Standards for <u>Analyzable</u> Submission Datasets for Directed Safety Analyses

Michael Nessly Director, Clinical Biostatistics Merck Research Labs CDISC Analysis Dataset Models Team (ADaM)

nesslym@merck.com

Outline

- Establishing the Problem/Motivation
- The new submission data standard
- Data Elements and Issues
 - Events
 - Time at Risk/exposure
 - Analysis Populations
 - Risk Factors/Subgroups
- Summary

Definitions

- Data Tabulation Datasets (DTD) -Datasets in which each record is a single observation for a subject.
 - Study Data Specifications, Version 1.0, http://www.fda.gov/cder/regulatory/er sr/5640studydata-v1.pdf
- Analysis Datasets datasets used for statistical analysis and reporting by the sponsor; submitted in addition to the DTD.

Study Data Tabulations Model (SDTM)

- SDTM is the future submission data input format to the FDA
- Having a data standard across sponsors, academia and governmental researchers (NIH, NCI) is a tremendously good idea with great potential for enhanced interactions
- This common data structure could be very useful in joint ventures and inlicensing.
- SDTM could assume the role of data source.
 FDA Industry Workshop 2005 SEP 14-16, 2005

Study Data Tabulations Model (SDTM)

http://www.cdisc.org/models/sds/v3.1.1/index.html

- Very normalized, tall & skinny
- One record per patient per visit per outcome
- Optimized as input for the FDA data repository
- Driven by technological specifications rather than reviewer needs
- Some rudimentary back end tools exist for Clinical Review, but none exist presently for Statistical Review

Study Data Tabulations Model (SDTM)

- SDTM is dynamic and still changing
- Action is underway to address at least some of the concerns expressed here.
- However, it is unlikely that all of the concerns expressed here can be addressed in SDTM in its current form.

Data Elements Absent from SDTM *per se*

- Study Phase designators
 - Prestudy, Baseline, Double Blind, Open Label Extension, Randomized Withdrawal, Titration, etc.
- Event and Censoring Flags
- Analysis Population flags
- Exposure Duration flags (censoring structure)
- Patients without events (AE, Med Hist)

Can SDTM supplant Analysis Submission Datasets?

- The data are there in raw form
- The standard is not optimized for many types of statistical analysis, models or study designs
- The key issues surround finding the variables needed, putting them in the appropriate form for analysis and doing the needed selection, merges, transposes and other programming tasks

Future Visions On Alternatives to Analyzable Datasets

- Proposes submission of metadata which describe the derivations/logic/analyses which create or define analyzeable datasets from SDTM.
- These metadata describe the programs for data preparation and are an inferior tool as additional work is required.
- Assumes that a 'back-end' tool using the datasets and metadata exists

Statistical review at the FDA

- Access to the right data in a timely manner is key
- Reviewers have had to spend 80% of time becoming familiar with data and structure in application, leaving only 20% of time for review
- Statisticians need more 'think' time

Statistical review at the FDA

- No programming support across 18+ review divisions
 - Compare to Merck: ~75 statisticians, ~70 programmers covering 11 broad therapeutic areas
- 1 statistical reviewer for 4-5 medical reviewers
- Prescription Drug User Fee Act (PDUFA) deadlines provide tight timelines
- Each stat reviewer supports multiple project responsibilities

Motivating Example

I magine you have just received the following request from the FDA:

In reference to your submission please provide updated combined analyses from studies 1, 2 and 3 for the following events A, B, C & D

Please provide crude rates, rates per 100 patient-years and Kaplan Meier cumulative rates as well as the datasets supporting these results.

Directed Safety Analyses Scenarios

- Study report for a trial with defined prespecified safety primary endpoints.
- Program with an emergent adverse experience of special interest.
- Data explorations in past and ongoing trials across programs and sponsors for a potential emergent safety issue for a program or across a class of drugs

Safety vs Efficacy Differences

Efficacy Analyses

- Inference based on primary outcome(s)
- Type I error strictly controlled
- *a priori* specified in detail
- Powered adequated for endpoint(s) FD.

Safety Analyses

- Many potential safety endpoints
- No adjustments for multiplicity
- Usually ad hoc and/or post hoc
- Generally limited
 power

Safety vs Efficacy Differences

Efficacy Analyses

- Designed for strong inference
- Subgroup analyses for hypothesis generation, not strong inference

Safety Analyses

- Exploratory in nature
- Subgroup/risk factor analyses important in inferences regarding risk management

Safety vs Efficacy Differences

Efficacy Analyses

- Generally analyzed as randomized
- If studies are combined usually done as formal meta-analysis

Safety Analyses

 All Patients As Treated

 If studies are combined, data are generally puddled

What is needed?

- FDA Statistical Reviewers would like to have a single file that records all needed safety-related information during the trial.
- I deally all of this information for a particular patient should be present on one record.
- Additional data at the study level are also frequently needed.

Data Structures: I ssues and Discussion

- Think about the "natural form" of the data
 - Demographics per subject
 - AEs per event (adverse event)
 - Longitudinal data per visit
 - Lab per measure
 - Physical Exam usually per abnormality

Safety Data Analysis Plan

- Although largely exploratory there is structure to good safety data generation and analysis.
- Even if *post-hoc*, there is value in writing down the details of data handling and analysis logic.
- It deserves the same level of rigor and detail that is often involved with the demonstration of efficacy.
- Many of the salient details are buried in copious data coding and entry guidelines

Safety Analysis Dataset Descriptor File

- The safety analysis dataset should be submitted with a safety analysis dataset descriptor file.
- This should include clear, accurate and precise description of how the elements were derived.

Key Data Elements for Safety Analysis

- On the surface, the data elements seem simple and basic:
 - Observed Events of Interest
 - Observation Period/Time at risk
 - Population At Risk
 - Patient Status/Discontinuations

Difficult Issues

- Finding the events
- Linking of time at risk and events to DTD datasets
- Dictionary changes
- Adjudicated endpoints

 Reclassification of events
- Derivation of Exposure
- Assessing onset and resolution times
- Applying logic for Analysis populations

Need case definition for events of interest

- Need clear, concise, logical, prespecified and mappable definitions
- For many analyses need time of onset of emergent events and need to determine the first onset of a constellation of event types.
- Listing of dictionary terms (and any qualifiers should be included).

Term Hierarchy Facilitates tracking of the events back to source

- Adjudicated Other event / fatal haemorrhagic stroke - APTC only -not a confirmed thrombotic event
- Verbatim\Reported hemorrhage
- Broader stroke
- Dictionary cerebrovascular accident
- Body System nervous system disorders

Nephrolithiasis Example

- 43 distinct preferred terms across different System Organ Classes
- Many non-specific terms: abdominal pain
- For non-specific terms from 40 to 90% were not associated with nephrolithiasis
- Flag variable makes for easy selection
- Selection/reduction task very difficult without flag

Example of Risk Factor Definition

This group was defined post hoc as those with either ≥ 2 major risk factors for coronary artery disease (current smoker, history of hypertension, diabetes, or hypercholesterolemia) OR with a prior history of a cardiovascular thrombotic event. List of MedDRA terms identify each risk factor

Diabetes Set of Terms

- insulin-dependent diabetes mellitus
- diabetes mellitus
- diabetic ketoacidosis
- diabetic nephropathy
- diabetic neuropathy
- diabetic vascular disease
- type 2 diabetes mellitus
- hyperglycemia
- diabetes retinopathy

Issues with Terms

- Determined *post hoc* by searching what was observed in particular study/studies
- Dictionary terms change over time
- Variability across studies, programs, sponsors
- Ongoing continual task until all studies are done
- Need to use common dictionary version

Time at risk example

At least 6 variables are needed to calculate the time at risk by this definition:

- Date of randomization
- Date of first dose
- Date of last dose
- Date of event
- Date of study discontinuation
- Date of study therapy discontinuation These are patient level meta-data (phasing calendar)

Analysis Population Flags

- What level is flag best applied?
 Patient level
 - ITT -randomized='in analysis'
 - Patient by visit level
 - Patient takes forbidden drug and is a protocol violator subsequently
 - Patient by visit by outcome
 - May use All Patients As Treated for AEs but ITT for Mortality

I ssues: I dentification of Analysis Populations

- Options
 - Status flags
 - Separate variables
 - Separate records
 - Separate datasets
- Choice depends on:
 - Statistical analysis
 - Study design
 - Dataset structure
 - Priority of ease-of-use vs ease-to-create

FDA Industry Workshop 2005 SEP 14-16, 2005

All Patients As Treated Example

- This target population consists of all randomized patients who received one or more doses of test drug therapy
- Patients who are documented to have never received study medication are excluded from analyses
- The patients are counted in the treatment group for the drug they actually received, rather than the treatment group to which they were randomized FDA Industry Workshop 2005 SEP 14-16, 2005

The near future – What should be done in submissions for statistical review

- An analysis dataset in a non-SDTM ADaM model format facilitates analysis in a standard fashion across protocols, across development programs, across sponsors OR
- Analysis dataset creation programs using SDTM as source should be submitted as metadata

The near future – Some Options :

- Optimized analysis datasets in Non-SDTM structure
- SDTM compliant files with additional rows including the requisite data and metadata not in SDTM but needed for analysis
- SDTM+ using the SDTM standard with additional columns of necessary data
- Sending analysis programs that use SDTM as source that can create the analysis datasets

Summary

- Most, but not all, of the needed raw data exist in the SDTM datasets.
- Enormous work is needed to find, collect, reduce, merge, derive and process the specific data needed for directed safety analyses.
- The sponsor has already done this work, why make the statistical reviewer do re-work?

Summary -2

- The SDTM standard as analysis file 'mandates' submission of either the data processing code or all of the logic contained within the analytic programs
- Non-SDTM safety analysis datasets would be useable at the FDA right now whereas a metadata stream (in XML) on how to transform the Events SDTM file would not.

CDI SC ADaM

Check us out

http://www.cdisc.org/models/adam/V1.0/index.html

- Be aware of the issues
- Actively participating members needed to develop future models
- Learn more about your peers in Industry and at the FDA