Using the Partitioning Principle to Control Generalized Familywise Error Rate

Jason C. Hsu joint work Haiyan Xu The Ohio State University

FDA/Industry Workshop September 15, 2005

Error Rates

Familywise Error Rate

FWER = P(V>0)

False Discovery Rate

FDR = E(V/R*I(R>0))
Good for sparse situations
Inappropriate when k₁/k known to be large

Generalized Familywise Error Rate

gFWER= Pr(V>m), 0 ≤ m < k
FWER is a special case of gFWER when m=0
Controls number of false findings

V=number of false findings; R=total number of findings k₁=number of truly significant hypotheses; k=total number of hypotheses

Multiple Testing Issues in Clinical Trials

Control FWER, FDR, or gFWER?
Finner & Roter example of how to manipulate FDR
Set critical values at µ₁ = µ₂ = ... = µ_k?
µ₁ = µ₂ = ...µ₂ ≠ µ_k less favorable for joint-ranking methods (e.g., Kruskal-Wallis type)
Partition testing is conditional testing
Step-up always more powerful than step-down?
No!

Issues in Analysis of Gene Expressions

Control FDR or gFWER?

 Is FDR inappropriate if target genes are pre-selected?
 Set critical values at complete null θ₁ = ... = θ_k = 0 ?

- Test $F_1 = F_2$ or $\mu_{g1} = \mu_{g2}$?
 - Depends on use
 - Permutation tests not valid for testing $\mu_{g1} = \mu_{g2}$

Uses of gene expression profiling

- Designer medicine (CDRH)
 - Screen genes to build diagnostic/prognostic chip
 Detionst torgetting (CDCD)
- Patient targeting (CDER)
 - Find patient subgroup responsive to compound
 - Eliminate patient subgroup prone to serious AE
- Drug discovery (pre-clinical)
 - Find co-regulated genes
 - Find transcription factor co-regulating genes
 - Find pathways

Classical Partitioning Testing

Form all possible hypotheses

H₀₁: θ_i = 0 for i ∈I and θ_i ≠ 0 for i ∉I

Test each H₀₁ at level-α
Infer θ_i ≠ 0 iff all H_{0J} with i ∈ J is rejected

Partition+Bonferroni=Holm's Stepdown

Single-step control of gFWER

Single-step test based on adjusted pvalues

reject H_{0i} if adjusted p-value $\tilde{p}_i = \sum_{j=m+1}^k \binom{k}{j} p_i^j (1-p_i)^{k-j} \le \alpha$.

Partially simultaneous confidence intervals
 At least k-m confidence intervals cover true parameters with chance higher than (1-α)

gFWER (k=2, m=1)

Other gFWER-controlling Methods

van der Laan, Dudoit, and Pollard (2004)
Augmentation method
Korn, Troendle, McShane, and Simon (2004)
Permutation test
Lehmann and Romano (2005)
Step-down method
based on Markov's inequality

Comparison of Bonferroni vs. Independence vs. Modeling FWER-control

Comparison of Bonferroni vs. Independence vs. Modeling gFWER-control

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.