Statisticians in Medical Device Post-Market Studies

Andrew Mugglin University of Minnesota amugglin@umn.edu

Outline

- Background of implantable defibrillator studies
- Types of Postmarket Studies
- Future Directions

Shocking a heart

Source: Keelan, Heartwise, 2000

Four Types of Postmarket Studies

- #1 Industry-sponsored, academia-administered
- #2 Scientific Hypotheses
- #3 Registries
- #4 Product Performance Monitoring

#1 - Academia-administered

- Example: SCD-HeFT (Sudden Cardiac Death in Heart Failure Trial)
- Funded by NIH, Medtronic, Wyeth
- Study Design: 3 arms (ICD, amiodarone, placebo)
- Study Intent: Demonstrate that ICDs save lives when used prophylactically (primary prevention-new indication)

SCD-HeFT Protocol

Bardy GH. NEJM

Mortality by Intention-to-Treat

SCD-HeFT Cost-Effectiveness Analysis: Estimation of Life Expectancy

- LE estimation based on survival of 2521 SCD- HeFT pts (8447 person-yrs of follow-up)
- Modeled with 2-part Cox regression model (age based hazard function)
- Covariates included to permit subgroup estimates
- LE = area under lifetime survival curve

SCD-HeFT Cost-Effectiveness Analysis: Base Case Results

Lifetime costs ICI \$159,147	 Lifetime costs placebo \$90,759 	\$68,388
10.87 yrs LE ICD	8.41 yrs LE placebo	= 2.455 LYs
	\$27,718 per life year (undiscounted)	
	\$33,192 per life year added (discounted at 3%)	
	\$36,886 per life year (discounted at 5%)	

Role of statistician

- Interact with academic, DCC statisticians
 - Not privy to interim results
 - Discuss analysis plans
 - Including cost-effectiveness
 - Interpret for corporate executives
- Calculate scenarios ahead of time
 - So company can quickly interpret analysis plan implications
- Eventually receive data
 - Oversee internal explorations

#2 - Scientific Hypothesis

- Typical: Randomized, possibly blinded, studying some new application of existing therapy
- Conducted by Sponsor
- Purpose: Investigate new programming strategy (within approved ranges) or in new types of patients (FDA IDE study)
- Often highlights unique feature of Sponsor's device
- Example: Simple Programming Strategy A vs Complicated Programming Strategy B
 - Endpoint: Noninferiority on proportion of patients shocked
- Example: Immediate shock vs delayed shock
 - Endpoint: superiority on proportions shocked
 - Endpoint: non-inferiority of time to arrhythmia termination

Role of Statistician

- Collaborate on Study Design
- Author stat section of protocol, SAP
- Team meetings
- Statistical programming
- Statistical analysis
- DMC reports
 - Usually unblinded
- Final reports
- Manuscripts, presentations

#3 - Registries

- No specified treatment regimen
- May have inclusion/exclusion criteria
- May study one or more types of devices
- Collect data in order to:
 - Understand physician practice patterns
 - Publish observational findings
 - Generate hypotheses for future research
 - Answer physician requests
 - Have basis for future sample size calculations
 - Have data to help understand the unexpected (e.g., battery depletion issues)

Role of the Statistician

- Collaborate on Study Design (light)
- Define objectives
- Author stat section of protocol, SAP
 - SAP takes relatively more work
- Statistical programming
- Statistical Analysis
- Publications (Manuscripts, abstracts)
- "Number cruncher" role

#4 - Product Performance

- Semi-Annual summary of product longevity
- Sent to FDA
- Published on Company Web Site
- Data are collected in various ways
 - Returned product
 - Passive and Active data collection
 - MDR, Adverse Event Reports

10	20	
	P	

🕀 Medtronic

CARDIAC RHYTHM MANAGEMENT PRODUCT PERFORMANCE REPORT

Model Number Capsure Screw-In Spectraflex Target Tip Tenax Tables

Introduction

CRT

ICD

IPG

Leads

Left-Heart

Defibrillation Ventricular

Atrial

Epi/Myocardial

VDD Single Pass

ICD Charge Time

Advisories

References

Technical Articles

Download Reports

Home > Leads > Ventricular						
4033 CapSure Z	Product Characteristics					
US Market Release	Mar-94	Serial Number Prefix	LCA			
Number of Leads Enrolled in Study	536	Type and/or Fixation	Transvenous, Vent., Tines			
Complications in Study	9	Polarity	Unipolar			
Conductor Fracture Failure to Capture	1 8	Steroid	Yes			
Cumulative Months of Follow-Up in Study	26,989					
Advisories	None					

Years After Implant Lead Survival Probability (%) 4 yr 5 yr 8yr lyr 2.71 3 yr 6 yr 7 yr 99.3 99.3 99.1 98.7 98.3 97.7 97.7 96.8 95.4 at 99 ms 100 90 80

6

7

8

9

5

MedtronicConnect.com

Contact Us Terms of Use Privacy Statement

4

3

2

0

10

Search

Role of the Statistician

- Participate in Standards (not typical)
 - ISO 5841 Implants for surgery -- Cardiac pacemakers -- Part
 3: Low-profile connectors (IS-1) for implantable pacemakers
- Inherit legacy methods, code, data
- Statistical programming, validation
- Update report
- Meet new SOPs (e.g., validation, SAP)
- Determine impact of follow-up changes or analysis changes

The Progression

- 1. Strategic involvement
 - Informing for decision-making
 - ... But not decision-making
 - Important role
 - ... But still the sense that "We'll call you if there is a statistical issue."
- 2. Scientific involvement
 - Little strategy
 - Scientific Design/Analysis
 - Blend of collaboration and number crunching

The Progression, cont'd

- 1. Number crunching
 - Though some statistical work in SAP, defining questions, abstracts
- 2. Number crunching
 - Just produce the report
 - Don't change anything (except maybe colors, format, etc.)

Future Directions

- For small companies—
 - More post-markets studies?
 - More consultants/CROs?
- For large companies---
 - Statisticians becoming more strategically influential?
 - Statistician managers (high positions)
 - Need to step up in companies and demonstrate value
 - Take lead on questions of science, longevity, strategy, policy
 - Step outside our bounds
 - Parallel the Drug World, only younger

Future Directions, cont'd

- Longer-term safety assessments
- Outcomes studies
- Health economics
- Statistical challenges with increasing complexity of data
 - Device-based data
 - FDA Critical Path Opportunities List, guidance on patientreported outcomes
 - Statistical opportunities
- QoL, QALYs
- Bayesian statistics?

Summary

- Medical Device World not monolithic
- Postmarket studies— how common?
- In large companies (w/ certain devices):
 - Four types of studies
 - Statistician role varies
- Ample opportunities for statisticians to lead
- As a profession, we should seize them