention has been paid to the design part , the πps scheme. A possible reason may be shortage of
πps schemes with good properties . Since Pareto πps provides a nice πps scheme , at least in the author's opinion, it is
of interest to revisit the optimal strategy problem by studying the performance of the strategy [Pareto πps(σσσσ)
, GREG)(ˆ yτ ]. The Cassel et al. result gives background for the conjecture that this strategy is close to "universally
optimal" under the above superpopulation model.

Since Pareto πps does not admit exact HT - estimation , the GREG estimator in (7.4) has to be modified a bit. In the
sequel πps(s) indicates estimation in accordance with (3.1). The modified GREG estimator is ;

])(ˆ)([B̂)(ˆ)(ˆ )(ps)(ps
)(ps

GREG σπσπ
σπ τ−τ⋅+τ=τ xxyy     where    )(ps

2
)(ps

2 )(ˆ/)/(ˆB̂ σπσπ τ⋅τ= σ/xσxy 2 . (7.5)

Theoretical and numerical results on comparison between [Pareto πps(σσσσ) , )(ps
GREG)(ˆ σπτ y ] and various "competing"

strategies are presented in Rosén (2000 b). To make a long story short , the findings support the conjecture that the
strategy in fact is close to being universally optimal when the superpopulation model is correct.

8  Summarizing conclusions
In Section 4 is argued that Pareto πps should be preferred among πps schemes which admit objective assessment of
sampling error. The choice of πps design then stands between Pareto πps and systematic πps(sfo) (= with frame
ordered by size). The latter scheme has the following pros and cons. Often it yields more accurate point estimates
than Pareto πps , but the opposite also occurs, and it is hard to tell in advance which will be the case in a specific
survey situation. On the (very) negative side stands that systematic πps(sfo) deprives assessment of sampling error as
well as sample coordination by (permanent) random numbers. We believe that under these premises Pareto πps is
seen as the best alternative in most practical survey contexts.
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 ESTIMATION STRATEGIES USING VARIANTS OF POISSON SAMPLING
DISCUSSION

Pedro J.  Saavedra, ORC Macro
ORC Macro, 11785 Beltsville Dr., Calverton, MD 10705

saavedra@macroint.com

This discussion is written from the perspective of a practitioner.   And prior to addressing the specific papers, I want
to describe my own experience with some of the topics (and authors) presented here.  I work for a consulting firm,
and for a number of years one of my main clients has been the Department of Energy.  Back in the early 1980s a
group of statisticians including myself were given the task of designing a sample for the EIA-782, a petroleum
product price and volume survey of retailers and resellers that required a given CV for different states, regions and
products.  We were working with the Petroleum Marketing Division at EIA, and there was concern that the existing
design was not sufficiently robust given the large number of estimates to be derived from the sample.   To deal with
this problem we developed a design consisting of a series of stratified samples linked by a Permanent Random
Number (Saavedra, 1988).  The PRN not only allowed us to maximize the overlap between the samples, hence
reducing the total number of units, but it also permitted us to rotate the sample between cycles.

Originally the idea was for each sample to stand alone, but a policy decision was made that every response had to be
used in every estimate.  Hence, it was decided that any company that was selected for any State or product would be
selected for all.   This design had two major deficiencies.  The first one was that it had a variable sample size.  The
second was that there is no known analytic formula that permits us to calculate probabilities of selection, and hence
to assign weights.  Since this was a list sample, the second deficiency could be partially resolved through simulating
repeated draws.  This design was used for close to a dozen years, and I was fortunate to be involved as a contractor
in much of the work associated with the design.

Five or six years ago I was given the task of redesigning the EIA-782.  The major concern was the need to reduce
the sample size to about 2,000 companies.   I had been dissatisfied with the number of de facto certainties -- units
which were among two or three in one stratum for one product in one State. I decided that I would prefer to assign a
probability of selection to each company and sample with unequal probabilities (one would say PPS, but it is not
clear what measure of size one might use).  Naturally, I began by perusing the most comprehensive list of PPS
methods in my library  -- Brewer and Hanif's (1983) monograph on PPS sampling.

I required a PPS method with a fixed sample size which could be used with a Permanent Random Number in order
to permit rotation of the sample.  I figured that if Brewer and Hanif had listed no such method, it had to be because
none was available (and indeed, none was at the time of its publication).  However, I knew of one statistician who
frequent faced similar problems to the ones I faced in working for EIA, so I called Phil Kott at the Department of
Agriculture.  As it happened, Phil had just received a paper by Ebjorn Ohlsson -- a chapter in an upcoming book --
in which Ohlsson described such a method (Ohlsson, 1995). And even though the method did not yield exact
probabilities, he cited evidence that it came very close. The method was called Sequential Poisson Sampling (SPS)
and it was a form of order sampling which simply calculated probabilities as if one were to use Poisson sampling,
divided a random number (possibly a PRN) by the probability of selection and then selected the n smallest quotients.
If a Poisson sample were selected with exactly the expected sample size and using the same random numbers SPS
would select the identical sample.

Ohlsson's method seemed to do exactly what I needed, but there was something that intuitively bothered me. The
PRN one used in Poisson sampling was always between 0 and 1, and this resembled a probability. But then we had a
ratio of "probabilities" and in most statistical procedures taking the ratio of odds had proved far more effective than
taking the ratio of probabilities.  So I tried several variants of SPS, did some simulations, and found that indeed, the
formula (r-rp)/(p-rp) worked better that r/p or than other options.  Indeed, at some point in the simulations it even
seemed to do better than an exact method.

I presented the results at the Joint Meetings in Orlando (Saavedra, 1995) and proposed the use of this approach in
the EIA-782.  However, there was understandable reluctance to use a method that had not been analytically shown
to be sound. Fortunately, at this time Ohlsson notified me that around the time I was presenting in Orlando, Bengt
Rosen had not only published results (Rosen, 1995a, 1995b) demonstrating that a method identical to mine
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improved Ohlsson's method, but showed that this approach optimized a class of sampling methods just as I
suspected.  Rosen called his method "Pareto Sampling" for which those of my colleagues who tried to articulate
"Odds-Ratio Sequential Poisson Sampling" will be eternally grateful.   Armed with Rosen's paper, I completed the
design of the new EIA-782 sample.  In the first cycle we used simulations to achieve the probabilities of selection,
but in the second cycle we implemented the Chromy Algorithm (1987) in what to our knowledge have been its first
implementation with Pareto Sampling (Saavedra &Weir, 1999).

Now to turn our attention to the papers.  Rosen's paper is a delight from a practitioner’s perspective.  Ordinarily one
sees theoretical papers when a new methodology is developed and one has to sit down and figure out how and when
to apply the details. Rosen has taken care of this for the practitioner.  Nevertheless, I will bring up a few practical
issues.  Rosen discusses the problem of adjustment for nonresponse. A related issue is the degree to which one can
use order sampling to continue to sample until a fixed number of respondents or a fixed number of in-scope units is
obtained.  This can be an issue in conjunction with the previous one, but it is also an issue in its own right.  Suppose
one had an establishment survey and wished to obtain n respondents that sell product x.  The frame lists the volume
of sales, but is several years old.  Suppose one wants to obtain estimated prices and other information that would
ordinarily be obtained through a ratio estimator.  Can we use Pareto sampling to reach exactly n respondents?  If so,
how should we adjust our weights, variance estimates and so forth?  My usual answer is that I will try several
thousand simulations, but experience tells me that asking Bength Rosen may be more productive.

Rosen mentions the advantage that systematic sampling has by using implicit stratification.   Indeed, there is
something that approximates an implicit stratification method that may be used in Pareto sampling, but it is only
effective under certain conditions.  I am referring to collocation within subdomains.   Suppose I want to use implicit
stratification by States.   Under systematic sampling one can guarantee that each would be represented proportional
to its size (or the sum of the size measures).   Under Pareto sampling one can at least reduce the likelihood of
extreme oversampling or undersampling.  The procedure is simple.  You begin with a random number (be it a PRN
or a newly assigned one).  If there are m units in State j one divides the segment between 0 and 1 into m equal
segments, and assigns to each unit a random number within one of the segments, so as to preserve the order of the
units.  Thus the unit in position q will receive the number (q-r)/m where r is a second random number assigned to the
unit.  This final random number becomes the number used in Pareto sampling, and its rank order correlation with the
original random number will be 1.0 within categories.

Turning our attention to Brewer and Gregoire, the problem that they address is an old one for this practitioner,
though I must admit to not always recognizing it in practice.  The EIA-782 estimates both volumes and prices, and
even though the emphasis is largely on prices (which being the result of ratio estimation are not as affected as total
volumes) there is also a concern for volumes.  During the design stage of this survey we simulated two versions of
the Horvitz-Thompson ratio estimator with postratification.  Essentially we applied the equivalent of 3P7 at the
stratum level and we applied the traditional postratified estimator (setting the auxiliary variable to unity).  Even
though we were using Pareto at the national level, sampling for each post-stratum had variable sample size and
could thus benefit from adjustments of the HT estimators.  At this stage we were doing simulations where we had
the actual population totals to compare the results with, and we found that both improved the point estimates, but
were not very different in their improvement.  The 3P7 estimator was marginally better than the population
adjustment estimator.    We did not consider the issue of variance estimation at that time.

The final comment overlaps the Kott and Bailey paper.  One of the things I like about Phil Kott’s work is that I can
always count on him to not assume that there is a unique target estimate of interest or a unique auxiliary variable in
the frame.  In our petroleum sales surveys we start with a frame that has volumes for ten product/end use categories
per company per State.  We then estimate a somewhat larger number, and estimate most of them for every state and
region.  We use the Chromy algorithm to obtain probabilities of selection.   As I read the Brewer and Gregoire paper
I do not know whether to envy them for having a single estimand, or (more constructively) to hope that at ICES III
they will present a multivariate version of their paper.

The Kott and Bailey paper discusses methods of extending Brewer selection probability to a multivariate situation.
Kott and Bailey propose the derivation of univariate probabilities of selection and the use of the maximum
probability for sampling selection.  To a certain extent this is what was done in the first cycle of the new EIA-782
design.  However, an approach that seems to work better is the use of the Chromy algorithm.  Most people are
familiar of the use of Chromy to establish optimal allocations when there are different target variables and many
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strata.  But the algorithm, or at least the implementation which Zayatz and Sigman (1995) have put in place in the
census may also be used for unequal probability sampling (a term more accurate than PPS when there is no measure
of size that the probabilities are proportional to).

In the Chromy algorithm each unit becomes a stratum.  When the auxiliary variable represents a total we assume the
standard deviation to be proportional to the value of the auxiliary variable (in our case the yearly volume of sales of
the product at the frame level).  Then a fractional allocation capped at 1 is assigned to the units, and this becomes
the probability of selection.  We in fact tested the algorithm by simulating 1,000 samples, estimating the totals from
the sample and calculating the mean square errors of the estimates.

One point regarding model based estimators which ought to be mentioned here is that what works for the entire
sample and population works for strata when one uses substratification schemes.  This greatly multiplies the number
of estimators one might consider.  When we moved from linking strata to PPS, we still resorted to poststratification
to refine our estimates.  Unlike the approach Kott and Bailey present, we did not calibrate the weights to a single
weight, but adjusted the Horvitz-Thompson estimators separately for each target variable and area.  Petroleum
surveys are more complex than agricultural surveys by virtue of the fact that a company can sell in several states.

In conclusion, the three papers presented today can be related to one practitioner’s work in one survey.  It is entirely
possible that one or more of the papers could influence the development of this one survey as all three of the
presenters (as well as the chair of this session) already have.

Brewer, K.R.W. and Hanif, M., (1983), Sampling with Unequal Probabilities, New York: Springer-Verlag.

Chromy, J. (1987) "Design Optimization with Multiple Objectives," Proceedings of the Survey Research Methods
Section, American Statistical Association, pp. 194-199

Ohlsson, E. (1995), "Coordination of Samples Using Permanent Random Numbers", Survey Methods for Business,
Farms and Institutions, edited by Brenda Cox, New York: Wiley.

Rosen, B. (1995a) "On Sampling with Probability Proportional to Size", R&D Report 1995:1, Stockholm, Statistics
Sweden.

Rosen, B. (1995b) "Asymptotic Theory for Order Sampling", R&D Report 1995:1, Stockholm, Statistics Sweden.

Saavedra, P. J. (1988) "Linking Multiple Stratifications: Two Petroleum Surveys".   1988 Joint Statistical Meetings,
American Statistical Association, New Orleans, Louisiana.

Saavedra, P.J. (1995) "Fixed Sample Size PPS Approximations with a Permanent Random Number", 1995 Joint
Statistical Meetings, American Statistical Association, Orlando, Florida.

Saavedra, P.J. and Weir, P.  (1999)  “Application of the Chromy Allocation Algorithm with Pareto Sampling”, 1999
Joint Statistical Meetings, American Statistical Association, Baltimore, MD.

Zayatz, L.  and Sigman, R.  (1995) Chromy_Gen: General-Purpose Program for Multivariate Allocation of Stratified
samples Using Chromy’s Algorithm, Economic Statistical Methods Report series ESM-9502, June 1995,  Bureau of
the Census.



304


