Experience with Bayesian Clinical Trial Designs for Cardiac Medical Devices

Andrew Mugglin
Statistics Manager
Cardiac Rhythm Management Clinical Research
Medtronic, Inc.
Acknowledgements

• … with thanks to the following people for their input at various stages
 – Lou Sherfesee (Medtronic)
 – Feng Tang (Medtronic)
 – Don Berry
 – Scott Berry
 – Amy Xia (formerly Medtronic)
Agenda

- Examples of Cardiac Medical Devices
- Distinctives of Medical Device Trials
- When to be Bayesian
- Case Study #1: Informative Prior
- Case Study #2: Adaptive Design
- Implications of being Bayesian
Electrical Circuitry of the Heart
Sinus Rhythm to Ventricular Fibrillation (VF) To Cardiac Arrest
A modern external defibrillator
An Implantable Defibrillator
Distinctives of Medical Device Trials

- Blinding is difficult
- Compliance to therapy is high
- Local impact, generally not systemic
- Technological Advancement vs Therapeutic Advancement
- Speed of obsolescence
- “Electricity is still electricity”
- Prior information from previous generations
When to be Bayesian

• Prior data/informative prior information
 ➔ Can reduce size, length of a trial.

• Hierarchical modeling/random effects modeling
 – Borrow strength from prior or similar information
 • Data determine amount of borrowing
 – Can build complicated models from simple pieces (e.g. correlated data)
 – Meta-analysis
 – Multi-center trials
When to be Bayesian

- **Sequential Analysis**
 - Interim stopping
 - Sample size re-estimation
 - Adaptive designs

- **Prediction**
 - Predictive probability of future results
 - For adaptation of design, based on current outcomes
 - For modeling long-term outcomes based on short-term outcomes
Case Study 1: Next Generation Defibrillator

Medtronic Implantable Defibrillators (1989-2000)

- 209 cc
- 113 cc
- 80 cc
- 80 cc
- 72 cc
- 54 cc
- 62 cc
- 49 cc
- 39.5 cc
- 39 cc
- 39 cc

© Copyright Medtronic, Inc.
Case Study 1: A Next Generation Defibrillator

- **Background**
 - New generation of ICDs
 - Reduction in device size
 - Several enhanced algorithmic features
 - Data from two large PMA studies on predicate devices are available
- **Goals:**
 - Assess overall safety of device
 - Assess enhanced detection algorithm performance
Motivation and Objectives

• Motivation for Bayesian Design
 – Use of prior information can increase understanding of device safety with smaller (prospective) sample size
 – Sequential analysis of data (n=105, n=200)

• Primary objectives
 – AE-free rate at 3 Months
 – Sensitivity of detection algorithm to ventricular arrhythmias
Hierarchical Model (AE rates objective)

- Hyperparameters: \(\alpha, \beta \)
- Parameters: \(p_1, p_2, p_3 \)
- Observed Data: \(Y_1, Y_2, Y_3 \)

Goal: Posterior: \([p_3|data] \)
Bayesian Random Effects Hierarchical Models

Likelihood: $Y_i \sim \text{Binomial} \ (n_i, \ p_i)$

- i = 1,2,3 (trials, for AE-free rate)
- or i = 1, …, n (patients within trial, for sensitivity)

Parameter of interest: p_3 (AE-free)

\[\theta = \frac{\alpha}{\alpha + \beta} \] (sensitivity)

Prior: $p_i \sim \text{Beta}(\alpha, \ \beta)$

Hyperpriors: $\alpha \sim \text{Vague}, \ \alpha \geq 1$

$\beta \sim \text{Vague}, \ \beta \geq 1$

Posterior doesn’t have closed form, resort to MCMC (WinBUGS)
To have a successful trial, must show:

- AE-free rate at 3 Months:
 \[\Pr(P_3 \geq K_1 \mid \text{data}) \geq 0.99 \]
 (Prior is informative, based on historical data from 2 previous studies)

- Sensitivity
 \[\Pr(\theta \geq K_2 \mid \text{data}) \geq 0.95 \]
 (Prior is essentially non-informative)
Design Considerations

• A logit formulation: \(\text{logit}(p_i) \sim N(\mu, \sigma^2) \)
 – Vague priors on \(\mu, \sigma^2 \)
 – Inference drawn on \(p_3 \) (AEs), \(\mu \) (sensitivity)
 – More computationally stable except when \(p \approx 1 \) (or 0)
 – … which is exactly the case for sensitivity
 – This model not practical for sensitivity

• We opted to use the same model for each objective.

• No censoring mechanism (Binomial outcomes)
 – Required careful prespecification of how to include/exclude patients based on followup
Design Considerations (2)

- This is an uncontrolled trial.
- Standard is OPC (Objective Performance Criterion) K1, K2
- Posterior thresholds (e.g., 0.99, 0.95) are design choices
 - No consensus on value
 - Generally need to be high
 - Adjustable to influence frequentist operating characteristics
 - We opted to adjust these values (ad-hoc) rather than downweight prior information (ad-hoc)
- Watch out for “unethical trials”: Prior may be so informative that the criterion is met prior to trial start.
Sampling Plan

- When 105 patients have completed 3 mo:
 - Analyze AE rate (n=105)
 - Analyze sensitivity (n=200?)
- If both objectives are met, stop and submit
 - (frequentist power = 80% to stop at this point)
- If either objective is not met, continue until 200 patients have completed 3 mo
 - Repeat both analyses
- Frequentist OC were computed via simulation
 - Note: Definitions of α, β are tricky
 - Have to be acceptable to sponsor, FDA
- (overall power = 95% to reach successful conclusion)
If we had been frequentist...
(fixed sample size design)

- N=135 for 80% power, $\alpha = 0.05$
- N=282 for 95% power, $\alpha = 0.05$
- N=263 for 80% power, $\alpha = 0.01$
- N=380 for 95% power, $\alpha = 0.01$

(Non-sequential designs. Trial is over at first analysis.)
Case Study #2: Novel Pacing Technique
Case Study #2: Novel Pacing Technique
Case Study #2: Novel Pacing Technique

• Goal: Compare Experimental (E) pacing technique with Control (C)
• Patient is blinded
• Endpoint: Composite of
 – Clinical Event (e.g., mortality)
 • Can happen anytime
 – Lab measure (e.g., ECG)
 • Detected at office visits
• Time-to-event analysis
• Little information on effect size or timing of effect
• ➔ Sample size?
Case Study #2: Novel Pacing Technique

• When you don’t know what to do, let the data guide you.

• Motivation
 – Interim analysis
 – Sample size re-estimation
 – Predictive probability of eventual success

• Use predictive probability to guide sample size re-estimation and possible early stopping

• Primary objective: time-to-event analysis

• Many secondary objectives
Possible Outcomes and Desirable Corresponding Actions

- E clinically superior to C
 → Stop for success, when established or highly likely
- E clinically inferior to C
 → Stop for harm, when established
- E reasonably likely to be superior
 → Stop enrollment but continue followup
- E superior, but difference is not clinically meaningful
 → Stop enrollment but not the trial (when established)
- None of the above? (i.e., not enough information?)
 → Enroll more patients
 (up to a preset limit)
Study Design Timeline

- **Begin Enrollment**
 - N1 Patients Randomized

- **1st Interim Analysis**
 - Sample Size Re-estimation Phase
 - N2 Additional Patients Randomized

- **2nd Interim Analysis**
 - All Required Randomized Patients have event or M1 month visit
 - N2 Additional Patients Randomized

- **Final Analysis**
 - All Required Randomized Patients have event or M2 month visit

- May Stop Early for Success or Safety
The Model

- Proportional Hazards model:
 \[\lambda_E(t) = \lambda_C(t) \exp(\theta) \text{ for all } t > 0 \]

- \(\lambda_C(t) \) piece-wise constant: (distribution of survival time is piece-wise exponential)
 \[\lambda_C(t) = \lambda_i, \ t \in I_i \]

- Pieces are chosen to reflect visit windows
 - (sensitivity analysis is planned)
Prior, Likelihood, Posterior

- Prior:
 \(\lambda_i \sim \text{gamma}(\alpha, \beta) \)
 \(\theta \sim \text{N}(0, \sigma^2) \)

- Likelihood:
 \[
 L(\theta, \lambda_1, ..., \lambda_k | \text{data}) \propto \prod_{i: t_i = E} \prod_j (\lambda_j)^{d_{ij}} \exp(-\lambda_j x_{ij}) \\
 \prod_{i: t_i = C} \prod_j (\lambda_j \exp(\theta))^{d_{ij}} \exp(-\lambda_j x_{ij} \exp(\theta))
 \]

 \(d_{ij} = 0: \text{censored failure time for patient } i \text{ in interval } j \)

 \(d_{ij} = 1: \text{observed failure time for patient } i \text{ in interval } j \)

- Posterior:
 \[
 [\theta | \lambda_1, ..., \lambda_k, \text{data}] \propto \exp\left(-\frac{\theta^2}{2\sigma^2} + \sum_{i: t_i = 2} \sum_{j=1}^k (d_{ij} \theta - \lambda_j x_{ij} \exp(\theta)) \right) \text{ Metropolis-Hastings}
 \]

 \[
 [\lambda_j | \theta, \text{data}] \sim \text{gamma}\left(\alpha + \sum_{i=1}^n d_{ij} \left[\beta^{-1} + \sum_{i: t_i = 1} x_{ij} + \sum_{i: t_i = 2} x_{ij} \exp(\theta) \right]^{-1} \right) \text{ Closed form}
 \]
Decision Quantities

- Posterior Probability:
 - $P(\theta > 0 \mid \text{current data}) = P(\text{Harm})$
 - $P(\theta < 0 \mid \text{current data}) = P(\text{Benefit})$
 - $\text{PBS} = P(e^\theta > 0.9 \mid \text{current data}) = \text{evidence that Benefit is Small}$

- Posterior Predictive Probability of Eventual Study Success: PPES

Denote eventual success as

$\gamma = \{ P(\theta < 0 \mid \text{“data”}) > 0.981 \}$,

where “data” constructed by extrapolating, based on current evidence, to the time at which the last patient randomized has 12 months follow-up

$\text{PPES} = P(\gamma)$
Criteria Used in First Interim Analysis

- \(P(\theta > 0 \mid \text{initial data}) > 90\% \) → Stop for Harm
- \(\text{PPES} > 99\% \) → Stop for Success
- \(0.9 \leq \text{PPES} < 0.99 \) → Halt Enrollment but Continue the Study
- \(\text{PBS} > 0.9 \) → Halt Enrollment For Futility
- \(\text{PPES} < 0.9 \) and \(\text{PBS} \leq 0.9 \) → Enroll More Patients
Criteria Used in First Interim Analysis, Sample Size Re-estimation Phase

- \(P(\theta > 0 \mid \text{initial data}) > 90\% \) → Stop for Harm
- \(\text{PPES} > 99\% \) → Stop for Success
- \(0.9 \leq \text{PPES} \) → Halt Enrollment but Continue the Study
- \(\text{PBS} > 0.9 \) → Halt Enrollment For Futility
- \(\text{PPES} < 0.9 \) and \(\text{PBS} \leq 0.90 \) → Enroll More Patients
Criteria Used in Second Interim And Final Analyses

- Second Interim Analysis:
 - $P(\theta>0 \mid \text{Current data}) > 0.9$ → Stop for Harm
 - PPES > 0.99 → Stop for Success
 - Otherwise → Continue the Study to End

- Final Analysis:
 - $P(\theta>0 \mid \text{All data}) > 0.9$ → E is Inferior to C
 - $P(\theta<0 \mid \text{All data}) > 0.981$ (γ) → E is Superior to C
Reminder: Study Design Timeline

Begin Enrollment

N1 Patients Randomized

May Stop Early for Success or Safety

Sample Size Re-estimation Phase

N2 Additional Patients Randomized

1st Interim Analysis

N2 Additional Patients Randomized

All Required Randomized Patients have event or M2 month visit

All Required Randomized Patients have event or M1 month visit

May Stop Early for Success or Safety

2nd Interim Analysis

N2 Additional Patients Randomized

Final Analysis
Evaluating Frequentist Operating Characteristics

• Simulating different scenarios:
 – Harm: $\theta > 0$ (e.g., $\theta = 0.3$)
 – Null: $\theta = 0$
 – Benefit: $\theta < 0$ (e.g., $\theta = -0.2$)
 – Vary enrollment rates

• Calculating the probability of reaching “Harmful”, “Futile”, “Benefit” to evaluate the Frequentist OC
 – $P(\text{Conclude Benefit} | \theta < 0)$ high \rightarrow good power
 – $P(\text{Conclude benefit} | \theta = 0)$ low \rightarrow low type I error rate (< 0.025)

• Very computationally intensive
 – MCMC
 – Prediction of future during trial
 – Iterations to get long-run frequencies
 – Different scenarios

• ($\alpha < 0.025$)
Summary

• Examples of Cardiac Devices
• Distinctives of device trials
• When to be Bayesian
• Case Study #1: Informative Priors
• Case Study #2: Adaptive Design
• Implications of being Bayesian