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Motivation

Primary motivation
True endpoint is rare and/or distant

Surrogate endpoint is frequent and/or close in time

Secondary motivation : True endpoint is
invasive

uncomfortable

costly

confounded by secondary treatments and/or competing risks
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Age-Related Macular Degeneration

Pharmacological Therapy for Macular Degeneration Study Group (1997)

Z : Interferon- α

S: Visual acuity at 6 months

T : Visual acuity at 1 year

N : 190 patients in 36 centers (# patients/center ∈[2;18])
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Definition and Single-Unit Model

Prentice (Bcs 1989)

“A test of H0 of no effect of treatment on surrogate is equivalent to a
test of H0 of no effect of treatment on true endpoint.”

Sj = µS + αZj + εSj

Tj = µT + βZj + εTj

Σ =

(
σSS σST

σST

)

Tj = µ+ γSj + εj
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Prentice’s Criteria and Measures

Prentice (1989), Freedman et al (1992)

Quantity Estimate Test

1 Effect of Z on T β (T |Z) 6= (T )

2 Effect of Z on S α (S|Z) 6= (S)

3 Effect of S on T γ (T |S) 6= (T )

4 Effect of Z on T , given S βS (T |Z, S) = (T |S)

↓

Proportion explained

PE = β−βS

β

ւ ց

Relative Effect Adjusted Association

RE = β

α
ρZ = Corr(S, T |Z)
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Prentice’s Criteria and Measures

Prentice (1989), Freedman et al (1992)

Quantity Estimate Test

1 Effect of Z on T β̂ = 4.12(2.32) p = 0.079

2 Effect of Z on S α̂ = 2.83(1.86) p = 0.13

3 Effect of S on T γ̂ = 0.95(0.06) p < 0.0001

4 Effect of Z on T , given S β̂S

↓

Proportion explained

P̂E = 0.65 [−0.22; 1.51]

ւ ց

Relative Effect Adjusted Association

R̂E = 1.45 [−0.48; 3.39] ρ̂Z = 0.75 [0.69; 0.82]
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Analysis Based on Several Trials

Context:
multicenter trials

meta analysis

several meta-analyses

Extensions:

Relative Effect −→ Trial-Level Surrogacy
How close is the relationship between the treatment effects on the surrogate

and true endpoints, based on the various trials (units)?

Adjusted Association −→ Individual-Level Surrogacy
How close is the relationship between the surrogate and true outcome, after

accounting for trial and treatment effects?
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Statistical Model

Model:
Sij = µSi + αiZij + εSij

Tij = µTi + βiZij + εTij

Error structure:

Σ =

(
σSS σST

σTT

)
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Statistical Model

Model:
Sij = µSi + αiZij + εSij

Tij = µTi + βiZij + εTij

Trial-specific effects:




µSi

µTi

αi

βi


 =




µS

µT

α

β


+




mSi

mTi

ai

bi


 D =




dSS dST dSa dSb

dTT dTa dTb

daa dab

dbb



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ARMD: Trial-Level Surrogacy
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Prediction:
What do we expect ?

E(β + b0|mS0, a0)

How precisely can we estimate it ?

Var(β + b0|mS0, a0)

Estimate:
R2

trial = 0.692 (95% C.I. [0.52; 0.86])
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ARMD: Individual-Level Surrogacy
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Individual-level association:

ρZ = Rindiv = Corr(εTi, εSi)

Estimate:

R2
indiv = 0.483 (95% C.I. [0.38; 0.59])

Rindiv = 0.69 (95% C.I. [0.62; 0.77])

Recall ρZ = 0.75 (95% C.I. [0.69; 0.82])
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A Number of Case Studies

Age-related Advanced Advanced

macular ovarian colorectal

degeneration cancer cancer

Surrogate Vis. Ac. (6 months) Progr.-free surv. Progr.-free surv.

True Vis. Ac. (1 year) Overall surv. Overall surv.

Prentice Criteria 1–3 ( p value)

Association (Z, S) 0.31 0.013 0.90

Association (Z, T ) 0.22 0.08 0.86

Association (S, T ) < 0.001 < 0.001 < 0.001

Single-Unit Validation Measures (estimate and 95% C.I.)

Proportion Explained 0.61[−0.19; 1.41] 1.34[0.73; 1.95] 0.51[−4.97; 5.99]

Relative Effect 1.51[−0.46; 3.49] 0.65[0.36; 0.95] 1.59[−15.49, 18.67]

Adjusted Association 0.74[0.68; 0.81] 0.94[0.94; 0.95] 0.73[0.70, 0.76]

Multiple-Unit Validation Measures (estimate and 95% C.I.)

R2

trial 0.69[0.52; 0.86] 0.94[0.91; 0.97] 0.57[0.41, 0.72]

R2

indiv 0.48[0.38; 0.59] 0.89[0.87; 0.90] 0.57[0.52, 0.62]
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Overview: Case Studies

Schizoph. Schizoph. Schizoph.

Study Study Study

I (138 units) I (29 units) II

Surrogate — PANSS —

True — CGI —

Prentice Criteria 1–3 ( p value)

Association (Z, S) 0.016 0.835

Association (Z, T ) 0.007 0.792

Association (S, T ) < 0.001 < 0.001

Single-Unit Validation Measures (estimate and 95% C.I.)

Proportion Explained 0.81[0.46; 1.67] −0.94[∞]

Relative Effect 0.055[0.01; 0.16] −0.03[∞]

Adjusted Association 0.72[0.69; 0.75] 0.74[0.69; 0.79]

Multiple-Unit Validation Measures (estimate and 95% C.I.)

R2

trial 0.56[0.43; 0.68] 0.58[0.45; 0.71] 0.70[0.44; 0.96]

R2

indiv 0.51[0.47; 0.55] 0.52[0.48; 0.56] 0.55[0.47; 0.62]
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Two Longitudinal Endpoints

First Stage

Tijt = µTi
+ βiZij + θTi

tijt + εTijt

Sijt = µSi
+ αiZij + θSi

tijt + εSijt

Σi =

(
σTTi σSTi

σSTi σSSi

)
⊗Ri
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Two Longitudinal Endpoints

Second Stage




µSi

µT i

αi

βi

θSi

θT i




=




µS

µT

α

β

θS

θT




+




mSi

mT i

ai

bi
τSi

τT i




Evaluation Measures?

Geert Molenberghs – p. 16/38



A Sequence of Measures

Variance Reduction Factor VRF:

V RF =

∑
i{tr(ΣTTi)− tr(Σ(T |S)i)}∑

i tr(ΣTTi)

Canonical-correlation Root-statistic Based Measure θp:

θp =
∑

i

1

Npi

tr
{(

ΣTTi − Σ(T |S)i

)
Σ−1

TTi

}

Geert Molenberghs – p. 17/38



A Sequence of Measures

Canonical-correlation Root-statistic Based Measure R2
Λ:

R2
Λ =

1

N

∑

i

(1− Λi),

where

Λi =
|Σi|

|ΣTTi| |ΣSSi|
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A Sequence of Measures

The Likelihood Reduction Factor LRF:
Consider a pair of models:

gT (Tij) = µTi
+ βiZij

gT (Tij) = θ0i
+ θ1iZij + θ2iSij

G2
i log-likelihood ratio for comparison of both models

The proposed measure:

LRF = 1−
1

N

∑

i

exp

(
−
G2

i

ni

)
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An Information-theoretic Approach

Can we unify all previous proposals?

Shannon (1916–2001) defined entropy of a distribution:

h(Y ) = E[− log(f(Y ))]

Conditional version:

h(Y |X = x) = EY |X [log fY |X(Y |X = x)]

and
I(Y |X) = EX [h(Y |X = x)]
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An Information-theoretic Approach

The amount of uncertainty (entropy) that is expected to be
removed if the value of X is known:

I(X, y) = h(Y )− h(Y |X)

Informational measure of association R2
h:

R2
h = R2

h =
EP (Y )−EP (Y |X)

EP (Y )

with

EP (X) =
1

(2πe)n
e2h(X)
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An Information-theoretic Approach

Version for N trials:

R2
h =

Nq∑

i=1

αiR
2
hi = 1−

Nq∑

i=1

αie
−2Ii(Si,Ti),

where the αi form a convex combination.
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Relationships With Previous Definitions

All have desirable behavior within [0, 1] for continuous endpoints

All can be embedded within a family

θp is symmetric in S and T whereas the VRF is not

θp is invariant w.r.t. linear bijective transformations; VRF only
when they are orthogonal

R2
Λ and later ones also apply to non-Gaussian settings

Later ones specialize to earlier ones
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Relationships With Previous Definitions

They all reduce to the R2
indiv for cross-sectional Gaussian

outcomes

Longitudinal normal setting:

R2
h = R2

Λ if αi = N−1
q

General setting:

LRF P
→ R2

h

when the number of subjects per trial approaches∞
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Other Implications

Relationship with Prentice’s main criterion and the Data
Processing Inequality:

f(T |Z, S) = F (T |S) ⇒ Z → S → T

⇒ I(T, Z|S) = 0

⇒ I(Z, S) ≥ I(Z, T )

PE and R2
h:

PE = 1−
βS

β
←→ R2

h = 1−
EP(βi|αi)

EP(βi)
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Fano’s Inequality

Fano’s Inequality:

E
[
(T − g(S))2

]
≥ EP (T )(1−R2

h)

Left hand side is prediction error

Applies regardless of distributional form and predictor function
g(·)

“How large does R2
h have to be?" ←− The answer

depend crucially on the power entropy of T
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Schizophrenia Trial: Continuous Outcomes

V RFind = 0.39 with 95% C.I. [0.36; 0.41]

R2
trial = 0.85 with 95% C.I. [0.68; 0.95]
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Schizophrenia Trial: Binary Outcomes

Parameter Estimate 95% C.I.

Trial-level R2
trial measures

1.1 Information-Theoretic 0.49 [0.21,0.81]

1.2 Probit 0.51 [0.18,0.78]

1.3 Plackett-Dale 0.51 [0.21,0.81]

Individual-level measures

R2
h 0.27 [0.24,0.33]

R2
hmax 0.39 [0.35,0.48]

Probit 0.67 [0.55,0.76]

Plackett-Dale ψ 25.12 [14.66;43.02]

Fano’s lower-bound 0.08
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Age-related Macular Degeneration Trial

Both outcomes considered binary

Parameter Estimate [95% C.I.]

R2
trial 0.3845 [0.1494;0.6144]

R2
h 0.2648 [0.2213;0.3705]

R2
hmax 0.4955 [0.3252;0.6044]
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Advanced Colorectal Cancer

S: Time to progression/death

T : Time to death

Models:

hij(t) = hi0(t)exp{βiZij}

hij(t) = hi0(t)exp{βSiZij + γiSij(t)}

Geert Molenberghs – p. 30/38



Advanced Colorectal Cancer: First Dataset

Parameter Estimate (95% C.I.)

Trial-level measures

R̂
2
trial (separate models) 0.82 [0.40;0.95]

R̂
2
trial (Clayton copula) 0.88 [0.59;0.98]

Individual-level measures

R̂
2
h 0.84 [0.82;0.85]

Percentage of censoring 19%
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Advanced Colorectal Cancer: Second Dataset

Parameter Estimate (95% C.I.)

Trial-level measures

R̂
2
trial (separate models) 0.85 [0.53;0.96]

R̂
2
trial (Clayton copula) 0.82 [0.43;0.95]

R̂
2
trial (Hougaard copula) 0.75 [0.00;1.00]

Individual-level measures

R̂
2
h 0.83 [0.82;0.85]

Percentage of censoring 55%
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Prediction in a New Trial

Consider a new trial i = 0:

S0j = µS0 + α0Z0j + εS0j

Prediction variance:

Var(β+b0|µS0, α0, ϑ) ≈ f{Var(µ̂S0, α̂0)}+f{Var(ϑ̂)}+(1−R2
trial)Var(b0)

where
f(·) are appropriate functions of the parameters involved

ϑ contains all fixed effects
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Prediction in a New Trial

Meaning of the three terms:
Estimation error in both the meta-analysis and the new
trial:

all three terms apply

Estimation error in the meta-analysis only:

Var(β + b0|µS0, α0, ϑ) ≈ f{Var(ϑ̂)}+ (1−R2
trial)Var(b0)

No estimation error:

Var(β + b0|mS0, a0) = (1−R2
trial)Var(b0)
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The Surrogate Threshold Effect

STE: The smallest treatment effect upon the surrogate that
predicts a significant treatment effect on the true endpoint

Various versions:

STEN,n: STE for a finite meta-analysis and a finite new trial

STEN,∞: STE for a finite meta-analysis and an infinite new
trial

STE∞,∞: STE when both the meta-analysis and the new trial
are infinitely large
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Practical Conclusions

Are surrogate endpoints useful in practice?

An investigator wants to be able to predict the effect of treatment
on T , based on the observed effect of treatment on S.

R2
trial, R

2
indiv, (ψ, τ ), VRF, θp, R2

Λ LRF, R2
h, . . . : quantification of

surrogacy in a meta-analytic setting

Prediction: useful in a new trial
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Methodological Conclusions

Basis for new assessment strategy

trial-level surrogacy

individual-level surrogacy

Requires

joint model for surrogate and true endpoint

acknowledgment of the hierarchical structure
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Methodological Conclusions

Methodological work needed for, e.g.,

joint modeling for all combinations of surrogate and true
endpoint

efficient estimation methods

flexible implementation

specific settings, such as microarrays, etc.-

Bayesian paradigm
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