Experience with Bayesian Clinical Trial Designs for Cardiac Medical Devices

Andrew Mugglin Statistics Manager Cardiac Rhythm Management Clinical Research Medtronic, Inc.

Acknowledgements

- ... with thanks to the following people for their input at various stages
 - Lou Sherfesee (Medtronic)
 - Feng Tang (Medtronic)
 - Don Berry
 - Scott Berry
 - Amy Xia (formerly Medtronic)

Agenda

- Examples of Cardiac Medical Devices
- Distinctives of Medical Device Trials
- When to be Bayesian
- Case Study #1: Informative Prior
- Case Study #2: Adaptive Design
- Implications of being Bayesian

Electrical Circuitry of the Heart

Sinus Rhythm to Ventricular Fibrillation (VF) To Cardiac Arrest

A modern external defibrillator

An Implantable Defibrillator

Distinctives of Medical Device Trials

- Blinding is difficult
- Compliance to therapy is high
- Local impact, generally not systemic
- Technological Advancement vs Therapeutic Advancement
- Speed of obsolescence
- "Electricity is still electricity"
- Prior information from previous generations

When to be Bayesian

- Prior data/informative prior information
 Can reduce size, length of a trial.
- Hierarchical modeling/random effects modeling
 - Borrow strength from prior or similar information
 - Data determine amount of borrowing
 - Can build complicated models from simple pieces (e.g. correlated data)
 - Meta-analysis
 - Multi-center trials

When to be Bayesian

Sequential Analysis

- Interim stopping
- Sample size re-estimation
- Adaptive designs
- Prediction
 - Predictive probability of future results
 - For adaptation of design, based on current outcomes
 - For modeling long-term outcomes based on short-term outcomes

Case Study 1: Next Generation Defibrillator

209 cc

62 cc

113 cc

GEM .

49 cc

80 cc

GEM."

39.5 cc

80 cc

72 cc

39 cc 39.5 cc 39 cc

Case Study 1: A Next Generation Defibrillator

- Background
 - New generation of ICDs
 - Reduction in device size
 - Several enhanced algorithmic features
 - Data from two large PMA studies on predicate devices are available
 - Goals:
 - Assess overall safety of device
 - Assess enhanced detection algorithm performance

Motivation and Objectives

- Motivation for Bayesian Design
 - Use of prior information can increase understanding of device safety with smaller (prospective) sample size
 - Sequential analysis of data (n=105, n=200)
- Primary objectives
 - AE-free rate at 3 Months
 - Sensitivity of detection algorithm to ventricular arrhythmias

Hierarchical Model (AE rates objective)

Goal: Posterior: [p₃|data]

Observed Data

Likelihood: $Y_i \sim Binomial (n_i, p_i)$ i = 1,2,3 (trials, for AE-free rate) or i = 1, ..., n (patients within trial, for sensitivity) Parameter of interest: p₃ (AE-free) $\theta = \alpha/(\alpha + \beta)$ (sensitivity) Prior: $p_i \sim \text{Beta}(\alpha, \beta)$ Hyperpriors: $\alpha \sim Vague$, $\alpha \geq 1$ $\beta \sim Vague, \beta \geq 1$ Posterior doesn't have closed form, resort to MCMC (WinBUGS)

To have a successful trial, must show:

• AE-free rate at 3 Months:

 $Pr(P_3 \ge K_1 \mid data) \ge 0.99$

(Prior is informative, based on historical data from 2 previous studies)

• Sensitivity

 $Pr(\theta \ge K_2 \mid data) \ge 0.95$ (Prior is essentially non-informative)

Design Considerations

- A logit formulation: $logit(p_i) \sim N(\mu, \sigma^2)$
 - Vague priors on $\mu,\,\sigma^2$
 - Inference drawn on p_3 (AEs), μ (sensitivity)
 - More computationally stable except when $p \approx 1$ (or 0)
 - ... which is exactly the case for sensitivity
 - This model not practical for sensitivity
- We opted to use the same model for each objective.
- No censoring mechanism (Binomial outcomes)
 - Required careful prespecification of how to include/exclude patients based on followup

Design Considerations (2)

- This is an uncontrolled trial.
- Standard is OPC (Objective Performance Criterion) K1, K2
- Posterior thresholds (e.g, 0.99, 0.95) are design choices
 - No consensus on value
 - Generally need to be high
 - Adjustable to influence frequentist operating characteristics
 - We opted to adjust these values (ad-hoc) rather than downweight prior information (ad-hoc)
- Watch out for "unethical trials": Prior may be so informative that the criterion is met prior to trial start.

Sampling Plan

- When 105 patients have completed 3 mo:
 - Analyze AE rate (n=105)
 - Analyze sensitivity (n=200?)
- If both objectives are met, stop and submit
 - (frequentist power = 80% to stop at this point)
- If either objective is not met, continue until 200 patients have completed 3 mo
 - Repeat both analyses
- Frequentist OC were computed via simulation
 - Note: Definitions of α , β are tricky
 - Have to be acceptable to sponsor, FDA
- (overall power = 95% to reach successful conclusion)

If we had been frequentist... (fixed sample size design)

- N=135 for 80% power, α = 0.05
- N=282 for 95% power, α = 0.05
- N=263 for 80% power, α = 0.01
- N=380 for 95% power, α = 0.01
 (Non-sequential designs. Trial is over at first analysis.)

- Goal: Compare Experimental (E) pacing technique with Control (C)
- Patient is blinded
- Endpoint: Composite of
 - Clinical Event (e.g., mortality)
 - Can happen anytime
 - Lab measure (e.g., ECG)
 - Detected at office visits
- Time-to-event analysis
- Little information on effect size or timing of effect
- → Sample size?

- When you don't know what to do, let the data guide you.
- Motivation
 - Interim analysis
 - Sample size re-estimation
 - Predictive probability of eventual success
- Use predictive probability to guide sample size reestimation and possible early stopping
- Primary objective: time-to-event analysis
- Many secondary objectives

Possible Outcomes and Desirable Corresponding Actions

• E clinically superior to C

 \rightarrow Stop for success, when established or highly likely

- E clinically inferior to C \rightarrow Stop for harm, when established
- E reasonably likely to be superior
 - \rightarrow Stop enrollment but continue followup
- E superior, but difference is not clinically meaningful

 \rightarrow Stop enrollment but not the trial (when established)

• None of the above? (i.e., not enough information?)

 \rightarrow Enroll more patients

(up to a preset limit)

Study Design Timeline

The Model

- Proportional Hazards model: $\lambda_E(t) = \lambda_C(t) \exp(\theta)$ for all t > 0
- $\lambda_{C}(t)$ piece-wise constant: (distribution of survival time is piece-wise exponential)

$$\lambda_{C}(t) = \lambda_{i,}, t \in I_{i}$$

• Pieces are chosen to reflect visit windows

(sensitivity analysis is planned)

Prior, Likelihood, Posterior

- Prior:
 - $\lambda_{i,} \sim \text{gamma}(\alpha, \beta)$

i=1

- \bullet ~ N(0, σ^2)
- Likelihood:

L($\theta, \lambda_{1,}, \dots, \lambda_{k,} \mid data$) $\propto \prod_{i:ti=E} \prod_{j} (\lambda_{j})^{dij} \exp(-\lambda_{j} x_{ij})$ $\prod_{i:ti=C} \prod_{j} (\lambda_{j} \exp(\theta))^{dij} \exp(-\lambda_{j} x_{ij} \exp(\theta))$ $d_{ij} = 0$: censored failure time for patient i in interval j $d_{ij} = 1$: observed failure time for patient i in interval j **Posterior:**

$$\begin{bmatrix} \theta \mid \lambda_{1}, ..., \lambda_{k}, data \end{bmatrix} \propto \exp\left(-\frac{\theta^{2}}{2\sigma^{2}} + \sum_{i:t_{i}=2} \sum_{j=1}^{k} \left(d_{ij}\theta - \lambda_{j}x_{ij}\exp(\theta)\right)\right) \quad \text{Metropolis-Hastings}$$
$$\begin{bmatrix} \lambda_{i} \mid \theta, data \end{bmatrix} \sim gamma \left(\alpha + \sum_{i=1}^{n} d_{ii}, \left[\beta^{-1} + \sum_{i=1}^{n} x_{ii} + \sum_{i=1}^{n} x_{ii}\exp(\theta)\right]^{-1}\right) \quad \text{Closed form}$$

 $i:t_i=1$

 $i:t_i=2$

Decision Quantities

- Posterior Probability:
 - $P(\theta > 0 | current data) = P(Harm)$
 - $P(\theta < 0 | current data) = P(Benefit)$
 - PBS = $P(e^{\theta} > 0.9 | current data)$ = evidence that <u>Benefit is Small</u>
- Posterior <u>Predictive Probability of Eventual Study Success</u>: PPES

Denote eventual success as

 $\gamma = \{ P(\theta < 0 | "data") > 0.981 \},$

where "data" constructed by extrapolating, based on current evidence, to the time at which the last patient randomized has 12 months follow-up PPES = $P(\gamma)$

Criteria Used in First Interim Analysis

Criteria Used in First Interim Analysis, Sample Size Re-estimation Phase

Criteria Used in Second Interim And Final Analyses

Reminder: Study Design Timeline

Evaluating Frequentist Operating Characteristics

- Simulating different scenarios:
 - Harm: $\theta > 0$ (e.g., $\theta = 0.3$)
 - Null: $\theta = 0$
 - Benefit: $\theta < 0$ (e.g., $\theta = -0.2$)
 - Vary enrollment rates
- Calculating the probability of reaching "Harmful", "Futile", "Benefit" to evaluate the Frequentist OC
 - P(Conclude Benefit | $\theta < 0$) high \rightarrow good power
 - P(Conclude benefit | θ = 0) low \rightarrow low type I error rate (< 0.025)
- Very computationally intensive
 - MCMC
 - Prediction of future during trial
 - Iterations to get long-run frequencies
 - Different scenarios
- (α < 0.025)

Summary

- Examples of Cardiac Devices
- Distinctives of device trials
- When to be Bayesian
- Case Study #1: Informative Priors
- Case Study #2: Adaptive Design
- Implications of being Bayesian