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Learning Objectives

Attendees will

understand basic concepts and computational methods of Bayesian
statistics

be able to deal with some practical issues that arise from Bayesian
analysis

be able to program using SAS/STAT procedures with Bayesian
capabilities to implement various Bayesian models.
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1 Introduction to Bayesian statistics
Background and concepts in Bayesian methods
Prior distributions
Computational Methods

Gibbs Sampler
Metropolis Algorithm

Practical Issues in MCMC
Convergence Diagnostics
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2 The GENMOD, PHREG, LIFEREG, and FMM Procedures
Overview of Bayesian capabilities in the GENMOD, PHREG,
LIFEREG, and FMM procedures
Prior distributions
The BAYES statement
GENMOD: linear regression
GENMOD: binomial model
PHREG: Cox model
PHREG: piecewise exponential model (optional)
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3 The MCMC Procedure
A Primer on PROC MCMC
Monte Carlo Simulation
Single-level Model: Hyperparameters
Generalized Linear Models
Random-effects models

Introduction
Logistic Regression - Overdispersion
Hyperpriors in Random-Effects Models - Shrinkage
Repeated Measurements Models

Missing Data Analysis
Introduction
Bivariate Normal with Partial Missing
Nonignorable Missing (Selection Model)

Survival Analysis (Optional)
Piecewise Exponential Model with Frailty
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Introduction to Bayesian statistics Background and concepts in Bayesian methods

Statistics and Bayesian Statistics

What is Statistics:

I the science of learning from data, which includes the aspects of
collecting, analyzing, interpreting, and communicating uncertainty.

What is Bayesian Statistics:

I a subset of statistics in which all uncertainties are summarized through
probability distributions.
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Introduction to Bayesian statistics Background and concepts in Bayesian methods

The Bayesian Method

Given data x, Bayesian inference is carried out in the following way:

1 You select a model (likelihood function) f (x|θ) to describe the
distribution of x given θ.

2 You choose a prior distribution π(θ) for θ.

3 You update your beliefs about θ by combining information from π(θ)
and f (x|θ) and obtain the posterior distribution π(θ|x).

The paradigm can be thought as a transformation from the before to the
after:

π(θ) −→ π(θ|x)
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Introduction to Bayesian statistics Background and concepts in Bayesian methods

Bayes’ Theorem

The updating of beliefs is carried out by using Bayes’ theorem:

π(θ|x) =
π(θ, x)

π(x)
=

f (x|θ)π(θ)

π(x)
=

f (x|θ)π(θ)∫
f (x|θ)π(θ)dθ

The marginal distribution π(x) is an integral that is often ignored (as long
as it is finite). Hence π(θ|x) is often written as:

π(θ|x) ∝ f (x|θ)π(θ) = L(θ)π(θ)

All inferences are based on the posterior distribution.
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Introduction to Bayesian statistics Background and concepts in Bayesian methods

Two Different Paradigms1

Bayesian

Probability describes degree of belief, not limiting frequency. It is
subjective.

Parameters cannot be determined exactly. They are random variables,
and you can make probability statements about them.

Inferences about θ are based on the probability distribution for the
parameter.

Frequentist/Classical

Probabilities are objective properties of the real world. Probability
refers to limiting relative frequencies.

Parameters θ are fixed, unknown constants.

Statistical procedures should be designed to have well-defined
long-run frequency properties, such as the confidence interval.

1Wasserman 2004
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Introduction to Bayesian statistics Background and concepts in Bayesian methods

Bayesian Thinking in Real Life

You suspect you might have a fever and decide to take your temperature.

1 A possible prior density on your
temperature θ: likely normal
(centered at 98.6) but possibly
sick (centered at 101).

2 Suppose the thermometer says
101 degrees: f (x |θ) ∼ N(θ, σ2)
where σ could be a very small
number.

3 You get the posterior
distribution. Yes, you are sick.
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Temperature
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Temperature
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Prior

96 98 100 102 104
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Introduction to Bayesian statistics Background and concepts in Bayesian methods

Estimations

All inference about θ is based on π(θ|x).

Point: mean, mode, median, any point from π(θ|x). For example, the
posterior mean of θ is E (θ|x) =

∫
Θ θ · π(θ|x)dθ

The posterior mode of θ is the value of θ that maximizes π(θ|x).

Interval: credible sets are any set A such that
P(θ ∈ A|x) =

∫
A π(θ|x)dθ

I Equal tail: 100(α/2)th and 100(1− α/2)th percentiles.
I Highest posterior density (HPD):

1 Posterior probability is 100(1− α)%
2 For θ1 ∈ A and θ2 /∈ A, π(θ1|x) ≥ π(θ2|x). The smallest region can be

disjoint.

Interpretation: “There is a 95% chance that the parameter is in this
interval.” The parameter is random, not fixed.
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Introduction to Bayesian statistics Prior distributions

Prior Distributions

The prior distribution represents your belief before seeing the data.

Bayesian probability measures the degree of belief that you have in a
random event. By this definition, probability is highly subjective. It
follows that all priors are subjective priors.

Not everyone agrees with the preceding. Some people would like to
obtain results that are objectively valid, such as, “Let the data speak
for itself.”. This approach advocates noninformative
(flat/improper/Jeffreys) priors.

Subjective approach advocates informative priors, which can be
extraordinarily useful, if used correctly.

Generally speaking, as the amount of data grows (in a model with
fixed number of parameters), the likelihood overwhelms the impact of
the prior.
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Introduction to Bayesian statistics Prior distributions

Noninformative Priors

A prior is noninformative if it is flat relative to the likelihood function.
Thus, a prior π(θ) is noninformative if it has minimal impact on the
posterior of θ.

Many people like noninformative priors because they appear to be
more objective. However, it is unrealistic to think that noninformative
priors represent total ignorance about the parameter of interest. See
Kass and Wasserman (1996): JASA: 91:1343-1370.

A frequent noninformative prior is π(θ) ∝ 1, which assigns equal
likelihood to all possible values of the parameter.

I However, flat prior is not invariant: flat on odds ratio is not the same
as flat on log of odds ratio.
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Introduction to Bayesian statistics Prior distributions

A Binomial Example

Suppose that you observe 14
heads in 17 tosses. The
likelihood is:

L(p) ∝ px(1− p)n−x

with x = 14 and n = 17.

A flat prior on p is:

π(p) = 1

The posterior distribution is:

π(p|x) ∝ p14(1− p)3

which is a beta(15, 4).
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Introduction to Bayesian statistics Prior distributions

Flat Prior (Observation I)
If π(θ|x) ∝ L(θ) with π(θ) ∝ 1, then why not use the flat prior all the
time?

Using a flat prior does not always guarantee a proper (integrable)
posterior distribution; that is,

∫
π(θ|x)dθ <∞.

The reason is that the likelihood function is only proper w.r.t. the random
variable X. But a posterior has to be integrable w.r.t. θ, a condition not
required by the likelihood function.

x

f(x;θ)

Density Function

x

f(x;θ)

Density Function

θ

L(x;θ)

Likelihood Function

θ

L(x;θ)

Likelihood Function

θ
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(improper) Posterior Distribution

θ

p(θ|x)

(improper) Posterior Distribution
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Introduction to Bayesian statistics Prior distributions

Flat Prior (Observation I)
If π(θ|x) ∝ L(θ) with π(θ) ∝ 1, then why not use the flat prior all the
time?

Using a flat prior does not always guarantee a proper (integrable)
posterior distribution; that is,

∫
π(θ|x)dθ <∞.

The reason is that the likelihood function is only proper w.r.t. the random
variable X. But a posterior has to be integrable w.r.t. θ, a condition not
required by the likelihood function.
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Introduction to Bayesian statistics Prior distributions

Flat Prior (Observation II)
In cases where the likelihood function and the posterior distribution are
identical, do we get the same answer?

Classical inference typically uses asymptotic results; Bayesian inference is
based on exploring the entire distribution. 15 / 295

Introduction to Bayesian statistics Prior distributions

You Always Have to Defend Something!

In a sense, everyone (Bayesian and non-Bayesian) is a slave to the
likelihood function, which serves as a foundation to both paradigms. Given
that,

in Bayesian paradigm, you need to justify the selection of your prior

in classical paradigm, you need to justify asymptotics: there exists an
infinitely amount of unobserved data that are just like the ones that
you have seen.
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Introduction to Bayesian statistics Prior distributions

Flat Prior (Observation III)

Is flat prior noninformative? Suppose that, in the binomial example, you
choose to model on γ = logit(p) instead of p:

π(p) = uniform(0, 1)⇔ π(γ) = logistic(0, 1)

0.0 0.2 0.4 0.6 0.8 1.0

p

Uniform Prior on p

⇒

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

γ

Logistic Prior on γ
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Introduction to Bayesian statistics Prior distributions

You start with

p =
exp (γ)

1 + exp (γ)
=

1

1 + exp (−γ)

∂p

∂γ
= − exp (−γ)

(1 + exp (−γ))2

Do the transformation of variables, with the Jacobian:

π(p) = 1 · I{0≤p≤1}

⇒ π(γ) =

∣∣∣∣∂p

∂γ

∣∣∣∣ · I{0≤ 1
1+exp(−γ)

≤1
} =

exp (−γ)

(1 + exp (−γ))2
· I{−∞≤γ≤∞}

The pdf for the logistic distribution with location a and scale b is

exp

(
−γ − a

b

)/
b

(
1 + exp

(
−γ − a

b

))2

and π(γ) = logistic(0, 1).
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Introduction to Bayesian statistics Prior distributions

Flat Prior (Observation III)

If you choose to be noninformative on the γ dimension, you end up with a
very different prior on the original p scale:

π(γ) ∝ 1⇔ π(p) ∝ p−1(1− p)−1

0.0 0.2 0.4 0.6 0.8 1.0

p

Haldane Prior on p

⇐

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5

γ

Uniform Prior on γ
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Introduction to Bayesian statistics Prior distributions

Flat Prior

A flat prior implies a unit, a measurement scale, on which you assign
equal likelihood

I π(θ) ∝ 1: θ is as likely to be between (0, 1) as between (1000, 1001)
I π(log(θ)) ∝ 1 (equivalently, π(θ) ∝ 1/θ): θ is as likely to be between

(1, 10) as between (10, 100)

One obvious difficulty in justifying a flat (uniform) prior is to explain
the choice of unit which the prior is being noninformative on.

Can we have a prior that is somewhat noninformative but at the same
time is invariant to transformations?

I Jeffreys’ Prior
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Introduction to Bayesian statistics Prior distributions

Jeffreys’ Prior
Jeffreys’ prior is defined as

π(θ) ∝ |I(θ)|1/2

where | · | denotes the determinant and I(θ) is the expected Fisher
information matrix based on the likelihood function p(x|θ):

I(θ) = −E

[
∂2 log p(x|θ)

∂θ2

]

In the Binomial Example:

π(p) ∝ p−1/2(1− p)−1/2

L(p)π(p) ∝ px− 1
2 (1− p)n−x−

1
2

∼ Beta(15.5, 4.5)
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Introduction to Bayesian statistics Prior distributions

Some Thoughts

Jeffreys’ prior is

locally uniform—a prior that does not change much over the region in
which the likelihood is significant and does not assume large values
outside that range. Hence it is somewhat noninformative.

invariant with respect to one-to-one transformations.

The prior also

can be improper for many models

can be difficult to construct

violates the likelihood principle

22 / 295



Introduction to Bayesian statistics Prior distributions

The Likelihood Principle

The likelihood principle states that, if two likelihood functions are
proportional to each other,

L1(θ|x) ∝ L2(θ|x)

and one observes the same data x, all inferences (about θ) should be the
same.

Jeffreys’ prior is in violation of this principle.
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Introduction to Bayesian statistics Prior distributions

Negative Binomial Model

Instead of using a Binomial distribution, you can model the number of
heads (x = 14) using a negative binomial distribution:

L(q) =

(
r + x − 1

x

)
qr (1− q)x

x is the number of failures until r = 3 successes are observed

q is the probability of success (getting a tail), and 1− q is the
probability of failure (getting a head)

let p = 1− q and the likelihood function is rewritten as

L(p) ∝ (1− p)rpx

This is the same kernel as the binomial likelihood function.
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Introduction to Bayesian statistics Prior distributions

Jeffreys’ Prior
Same math leads to:

∂2`p

∂p2
= − x

p2
− r

(1− p)2

Under a negative binomial model, E (X ) = r ·p
1−p , and we have the following

expected Fisher information:

I(p) =
−r

p(1− p)2

The Jeffreys’ prior becomes

π(p) ∝ p−1/2(1− p)−1

∼ Beta

(
1

2
, 0

)
A different prior, a different posterior, different inference on p.
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Introduction to Bayesian statistics Prior distributions

The Cause

The cause to the problem is the expectation (E (X )), which depends on
how the experiment is designed. In other words, taking the expectation
means that we are making an assumption on how all future unobserved x
behave.

Why do Bayesians consider this to be a problem?

inference is based on yet-to-be-observed data and one might ended up
being overly confident with the estimates.
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Introduction to Bayesian statistics Prior distributions

Conjugate Prior

Conjugate prior is a family of prior distributions in which the prior and the
posterior distributions are of the same family of distributions.

The Beta distribution is a conjugate prior to the binomial model:

L(p) ∝ px(1− p)n−x

π(p|α, β) ∝ pα−1(1− p)β−1

The posterior distribution is also a Beta:

π(p|α, β, x , n) ∝ px+α−1(1− p)n−x+β−1

= Beta (x + α, n − x + β)
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Introduction to Bayesian statistics Prior distributions

Conjugate Prior

π(p|α, β, x , n) = Beta (x + α, n − x + β)

One nice feature of the conjugate prior is that you can easily understand
the amount information that is contained in the prior:

the data contains x successes out of n trials

the prior assumes α successes out of α + β trials: Beta(2, 2) clearly
means different from Beta(3, 17)

A related concept is the unit information (UI) prior (Kass and Wasserman
(1995) JASA: 90:928-934), which is designed to contain roughly the same
amount of information as one datum (variance equal to the inverse Fisher
information based on one observation).
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Introduction to Bayesian statistics Computational Methods

Bayesian Computation

The key to Bayesian inferences is the posterior distribution

Accurate estimation of the posterior distribution can be difficult and
require a considerate amount of computation

One of the most prevalent methods used nowadays is
simulation-based:

I repeatedly draw samples from a target distribution and use the
collection of samples to empirically approximate the posterior
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Introduction to Bayesian statistics Computational Methods

Simulation-based Estimation

0.0 0.2 0.4 0.6 0.8 1.0

p

True DensityEstimated

How to do this for complex models that have many parameters?
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Introduction to Bayesian statistics Computational Methods

Markov Chain Monte Carlo

Markov Chain: a stochastic process that generates conditional
independent samples according to some target distribution.

Monte Carlo: a numerical integration technique that finds an
expectation:

E(f (θ)) =

∫
f (θ)p(θ)dθ ∼=

1

n

n∑
i=1

f (θi )

with θ1, θ2, · · · , θn being samples from p(θ).

MCMC is a method that generates a sequence of dependent samples
from the target distribution and computes quantities by using Monte
Carlo based on these samples.
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

Gibbs sampler is an algorithm that sequentially generates samples from a
joint distribution of two or more random variables. The sampler is often
used when:

The joint distribution, π(θ|x), is not known explicitly

The full conditional distribution of each parameter—for example,
π(θi |θj , i 6= j , x)—is known
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

α(0)

π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

π(β|α(0), x)

α(0)

π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

π(β|α(0), x)

α(0)

β(0)

π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

π(α|β(0), x)

α(0)

β(0)

π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

π(α|β(0), x)
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π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

α(0)α(1)
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π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

α

β

π(θ=(α,β)| x )
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Introduction to Bayesian statistics Computational Methods

Joint and Marginal Distributions

α

β

π(α, β|x)
-1.1634
-1.0666
4.0456

-0.2531
-0.4675
1.5945

-3.1744
-0.3086

...

-1.0416
0.1060
4.3485
0.9495

-0.8278
2.5618

-4.5091
-2.6782

...

Gibbs enables you draw samples from a joint distribution.
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Joint and Marginal Distributions

α

β

π(α|x)
-1.1634
-1.0666
4.0456

-0.2531
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1.5945

-3.1744
-0.3086

...

-1.0416
0.1060
4.3485
0.9495

-0.8278
2.5618

-4.5091
-2.6782

...

The by-products are the marginal distributions.
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Introduction to Bayesian statistics Computational Methods

Joint and Marginal Distributions

α

β
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...

The by-products are the marginal distributions.
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Introduction to Bayesian statistics Computational Methods

Gibbs Sampler

The difficulty in implementing a Gibbs sampler is how to efficiently
generate from the conditional distribution, π(θi |θj , i 6= j , x)?

If each conditional distribution is a well known distribution, then it is easy.

Otherwise, you must use general algorithms to generate samples from a
distribution:

Metropolis Algorithm

Adaptive Rejection Algorithm

Slice Sampler

...

General algorithms typically have minimum requirements that are not
distribution-specific, such as the ability to evaluate the objective functions.
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Introduction to Bayesian statistics Computational Methods

The Metropolis Algorithm

1 Let t = 0. Choose a starting point θ(t). This can be an arbitrary
point as long as π(θ(t)|y) > 0.

2 Generate a new sample, θ′, from a proposal distribution q(θ′|θ(t)).

3 Calculate the following quantity:

r = min

{
π(θ′|y)

π(θ(t)|y)
, 1

}
4 Sample u from the uniform distribution U(0, 1).

5 Set θ(t+1) = θ′ if u < r ; θ(t+1) = θ(t) otherwise.

6 Set t = t + 1. If t < T , the number of desired samples, go back to
Step 2; otherwise, stop.
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

π(θ|x)

θ(0)
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

π(θ|x)

θ(0)

θ' ~ N(θ(0),σ)

θ'
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The Random-Walk Metropolis Algorithm

θ

π(θ|x)

θ(0)θ'

π(θ'|x)

π(θ(0)|x)
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

π(θ|x)

θ(0)θ(1)

π(θ'|x)

π(θ(0)|x)

if π(θ'|x) > π(θ(0)|x), θ(1)=θ'
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

π(θ|x)

θ(0)θ'

π(θ'|x)

π(θ(0)|x)

if π(θ'|x) < π(θ(0)|x), accept

θ' with prob π(θ'|x)/π(θ(0)|x)
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

π(θ|x)

θ(0)θ(1)

θ' ~ N(θ(1),σ)

θ'
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

the Markov chain

always move to areas

that have higher density
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Introduction to Bayesian statistics Computational Methods

The Random-Walk Metropolis Algorithm

θ

can still explore tail areas

with lower density
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Introduction to Bayesian statistics Computational Methods

Scale and Mixing in the Metropolis

0 1000 2000 3000 4000 5000 Proposal

54 / 295



Introduction to Bayesian statistics Practical Issues in MCMC

Markov Chain Convergence

An unconverged Markov chain does not explore the parameter space
efficiently and the samples cannot approximate the target distribution well.
Inference should not be based upon unconverged Markov chain, or very
misleading results could be obtained.

It is important to remember:

Convergence should be checked for ALL parameters, and not just
those of interest.

There are no definitive tests of convergence. Diagnostics are often
not sufficient for convergence.
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Convergence Terminology

Convergence: initial drift in the samples towards a stationary
(target) distribution

Burn-in: samples at start of the chain that are discarded to minimize
their impact on the posterior inference

Slow mixing: tendency for high autocorrelation in the samples. A
slow-mixing chain does not traverse the parameter space efficiently.

Thinning: the practice of collecting every kth iteration to reduce
autocorrelation. Thinning a Markov chain can be wasteful because
you are throwing away a k−1

k fraction of all the posterior samples
generated.

Trace plot: plot of sampled values of a parameter versus iteration
number.
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Introduction to Bayesian statistics Practical Issues in MCMC

Various Trace Plots

Thinning?

Nonconvergence

Burn-In

Good Mixing
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Introduction to Bayesian statistics Practical Issues in MCMC

To Thin Or Not To Thin?
The argument for thinning is based on reducing autocorrelations, getting
from
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Introduction to Bayesian statistics Practical Issues in MCMC

To Thin Or Not To Thin?
But at the same time, you are getting from
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Introduction to Bayesian statistics Practical Issues in MCMC

To Thin Or Not To Thin?

Thinning reduces autocorrelations and allows one to obtain seemingly
independent samples. But at the same time, you throw away an appalling
number of samples that can otherwise be used.

Autocorrelations do not lead to biased Monte Carlo estimates. It is simply
an indicator of poor sampling efficiency.

On the other hand, sub-sampling loses information and actually increases
the variance of sample mean estimators (Var(θ̄), not posterior variance).
See MacEachern and Berliner (1994, American Statistician, 48:188).

Advice: unless storage becomes a problem, you are better off keeping all
the samples for estimation.
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Introduction to Bayesian statistics Practical Issues in MCMC

Some Popular Convergence Diagnostics Tests

Gelman-Rubin: tests whether multiple chains would convergent to the
same target distribution.

Geweke: tests whether the mean estimates have converged by
comparing means from the early and latter part of the Markov chain.

Heidelberger-Welch stationarity test: tests whether the Markov chain
is a covariance (weakly) stationary process.

Heidelberger-Welch halfwidth test: reports whether the sample size is
adequate to meet the required accuracy for the mean estimate.

Raftery-Lewis: evaluates the accuracy of the estimated (desired)
percentiles by reporting the number of samples needed to reach the
desired accuracy of the percentiles.
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More on Convergence Diagnosis

There are no definitive tests of convergence.

With experience, visual inspection of trace plots is often the most
useful approach.

Geweke and Heidelberger-Welch sometimes reject even when the
trace plots look good.

Oversensitivity to minor departures from stationarity does not impact
inferences.

Different convergence diagnostics are designed to protect you against
different potential pitfalls.

ESS is frequently a good numerical indicator on the status of mixing.
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Introduction to Bayesian statistics Practical Issues in MCMC

Effective Sample Size (ESS)

ESS (Kass et al. 1998, American Statistician, 52:93) provides a measure
on how well a Markov chain is mixing.

ESS =
n

1 + 2
∑(n−1)

k=1 ρk(θ)

where n is the total sample size and ρk(θ) is the autocorrelation of lag k
for θ.

The closer ESS is to n, the better mixing is in the Markov chain.

ESS of size around 1,000 is mostly sufficient in estimating the
posterior density. You want increase the number for tail percentiles.
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Effective Sample Size (ESS)

I personally prefer to use ESS as a way to judge convergence:

small numbers of ESSs often indicate “something isn’t quite right.”

large numbers of ESSs are typically good news

moves away from the conundrum of dealing with and interpreting
hypothesis testing results

You can summarizes the convergence of multiple parameters by
looking at the distribution of all the ESSs, or even the minimum ESS
(worst case).
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Various Trace Plots and ESSs
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Various Trace Plots and ESSs
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More on ESS

ESS is not significance test-based, and you can think of it as more of
a numerical criterion, similar to convergence criteria used in
optimizations.

You can still get good ESSs in “unconverged” chains, such as a chain
that is stuck in a local mode in a multi-mode problem.

I These are fairly rare (and often there are plenty of other signs to
indicate such complex problems).

Bad ESSs serves as a good indicator when things go bad

I problems can sometimes be easily corrected (burn-in, longer chain, etc).
I false rejections (bad ESSs from convergened chains) are less common,

but do exist (in binary and discrete parameters).
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Bernoulli Markov Chains, all with Marginal Prob of 0.2
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The GENMOD, PHREG, LIFEREG, and FMM Procedures

Outline of Part II

Overview of Bayesian capabilities in the GENMOD, PHREG,
LIFEREG, and FMM procedures

Overview of the BAYES statement and syntax for requesting Bayesian
analysis

Examples
I GENMOD: linear regression
I GENMOD: Poisson regression
I PHREG: Cox model
I PHREG: piecewise exponential model (optional)
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The GENMOD, PHREG, LIFEREG, and FMM Procedures

These four procedures provide:

The BAYES statement

A set of frequently used prior distributions (noninformative, Jeffreys’),
posterior summary statistics, and convergence diagnostics

Various sampling algorithms: conjugate, direct, adaptive rejection
(Gilks and Wild 1992; Gilks, Best, and Tan 1995), Metropolis,
Gamerman algorithm, etc.

Bayesian capabilities include:

GENMOD: Generalized Linear Models

LIFEREG: Parametric Lifetime Models

PHREG: Cox Regression (Frailty) and Piecewise Exponential Models

FMM: Finite Mixture Models

70 / 295



The GENMOD, PHREG, LIFEREG, and FMM Procedures Prior distributions

Prior Distributions in SAS Procedures

Uniform (or flat )prior is defined as:

π(θ) ∝ 1

This prior is not integrable, but it does not lead to improper posterior
in any of the procedures.

Improper prior is defined as:

π(θ) ∝ 1

θ

This prior is often used as a noninformative prior on the scale
parameter, and it is uniform on the log-scale.

Proper prior distributions include gamma, inverse-gamma,
AR(1)-gamma, normal, multivariate normal densities.

Jeffreys’ prior is provided in PROC GENMOD.
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Syntax for the BAYES Statement
The BAYES statement is used to request all Bayesian analysis in these
procedures.

BAYES < options > ;

The following options appear in all BAYES statements:

INITIAL= initial values of the chain
NBI= number of burn-in iterations
NMC= number of iterations after burn-in
OUTPOST= output data set for posterior samples
SEED= random number generator seed
THINNING= thinning of the Markov chain
DIAGNOSTICS= convergence diagnostics
PLOTS= diagnostic plots
SUMMARY= summary statistics
COEFFPRIOR= prior for the regression coefficients
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Regression Example

Consider the model

Y = β0 + β1LogX 1 + ε

where Y is the survival time, LogX1 is log(blood-clotting score), and ε is a
N(0, σ2) error term.

The default priors that PROC GENMOD uses are:

π(β0) ∝ 1 π(β1) ∝ 1

π(σ2) ∼ gamma(shape = 2.001, iscale = 0.0001)
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Regression Example
A subset of the data and statements fit Bayeisna regression:

data surg;

input logy logx1 @@;

datalines;

199.986 1.90211 100.995 1.62924 203.986 2.00148

100.995 1.87180 508.979 2.05412 80.002 1.75786

...

;

proc genmod data=surg;

model y = logx1 / dist=normal link=identity;

bayes seed=4 outpost=post diagnostics=all summary=all;

run;

SEED specifies a random seed

OUTPOST saves posterior samples

DIAGNOSTICS requests all convergence diagnostics

SUMMARY requests calculation for all posterior summary statistics
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Convergence Diagnostics for β1
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Mixing
The following are the autocorrelation and effective sample sizes. The
mixing appears to be very good, which agrees with the trace plots.

Bayesian AnalysisBayesian Analysis

Posterior Autocorrelations

Parameter Lag 1 Lag 5 Lag 10 Lag 50

Intercept 0.0062 0.0105 0.0244 -0.0003

logx1 0.0045 0.0106 0.0269 0.0009

Dispersion -0.0077 0.0116 0.0082 -0.0003

Effective Sample Sizes

Parameter ESS
Autocorrelation

Time Efficiency

Intercept 10000.0 1.0000 1.0000

logx1 10000.0 1.0000 1.0000

Dispersion 10000.0 1.0000 1.0000
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Additional Convergence Diagnostics

Bayesian AnalysisBayesian Analysis

Gelman-Rubin Diagnostics

Parameter Estimate
97.5%
Bound

Intercept 1.0000 1.0002

logx1 1.0000 1.0002

Dispersion 0.9999 0.9999

Raftery-Lewis Diagnostics

Quantile=0.025 Accuracy=+/-0.005 Probability=0.95 Epsilon=0.001

Number of Samples

Parameter Burn-in Total Minimum
Dependence

Factor

Intercept 2 3789 3746 1.0115

logx1 2 3834 3746 1.0235

Dispersion . . 3746 .
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Bayesian AnalysisBayesian Analysis

Geweke Diagnostics

Parameter z Pr > |z|

Intercept 1.0623 0.2881

logx1 -1.0554 0.2912

Dispersion 0.6388 0.5229

Heidelberger-Welch Diagnostics

Stationarity Test Half-width Test

Parameter
Cramer-von-

Mises Stat p
Test
Outcome

Iterations
Discarded Half-width Mean

Relative
Half-width

Test
Outcome

Intercept 0.0587 0.8223 Passed 0 2.3604 -94.5279 -0.0250 Passed

logx1 0.0611 0.8069 Passed 0 1.4139 169.9 0.00832 Passed

Dispersion 0.1055 0.5585 Passed 0 67.9392 18478.4 0.00368 Passed
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Summarize Convergence Diagnostics

Autocorrelation: shows low dependency among Markov chain
samples

ESS: values close to the sample size indicate good mixing

Gelman-Rubin: values close to 1 suggest convergence from different
starting values

Geweke: indicates mean estimates are stabilized

Raftery-Lewis: shows sufficient samples to estimate 0.025 percentile
within +/− 0.005 accuracy

Heidelberger-Welch: suggests the chain has reached stationarity
and there are enough samples to estimate the mean accurately
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Posterior Summary and Interval Estimates

Bayesian AnalysisBayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 -94.5279 119.1 -172.9 -95.0444 -16.1862

logx1 10000 169.9 68.5847 124.6 170.2 214.4

Dispersion 10000 18478.4 3670.4 15825.8 17987.2 20596.5

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 -331.1 140.6 -320.5 147.5

logx1 0.050 35.3949 306.1 35.3925 306.1

Dispersion 0.050 12646.1 27050.8 11957.9 25806.1
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Posterior Inference
Posterior correlation:

Bayesian AnalysisBayesian Analysis

Posterior Correlation Matrix

Parameter Intercept logx1 Dispersion

Intercept 1.000 -0.987 -0.007

logx1 -0.987 1.000 0.006

Dispersion -0.007 0.006 1.000
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Fit Statistics

PROC GENMOD also calculates the Deviance Information Criterion (DIC)

Bayesian AnalysisBayesian Analysis

Fit Statistics

DIC (smaller is better) 690.182

pD (effective number of parameters) 3.266
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Posterior Probabilities

Suppose that you are interested in knowing whether LogX 1 has a positive
effect on survival time. Quantifying that measurement, you can calculate
the probability β1 > 0, which can be estimated directly from the posterior
samples:

Pr(β1 > 0|Y , LogX 1) =
1

N

N∑
t=1

I (βt1 > 0)

where I (βt1 > 0) = 1 if βt1 > 0 and 0 otherwise. N = 10, 000 is the sample
size in this example.
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Posterior Probabilities

The following SAS statements calculate the posterior probability:

data Prob;

set Post;

Indicator = (logX1 > 0);

label Indicator= ’log(Blood Clotting Score) > 0’;

run;

ods select summary;

proc means data = Prob(keep=Indicator) n mean;

run;

The probability is roughly 0.9926, which strongly suggests that the slope
coefficient is greater than 0.
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Outline

2 The GENMOD, PHREG, LIFEREG, and FMM Procedures
Overview of Bayesian capabilities in the GENMOD, PHREG,
LIFEREG, and FMM procedures
Prior distributions
The BAYES statement
GENMOD: linear regression
GENMOD: binomial model
PHREG: Cox model
PHREG: piecewise exponential model (optional)
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Binomial model

Consider a study of the analgesic effects of treatments on elderly patients
with neuralgia.

Two test treatements and a placebo are compared.

The response variable is whether the patient reported pain or not.

Covariates include the age and gender of 60 patients and the duration
of complaint before the treatment began.
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The Data

A subset of the data:

Data Neuralgia;

input Treatment $ Sex $ Age Duration Pain $ @@;

datalines;

P F 68 1 No B M 74 16 No P F 67 30 No

P M 66 26 Yes B F 67 28 No B F 77 16 No

A F 71 12 No B F 72 50 No B F 76 9 Yes

...

P M 67 17 Yes B M 70 22 No A M 65 15 No

P F 67 1 Yes A M 67 10 No P F 72 11 Yes

A F 74 1 No B M 80 21 Yes A F 69 3 No

;

Treatment: A, B, P

Sex: F, M

Pain: Yes, No

87 / 295

The GENMOD, PHREG, LIFEREG, and FMM Procedures GENMOD: binomial model

The Model

A logistic regression is considered for this data set:

paini ∼ binary(pi )

pi = logit(β0 + β1 · SexF,i + β2 · TreatmentA,i
+β3 · TreatmentB,i + β4 · SexF,i · TreatmentA,i
+β5 · SexF,i · TreatmentB,i + β6 · Age + β7 · Duration)

where SexF , TreatmentA, and TreatmentB are dummy variables for the
categorical predictors.

You might want to consider a normal prior with large variance as a
noninformative prior distribution on all the regression coefficients:

π(β0, · · · , β7) ∼ normal(0, var = 1e6)
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Logistic Regression

The following statements fit a Bayesian logistic regression model in PROC
GENMOD:

proc genmod data=neuralgia;

class Treatment(ref="P") Sex(ref="M");

model Pain= sex|treatment Age Duration / dist=bin link=logit;

bayes seed=1 cprior=normal(var=1e6) outpost=neuout

plots=trace;

run;

PROC GENMOD models the probability of no pain (Pain = No)

The default sampling algorithm is the Gamerman algorithm
(Gamerman, D. 1997, Statistics and Computing, 7:57). PROC
GENMOD offers a couple of alternative sampling algorithms, such as
adaptive rejection and independence Metropolis.
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Logistic Regression

Trace plots of some of the parameters.
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Logistic Regression
Posterior summary statistics:

Bayesian AnalysisBayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Intercept 10000 19.5936 7.7544 13.9757 19.0831 24.7758

SexF 10000 2.9148 1.7137 1.7348 2.8056 3.9222

TreatmentA 10000 4.6190 1.7924 3.3880 4.4333 5.6978

TreatmentB 10000 5.1406 1.8808 3.7928 5.0154 6.2784

TreatmentASexF 10000 -1.0367 2.3097 -2.4499 -0.9233 0.4706

TreatmentBSexF 10000 -0.3478 2.2499 -1.7787 -0.3578 1.1129

Age 10000 -0.3372 0.1155 -0.4141 -0.3276 -0.2531

Duration 10000 0.00894 0.0366 -0.0160 0.00926 0.0328
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Logistic Regression
Posterior interval statistics:

Bayesian AnalysisBayesian Analysis

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

Intercept 0.050 5.9732 35.0404 6.7379 35.5312

SexF 0.050 0.0155 6.9155 -0.1694 6.5110

TreatmentA 0.050 1.5743 8.4046 1.4277 8.0465

TreatmentB 0.050 1.7895 9.0056 2.0476 9.0766

TreatmentASexF 0.050 -5.6692 3.4066 -5.6793 3.2184

TreatmentBSexF 0.050 -4.7148 4.2324 -4.9417 3.8466

Age 0.050 -0.5724 -0.1325 -0.5735 -0.1372

Duration 0.050 -0.0626 0.0836 -0.0628 0.0799
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Odds Ratio
In the logistic model, the log odds function, logit(X ), is given by:

logit(X ) ≡ log

(
Pr(Y = 1 | X )

Pr(Y = 0 | X )

)
= β0 + Xβ1

Suppose that you are interested in calculating the ratio of the odds for the
female patients (SexF = 1) to the male patients (SexF = 0). The log of
the odds ratio is the following:

log(ψ) ≡ log(ψ(SexF = 1,SexF = 0))

= logit(SexF = 1)− logit(SexF = 0)

= (β0 + 1× β1)− (β0 + 0× β1)

= β1

It follows that the odds ratio is:

ψ = exp(β1)
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Odds Ratio

Note that, by default, PROC GENMOD uses PARAM=GLM
parametrization, which codes 1 and -1 to the values of SexF.

In general, suppose the values of SexF are coded as constants a and b
instead of 0 and 1.

The odds when SexF = a become exp(β0 + a · β1)

The odds when SexF = b become exp(α + b · β1)

The odds ratio is

ψ = exp[(b − a)β1] = [exp(β1)]b−a

In other words, for any types of the effect parametrization schemes, as
long as b − a = 1, ψ = exp(β1)
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Odds Ratio

Odds ratios are functions of the model parameters, which can be obtained
by manipulating posterior samples generated by PROC GENMOD. To
estimate posterior odds ratios,

save PROC GENMOD analysis to a SAS item store

postfit odds ratios using the ESTIMATE statement in PROC PLM

An item store is a special SAS-defined binary file format used to store and
restore information with a hierarchical structure.

The PLM procedure performs postprocessing tasks by taking the posterior
samples (from GENMOD) and estimate functions of interest.

The ESTIMATE statement provides a mechnism for obtaining custom
hypothesis testing (or linear combination of the regression coefficients).
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Odds Ratio

The following statements fit the model in PROC GENMOD and saves the
content to a SAS item store (logit bayes):

proc genmod data=neuralgia;

class Treatment(ref="P") Sex(ref="M");

model Pain= sex|treatment Age Duration / dist=bin link=logit;

bayes seed=2 cprior=normal(var=1e6) outpost=neuout

plots=trace;

store logit_bayes;

run;
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Odds Ratio
The following statements evoke PROC PLM and estimate the odds ratio
between the female group and male group conditional on treatment A:

proc plm restore=logit_bayes;

estimate "F vs M, at Trt=A"

sex 1 -1 treatment*sex [1, 1 1] [-1, 1 2]

/ e exp cl plots=dist;

run;

sex 1 -1 : estimates the difference between β1 and β2, which under the
GLM parametrization, is equal to β1

treatment * sex ... : assigns 1 to the interation where “treatment=1” and
“sex=1”, and -1 to the interaction where “treatment=1” and
“sex=2”

e : requests that the L matrix coefficients be displayed

exp : exponentials and displays estimates (expβ1)

cl : constructs 95% credit intervals

plots : generates histograms with kernel density overlaid
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L Matrix Coefficients (GLM Parametrization)

Estimate Coefficients

Parameter Treatment Sex Row1

Intercept

Sex F F 1

Sex M M -1

Treatment A A

Treatment B B

Treatment P P

Treatment A * Sex F A F 1

Treatment A * Sex M A M -1

Treatment B * Sex F B F

Treatment B * Sex M B M

Treatment P * Sex F P F

Treatment P * Sex M P M

Age
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Odds Ratio
Female vs. Male, at Treatment = A.

Sample Estimate

Percentiles

Label N Estimate
Standard
Deviation 25th 50th 75th Alpha

Lower
HPD

Upper
HPD

F vs M, at
Trt=A

10000 1.8781 1.5260 0.7768 1.7862 2.9174 0.05 -0.7442 4.9791

Sample Estimate

Percentiles for
Exponentiated

Label Exponentiated

Standard
Deviation of

Exponentiated 25th 50th 75th

Lower HPD
of

Exponentiated

Upper HPD
of

Exponentiated

F vs M, at
Trt=A

28.3873 188.824003 2.1744 5.9664 18.4925 0.1876 93.1034
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Histogram of the Posterior Odds Ratio
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Odds Ratio

Similarly, you can estimate odds ratios conditional on different
treatements:

proc plm restore=logit_bayes;

estimate "F vs M, at Trt=B"

sex 1 -1 treatment*sex [1, 2 1] [-1, 2 2] /exp;

estimate "F vs M, at Trt=P"

sex 1 -1 treatment*sex [1, 3 1] [-1, 3 2] /exp;

run;
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Odds Ratio
Female vs. Male, at Treatment = B.

Sample Estimate

Percentiles

Label N Estimate
Standard
Deviation 25th 50th 75th Alpha

Lower
HPD

Upper
HPD

F vs M, at
Trt=B

10000 2.5670 1.5778 1.4946 2.4569 3.5345 0.05 -0.1317 5.9040

Sample Estimate

Percentiles for
Exponentiated

Label Exponentiated

Standard
Deviation of

Exponentiated 25th 50th 75th

Lower HPD
of

Exponentiated

Upper HPD
of

Exponentiated

F vs M, at
Trt=B

60.4417 384.724355 4.4575 11.6684 34.2779 0.1399 195.64
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Odds Ratio
Female vs. Male, at Treatment = P.

Sample Estimate

Percentiles

Label N Estimate
Standard
Deviation 25th 50th 75th Alpha

Lower
HPD

Upper
HPD

F vs M, at
Trt=P

10000 2.9148 1.7137 1.7348 2.8056 3.9222 0.05 -0.1694 6.5110

Sample Estimate

Percentiles for
Exponentiated

Label Exponentiated

Standard
Deviation of

Exponentiated 25th 50th 75th

Lower HPD
of

Exponentiated

Upper HPD
of

Exponentiated

F vs M, at
Trt=P

175.97 1642.867153 5.6676 16.5362 50.5135 0.3686 408.55
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Outline

2 The GENMOD, PHREG, LIFEREG, and FMM Procedures
Overview of Bayesian capabilities in the GENMOD, PHREG,
LIFEREG, and FMM procedures
Prior distributions
The BAYES statement
GENMOD: linear regression
GENMOD: binomial model
PHREG: Cox model
PHREG: piecewise exponential model (optional)
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Cox Model
Consider the data for the Veterans Administration lung cancer trial
presented in Appendix 1 of Kalbfleisch and Prentice (1980).

Time Death in days
Therapy Type of therapy: standard or test
Cell Type of tumor cell: adeno, large, small, or squa-

mous
PTherapy Prior therapy: yes or no
Age Age in years
Duration Months from diagnosis to randomization
KPS Karnofsky performance scale
Status Censoring indicator (1=censored time, 0=event

time)
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Cox Model

A subset of the data:

OBS Therapy Cell Time Kps Duration Age Ptherapy Status

1 standard squamous 72 60 7 69 no 1

2 standard squamous 411 70 5 64 yes 1

3 standard squamous 228 60 3 38 no 1

4 standard squamous 126 60 9 63 yes 1

5 standard squamous 118 70 11 65 yes 1

...

Some parameters are the coefficients of the continuous variables
(KPS, Duration, and Age).

Other parameters are the coefficients of the design variables for the
categorical explanatory variables (PTherapy, Cell, and Therapy).
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Cox Model

The model considered here is the Breslow partial likelihood:

L(β) =
k∏

i=1

e
β′

∑
j∈Di

Zj (ti )[∑
l∈Ri

eβ
′Zl (ti )

]di
where

t1 < · · · < tk are distinct event times

Zj(ti ) is the vector explanatory variables for the jth individual at time
ti

Ri is the risk set at ti , which includes all observations that have
survival time greater than or equal to ti

di is the multiplicity of failures at ti . It is the size of the set Di of
individuals that fail at ti
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Cox Model

The following statements fit a Cox regression model with a uniform prior
on the regression coefficients:

proc phreg data=VALung;

class PTherapy(ref=’no’) Cell(ref=’large’)

Therapy(ref=’standard’);

model Time*Status(0) = KPS Duration Age PTherapy Cell Therapy;

bayes seed=1 outpost=cout coeffprior=uniform;

run;
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Cox Model: Posterior Mean Estimates

Bayesian AnalysisBayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Kps 10000 -0.0327 0.00545 -0.0364 -0.0328 -0.0291

Duration 10000 -0.00170 0.00945 -0.00791 -0.00123 0.00489

Age 10000 -0.00852 0.00935 -0.0147 -0.00850 -0.00223

Ptherapyyes 10000 0.0754 0.2345 -0.0776 0.0766 0.2340

Celladeno 10000 0.7867 0.3080 0.5764 0.7815 0.9940

Cellsmall 10000 0.4632 0.2731 0.2775 0.4602 0.6435

Cellsquamous 10000 -0.4022 0.2843 -0.5935 -0.4024 -0.2124

Therapytest 10000 0.2897 0.2091 0.1500 0.2900 0.4294
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Cox Model: Interval Estimates

Bayesian AnalysisBayesian Analysis

Posterior Intervals

Parameter Alpha
Equal-Tail
Interval HPD Interval

Kps 0.050 -0.0433 -0.0219 -0.0434 -0.0221

Duration 0.050 -0.0216 0.0153 -0.0202 0.0164

Age 0.050 -0.0271 0.00980 -0.0270 0.00983

Ptherapyyes 0.050 -0.3943 0.5335 -0.3715 0.5488

Celladeno 0.050 0.1905 1.3969 0.1579 1.3587

Cellsmall 0.050 -0.0617 1.0039 -0.0530 1.0118

Cellsquamous 0.050 -0.9651 0.1519 -0.9550 0.1582

Therapytest 0.050 -0.1191 0.6955 -0.1144 0.6987
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Cox Model: Plotting Survival Curves

Suppose that you are interested in estimating the survival curves for two
individuals who have similar characteristics, with one receiving the
standard treatment while the other did not. The following is saved in the
SAS data set pred:

OBS Ptherapy kps duration age cell therapy

1 no 58 8.7 60 large standard

2 no 58 8.7 60 large test
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Cox Model

You can use the following statements to estimate the survival curves and
save the estimates to a SAS data set:

proc phreg data=VALung plots(cl=hpd overlay)=survival;

baseline covariates=pred out=pout;

class PTherapy(ref=’no’) Cell(ref=’large’)

Therapy(ref=’standard’);

model Time*Status(0) = KPS Duration Age PTherapy Cell Therapy;

bayes seed=1 outpost=cout coeffprior=uniform;

run;

plots : requests survival curves with overlaying HPD intervals

baseline : specifies input covariates data set and saves the posterior
prediction to the OUT= data set
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Cox Model: Posterior Survival Curves

Estimated survival curves for the two subjects and their corresponding
95% HPD intervals.
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Hazard Ratios

The HAZARDRATIO statement enables you to obtain customized hazard
ratios, ratios of two hazard functions.

HAZARDRATIO <’label’> variables < / options > ;

For a continuous variable: the hazard ratio compares the hazards for
a given change (by default, a increase of 1 unit) in the variable.

For a CLASS variable, a hazard ratio compares the hazards of two
levels of the variable.
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Hazard Ratios

The following SAS statements fit the same Cox regression model and
request three kinds of hazard ratios.

proc phreg data=VALung;

class PTherapy(ref=’no’) Cell(ref=’large’)

Therapy(ref=’standard’);

model Time*Status(0) = KPS Duration Age PTherapy Cell Therapy;

bayes seed=1 outpost=vout plots=trace coeffprior=uniform;

hazardratio ’HR 1’ Therapy / at(PTherapy=’yes’ KPS=80

duration=12 age=65 cell=’small’);

hazardratio ’HR 2’ Age / unit=10 at(KPS=45);

hazardratio ’HR 3’ Cell;

run;
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Hazard Ratios
The following results are the summary statistics of the posterior hazards
between the standard therapy and the test therapy.

Bayesian AnalysisBayesian Analysis

HR 1: Hazard Ratios for Therapy

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

Therapy standard vs test At Prior=yes
Kps=80 Duration=12 Age=65 Cell=small

10000 0.7651 0.1617 0.6509 0.7483 0.8607

HR 1:
Hazard Ratios for Therapy

95%
Equal-Tail
Interval

95%
HPD Interval

0.4988 1.1265 0.4692 1.0859
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Hazard Ratios
The following table lists the change of hazards for an increase in Age of 10
years.

Bayesian AnalysisBayesian Analysis

HR 2: Hazard Ratios for Age

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail
Interval

95%
HPD Interval

Age Unit=10 At
Kps=45

10000 0.9224 0.0865 0.8633 0.9185 0.9779 0.7629 1.1030 0.7539 1.0904
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Hazard Ratios
The following table lists posterior hazards between different levels in the
Cell variable:

Bayesian AnalysisBayesian Analysis

HR 3: Hazard Ratios for Cell

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail
Interval

95%
HPD Interval

Cell adeno vs
large

10000 2.3035 0.7355 1.7797 2.1848 2.7020 1.2099 4.0428 1.0661 3.7509

Cell adeno vs
small

10000 1.4374 0.4124 1.1479 1.3811 1.6622 0.7985 2.3857 0.7047 2.2312

Cell adeno vs
squamous

10000 3.4376 1.0682 2.6679 3.2903 4.0199 1.8150 5.9733 1.6274 5.6019

Cell large vs
small

10000 0.6530 0.1798 0.5254 0.6311 0.7577 0.3664 1.0636 0.3357 1.0141

Cell large vs
squamous

10000 1.5567 0.4514 1.2367 1.4954 1.8103 0.8591 2.6251 0.7776 2.4679

Cell small vs
squamous

10000 2.4696 0.7046 1.9717 2.3742 2.8492 1.3872 4.1403 1.2958 3.9351
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Outline

2 The GENMOD, PHREG, LIFEREG, and FMM Procedures
Overview of Bayesian capabilities in the GENMOD, PHREG,
LIFEREG, and FMM procedures
Prior distributions
The BAYES statement
GENMOD: linear regression
GENMOD: binomial model
PHREG: Cox model
PHREG: piecewise exponential model (optional)
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Piecewise Exponential Model (Optional)

Let {(ti , xi , δi ), i = 1, 2, . . . , n} be the observed data. Let
a0 = 0 < a1 < . . . < aJ−1 < aJ =∞ be a partition of the time axis.
The hazard for subject i is

h(t|xi ;θ) = h0(t) exp(β′xi )

where
h0(t) = λj aj−1 ≤ t < aj (j = 1, . . . , J)

The hazard for subject i in the jth time interval is

h(t) = λj exp(β′xi ) aj−1 < t < aj
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Piecewise Exponential Model

From the hazard function, first define the baseline cumulative hazard
function:

H0(t) =
J∑

j=1

λj∆j(t)

where

∆j(t) =


0 t < aj−1

t − aj−1 aj−1 ≤ t < aj
aj − aj−1 t ≥ aj
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Piecewise Exponential Model

The log likelihood is:

l(λ,β) =
n∑

i=1

δi

[ J∑
j=1

I (aj−1 ≤ ti < aj) log λj + β′xi

]

−
n∑

i=1

[ J∑
j=1

∆j(ti )λj

]
exp(β′xi )

where δi is the event status:

δi =

{
0 if ti is a censored time
1 if ti is an event time

This model has two parameter vectors: λ and β.
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Piecewise Exponential Model

PROC PHREG supports the following priors for the piecewise exponential
model:

Regression coefficients (β): normal and uniform priors

Hazards (λ): improper, uniform, independent gamma, and AR(1)
priors

Log hazards (α = log(λ)): uniform and normal priors

Regression coefficients and log hazards: multivariate normal (do not
need to be independent)
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Piecewise Exponential Model

Consider a randomized trial of 40 rats exposed to carcinogen:

Drug X and Placebo are the treatment groups.

Event of interest is death.

Response is time until death.

What are the effects of treatment and gender on survival?
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Piecewise Exponential Model

A subset of the data:

proc format;

value Rx 1=’X’ 0=’Placebo’;

data Exposed;

input Days Status Trt Gender $ @@;

format Trt Rx.;

datalines;

179 1 1 F 378 0 1 M

256 1 1 F 355 1 1 M

262 1 1 M 319 1 1 M

256 1 1 F 256 1 1 M

...

268 0 0 M 209 1 0 F

;
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Piecewise Exponential Model

An appropriate model is the piecewise exponential. In the model:

Each time interval has a constant hazard

There are a total of eight intervals (PROC PHREG default)

Intervals are determined by placing roughly equal number of
uncensored observations in each interval

The log hazard is used. It is generally more computationally stable.
There are 8 λi ’s and two regression coefficients.
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Piecewise Exponential Model

The following programming statements fit a Bayesian piecewise
exponential model with noninformative priors on both β and log(λ):

proc phreg data=Exposed;

class Trt(ref=’Placebo’) Gender(ref=’F’);

model Days*Status(0)=Trt Gender;

bayes seed=1 outpost=eout piecewise=loghazard(n=8);

run;

The PIECEWISE= option requests the estimating of a piecewise
exponential model with 8 intervals.
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Piecewise Exponential Model

Suppose that you have some prior information w.r.t. both β and log(λ)
that can be approximated well with a multivariate normal distribution. You
can construct the following data set:

data pinfo;

input _TYPE_ $ alpha1-alpha8 trtX GenderM;

datalines;

Mean 0 0 0 0 0 0 0 0 0 0

cov 90.2 -9.8 1.3 -1.9 4.1 3.7 14.3 -10.7 -7.2 -4.2

cov -9.8 102.4 15.3 -12.1 15.6 6.8 -23.7 -23.7 9.0 -8.8

cov 1.3 15.3 102.8 13.0 22.1 5.7 21.4 -16.1 14.2 13.3

cov -1.9 -12.1 13.0 90.2 4.6 -16.1 11.3 -8.6 -12.6 -1.2

cov 4.1 15.6 22.1 4.6 107.9 18.2 2.4 -8.1 2.9 -16.4

cov 3.7 6.8 5.7 -16.1 18.2 123.3 -2.7 -7.9 3.2 -3.4

cov 14.3 -23.7 21.4 11.3 2.4 -2.7 114.2 2.3 6.7 11.6

cov -10.7 -23.7 -16.1 -8.6 -8.1 -7.9 2.3 91.8 -7.6 0.0

cov -7.2 9.0 14.2 -12.6 2.9 3.2 6.7 -7.6 100.0 -6.3

cov -4.2 -8.8 13.3 -1.2 -16.4 -3.4 11.6 0.0 -6.3 124.7

;
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Piecewise Exponential Model

The following programming statements fit a Bayesian piecewise
exponential model with informative prior on both β and log(λ):

proc phreg data=exposed;

class Trt(ref=’Placebo’) Gender(ref=’F’);

model Days*Status(0)=Trt Gender;

bayes seed=1 outpost=eout

piecewise=loghazard(n=8 prior=normal(input=pinfo))

cprior=normal(input=pinfo);

run;
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Piecewise Exponential Model

Bayesian AnalysisBayesian Analysis

Model Information

Data Set WORK.EXPOSED

Dependent Variable Days

Censoring Variable Status

Censoring Value(s) 0

Model Piecewise Exponential

Burn-In Size 2000

MC Sample Size 10000

Thinning 1

Summary of the Number of
Event and Censored Values

Total Event Censored
Percent

Censored

40 36 4 10.00
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Piecewise Exponential Model
The partition of the time intervals:

Bayesian AnalysisBayesian Analysis

Constant Hazard Time Intervals

Interval

[Lower, Upper) N Event
Log Hazard
Parameter

0 193 5 5 Alpha1

193 221 5 5 Alpha2

221 239.5 7 5 Alpha3

239.5 255.5 5 5 Alpha4

255.5 256.5 4 4 Alpha5

256.5 278.5 5 4 Alpha6

278.5 321 4 4 Alpha7

321 Infty 5 4 Alpha8

131 / 295

The GENMOD, PHREG, LIFEREG, and FMM Procedures PHREG: piecewise exponential model (optional)

Piecewise Exponential Model
Posterior summary statistics:

Bayesian AnalysisBayesian Analysis

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

Alpha1 10000 -6.4137 0.4750 -6.7077 -6.3770 -6.0852

Alpha2 10000 -4.0505 0.4870 -4.3592 -4.0207 -3.7058

Alpha3 10000 -2.9297 0.5146 -3.2468 -2.8954 -2.5737

Alpha4 10000 -1.9146 0.6212 -2.3256 -1.8936 -1.4839

Alpha5 10000 1.2433 0.6977 0.7948 1.2598 1.7255

Alpha6 10000 -0.8729 0.8040 -1.4033 -0.8692 -0.3276

Alpha7 10000 -0.9827 0.8346 -1.5247 -0.9646 -0.4223

Alpha8 10000 0.4771 0.9095 -0.1262 0.4796 1.0952

TrtX 10000 -1.2319 0.3929 -1.4898 -1.2286 -0.9707

GenderM 10000 -2.6607 0.5483 -3.0159 -2.6466 -2.2888
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Piecewise Exponential Model
Interval estimates:

Bayesian AnalysisBayesian Analysis

Posterior Intervals

Parameter Alpha
Equal-Tail
Interval HPD Interval

Alpha1 0.050 -7.4529 -5.5710 -7.3576 -5.5100

Alpha2 0.050 -5.0961 -3.1973 -5.0030 -3.1303

Alpha3 0.050 -4.0327 -2.0130 -3.9950 -1.9843

Alpha4 0.050 -3.1799 -0.7614 -3.1671 -0.7536

Alpha5 0.050 -0.1893 2.5585 -0.0872 2.6410

Alpha6 0.050 -2.4616 0.6875 -2.4942 0.6462

Alpha7 0.050 -2.6588 0.6248 -2.6383 0.6400

Alpha8 0.050 -1.3264 2.2243 -1.2867 2.2359

TrtX 0.050 -2.0147 -0.4735 -2.0195 -0.4849

GenderM 0.050 -3.7758 -1.6150 -3.7269 -1.5774
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Piecewise Exponential Model
Hazard ratios of Treatment and Gender:

hazardratio ’Hazard Ratio Statement 1’ Trt;

hazardratio ’Hazard Ratio Statement 2’ Gender;

Bayesian AnalysisBayesian Analysis

Hazard Ratio Statement 1: Hazard Ratios for Trt

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail
Interval

95%
HPD Interval

Trt Placebo vs X 10000 3.7058 1.5430 2.6399 3.4164 4.4362 1.6056 7.4981 1.3129 6.7830

Hazard Ratio Statement 2: Hazard Ratios for Gender

Quantiles

Description N Mean
Standard
Deviation 25% 50% 75%

95%
Equal-Tail
Interval

95%
HPD Interval

Gender F vs
M

10000 16.6966 10.3427 9.8629 14.1062 20.4071 5.0281 43.6302 3.4855 36.3649
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3 The MCMC Procedure
A Primer on PROC MCMC
Monte Carlo Simulation
Single-level Model: Hyperparameters
Generalized Linear Models
Random-effects models
Missing Data Analysis
Survival Analysis (Optional)
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The MCMC Procedure

The MCMC procedure (SAS/STAT R©9.2, 9.22, 9.3, 12.1) is a simulation
procedure that can be used to fit:

single-level or multilevel (hierarchical) models

linear or nonlinear models, such as regression, survival, ordinal
multinomial, and so on.

missing data problems

The procedure selects appropriate sampling algorithms for the models that
you specified, and it is capable of executing SAS DATA step language for
estimation and inference.
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PROC MCMC Statements

PROC MCMC options;

PARMS; define parameters.

PRIOR; declare prior distributions

Programming statements;
MODEL

}
define log-likelihood function

PREDDIST; posterior prediction

RANDOM; random effects

Run;
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Linear Regression

weighti ∼ normal(µi , var = σ2)

µ = β · heighti

β ∼ normal(0, var = 100)

σ2 ∼ inverse Gamma(shape = 2, scale = 2)

The data:

data class;

input height weight;

datalines;

69.0 112.5

56.5 84.0

...

66.5 112.0

;

MCMC Program:

proc mcmc data=class seed=1 nbi=5000

nmc=10000 outpost=regOut;

parms beta s2;

prior beta ~ normal(0, var=100);

prior s2 ~ igamma(shape=2, scale=2);

mu = beta * height;

model weight ~ normal(mu, var=s2);

run;
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Linear Regression

weighti ∼ t(µi , sd = σ, df = 3)

µ = β · heighti

β ∼ normal(0, var = 100)

σ ∼ uniform(0, 25)

Change the model, parameterization, and so on as you please:

proc mcmc data=class seed=1 nbi=5000 nmc=10000 outpost=regOut;

parms beta sig;

prior beta ~ normal(0, var=100);

prior sig ~ uniform(0, 25);

mu = beta * height;

model weight ~ t(mu, sd=sig, df=3);

run;
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The Posterior Distribution

PROC MCMC is sampling-based procedure, which is similar to other SAS
Bayesian procedures. BUT, you must be more aware of how the posterior
distribution is constructed:

π(θ|y, x) ∝ π(θ) · f (y|θ, x)

The PRIOR statements define the prior distributions: π(θ).

The MODEL statement defines the likelihood function for each
observation in the data set: f (yi |θ, xi ), for i = 1, · · · , n
The procedure calculates the posterior distribution (on the log scale):

log(π(θ|y, x)) = log(π(θ)) +
n∑

i=1

log(f (yi |θ, xi ))

where y = {yi} and x = {xi}
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Calculate of log(π(θ|y))

At each iteration, the programming and MODEL statements are executed
for each observation to obtain log(π(θ|y))

Obs Height Weight

1 69.0 112.5

2 56.5 84.0

3 65.3 98.0

...

19 66.5 112.0

proc mcmc data=input;

prior;

progm stmt;

model ;

run;

at the top of the data set

log π(θ|y) = log(f (y1|θ))
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Calculate of log(π(θ|y))

At each iteration, the programming and MODEL statements are executed
for each observation to obtain log(π(θ|y))

Obs Height Weight

1 69.0 112.5

2 56.5 84.0

3 65.3 98.0

...

19 66.5 112.0

proc mcmc data=input;

prior;

progm stmt;

model ;

run;

stepping through the data set

log π(θ|y) = log π(θ|y) + log(f (y2|θ))
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Calculate of log(π(θ|y))

At each iteration, the programming and MODEL statements are executed
for each observation to obtain log(π(θ|y))

Obs Height Weight

1 69.0 112.5

2 56.5 84.0

3 65.3 98.0

...

19 66.5 112.0

proc mcmc data=input;

prior;

progm stmt;

model ;

run;

stepping through the data set

log π(θ|y) = log π(θ|y) + log(f (y3|θ))
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Calculate of log(π(θ|y))

At each iteration, the programming and MODEL statements are executed
for each observation to obtain log(π(θ|y))

Obs Height Weight

1 69.0 112.5

2 56.5 84.0

3 65.3 98.0

...

19 66.5 112.0

proc mcmc data=input;

prior;

progm stmt;

model;

run;

at the last observation, the prior is included

log π(θ|y) = log(π(θ)) +
∑n

i=1 log(f (yi |θ))
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PROC MCMC and WinBUGS Syntax are Similar

Both require going through the data set (repeatedly). In WinBUGS, a
for-loop and array indices are used to access records in variables; In PROC
MCMC, the looping over the data set is hidden behind the scene.

height[] weight[]

69.0 112.5

56.5 84.0

65.3 98.0

...

66.5 112.0

END

model

{
for(i in 1:19) {

mu[i] = beta * height[i]

weight[i] ~ dnorm(mu[i], tau)

}
beta ~ dnorm(0, 0.1)

tau ~ gamma(0.1, 0.1)

}
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Sampling in PROC MCMC

PROC MCMC recognizes certain configurations of the statistical models
and applies sampling methods (conjugate or direct) when appropriate.

In other cases, the default sampling algorithm a normal-kernel-based
random walk Metropolis. The proposal distribution is
q(θnew|θ(t)) = MVN(θnew|θ(t), c2Σ).

Two components in the Metropolis algorithm:

construction of the proposal distribution—automatically done by
PROC MCMC

evaluation of log(π(θ(t)|y)) at each iteration—specified via the
PRIOR and MODEL statements
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PARMS Statement
PARMS name | (name-list) <=> number ;

lists the names of the parameters

specifies optional initial values

specifies updating sequence of the parameters

For example:

PARMS alpha 0 beta 1;

declares α and β to be model parameters and assigns 0 to α and 1 to β.

PARMS alpha 0 beta;

assigns 0 to α and leaves β uninitialized.

PARMS (alpha beta) 1;

assigns 1 to both α and β.
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PARMS Statement

When multiple PARMS statements are used, each statement defines a
block of parameters, which are updated sequentially in each iteration:

PARMS beta0 beta1;

PARMS sigma2;

At each iteration t, PROC MCMC updates β0 and β1 together,
alternatively with σ2, each with a Metropolis sampler:

β
(t)
0 , β

(t)
1 | σ2

(t−1),Data

σ2
(t) | β

(t)
0 , β

(t)
1 ,Data
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PRIOR Statement

PRIOR parameter-list ∼ distribution;

specifies the prior distributions of model parameters. For example:

PRIOR alpha ~ normal(0, var=10);

PRIOR sigma2 ~ igamma(0.001, iscale=0.001);

PRIOR beta gamma ~ normal(alpha, var=sigma2);

specifies the following joint prior distribution:

π(α, β, γ, σ2) = π(β|α, σ2) · π(γ|α, σ2) · π(α) · π(σ2)
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MODEL Statement

MODEL dependent-variable-list ∼ distribution;

specifies the likelihood function. The dependent variables can be

data set variables

MODEL y ~ normal(alpha, var=1);

functions of data set variables

w = log(y);

MODEL w ~ normal(alpha, var=1);

You can specify multiple MODEL statements.
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Standard Distributions

Standard distributions in the PRIOR and MODEL statements:

beta binary binomial cauchy chisq

expon gamma geo ichisq igamma

laplace negbin normal pareto poisson

sichisq t uniform wald weibull

dirich iwish mvn mvnar multinom2

Distribution argument can be constants, expressions, or model parameters.
For example:

prior alpha ~ cauchy(0, 2);

prior p ~ beta(abs(alpha), constant(’pi’));

model y ~ binomial(n, p);

2Only in the MODEL statement
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Standard Distributions

Some distributions can be parameterized in different ways:

expon(scale|s = λ) expon(iscale|is = λ)
gamma(a, scale|sc = λ) gamma(a, iscale|is = λ)
igamma(a, scale|sc = λ) igamma(a, iscale|is = λ)
laplace(l, scale|sc = λ) laplace(l, iscale|is = λ)
normal(µ, var=σ2) normal(µ, sd=σ) normal(µ, prec=τ)
lognormal(µ, var=σ2) lognormal(µ, sd=σ) lognormal(µ, prec=τ)
t(µ, var=σ2, df) t(µ, sd=σ, df) t(µ, prec=τ , df)

For these distributions, you must explicitly name the ambiguous
parameter. For example:

prior beta ~ normal(0, var=sigma2);

prior sigma2 ~ igamma(0.001, is=0.001);
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Truncated Distributions

Univariate distributions allow for optional LOWER= and UPPER=
arguments.

prior p ~ beta(2,3, lower=0.5);

prior b ~ expon(scale=100, lower=100, upper=2000);

The bounds can be random variables (parameters):

prior alpha ~ normal(0, sd=1);

prior beta ~ normal(0, sd=1, lower=alpha);
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Programming Statements

Most DATA step operators, functions, and statements can be used in
PROC MCMC:

assignment and operators: +, -, *, /, <>, <, ...

mathematical functions: ABS, LOG, PDF, CDF, SDF, LOGPDF, ...

statements: CALL, DO, IF, PUT, WHEN, ...

The functions enable you to:

compute functions of parameters

construct general prior and/or likelihood functions
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The MCMC Procedure Monte Carlo Simulation

Monte Carlo Simulation
p ∼ beta(0.47, 2.35)

data a;

run;

proc mcmc data=a seed=17 nmc=20000;

parm p;

prior p ~ beta(0.47, 2.35);

model general(0);

run;
0.00 0.25 0.50 0.75 1.00

p

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

p 20000 0.1662 0.1912 0.0199 0.0906 0.2512

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

p 0.050 0.000152 0.6866 1.38E-10 0.5890
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Simple Simulation
If p represents some process of binary success probabilities, then you might
be interested in the outcome of a binomial trial where the probability is
not known precisely:

p ∼ beta(0.47, 2.35)

success ∼ binomial(20, p)

proc mcmc data=a seed=17 nmc=20000

outpost=o1;

parm p success;

prior p ~ beta(0.47, 2.35);

prior success ~ binomial(20, p);

model general(0);

run;

0 4 8 12 16 20

success

0

10

20

30
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Estimates of p and success

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

p 20000 0.1676 0.1908 0.0208 0.0942 0.2532

success 20000 3.3545 4.0982 0 2.0000 5.0000

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

p 0.050 0.000157 0.6832 1.38E-10 0.5834

success 0.050 0 14.0000 0 12.0000

155 / 295



The MCMC Procedure Monte Carlo Simulation

Estimate Cumulative Probability

p ∼ beta(0.47, 2.35)

success ∼ binomial(20, p)

what is the Pr(9 ≤ success ≤ 12)?

proc mcmc data=a seed=17 nmc=20000 outpost=o1 monitor=(prob);

parm p success;

prior p ~ beta(0.47, 2.35);

prior success ~ binomial(20, p);

prob = (9 <= success <= 12);

model general(0);

run;

monitor keeps track of variables in a program

The estimated probability is 0.083.
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First few samples of the OUTPOST data set:

Obs Iteration p success prob

1 1 0.00691 0 0

2 2 0.00369 0 0

3 3 0.4078 8.0000 0

4 4 0.0280 1.0000 0

5 5 0.0875 2.0000 0

...

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

prob 20000 0.0830 0.2759 0 0 0

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval
HPD

Interval

prob 0.050 0 1.0000 0 1.0000 157 / 295
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Binomial model

Researchers are interested in evaluating the performance of a medical
procedure in a multicenter study. The following statements create a data
set for the treatment arm of the trials:

data trials;

input event n center;

datalines;

2 86 1

2 69 2

1 71 3

1 113 4

1 103 5

;

event: number of deaths

n: number of patients assigned to the treatment procedure

center: center index
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Binomial Example
Consider a simple binomial model

eventi ∼ binomial(ni , p)

p ∼ beta(a, b)

where p is the parameter of interest and a and b are hyper-parameters.
Consider the following choices for a and b:

uniform: beta(1, 1)

Haldane prior: beta(0, 0)

π(p) ∝ p−1(1− p)−1

0.0 0.2 0.4 0.6 0.8 1.0

p

Haldane Prior on p
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Binomial Model with Flat Prior

proc mcmc data=trials seed=17 nmc=20000 outpost=UnifBin;

parm p;

prior p ~ beta(1,1);

model event ~ binomial(n,p);

run;

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

p 20000 0.0180 0.00624 0.0135 0.0174 0.0217

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

p 0.050 0.00784 0.0321 0.00670 0.0303
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Binomial Model with Haldane Prior

The following syntax does not work in PROC MCMC,

prior p ~ beta(0, 0);

because the shape and scale parameters of a beta distribution must be
positive.

Use the GENERAL function to construct nonstandard prior distribution.
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Specifying a Nonstandard Distribution

The GENERAL and DGENERAL functions enable you construct your own
prior or likelihood function. The “D” stands for discrete.

PRIOR alpha ∼ dgeneral(lp);
MODEL y ∼ general(llike);

The expressions lp and llike must take the values of the logarithm of
the distribution.

The normalizing constant of the distribution can be ignored, as long as it
is independent of other parameters in the model.
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The GENERAL Distribution

Suppose that you want to use the following prior:

π(σ2) ∝ 1

σ2

which is a nonstandard distribution (nonintegrable prior). The logarithm of
this prior is

log(π(σ2)) = − log(σ2) + C

You use the following statements to declare this prior:

lp = -log(sigma2);

prior sigma2 ~ general(lp, lower=0);
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More on the GENERAL Distribution

The function argument can be an expression or a constant. For example,
to specify π(α) ∝ 1, you use the following statement:

prior alpha ~ general(0);

Use these functions with care because PROC MCMC cannot verify that
the priors you specify lead to valid (integrable) posterior.

When in doubt, stay with proper distributions.
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Binomial Model with Haldane Prior

π(p) ∝ p−1(1− p)−1

⇒ log(π(p)) = −(log(p) + log(1− p))

proc mcmc data=trials seed=17 nmc=20000 outpost=HalBin;

parm p 0.5;

lprior = -(log(p) + log(1-p));

prior p ~ general(lprior, lower=0, upper=1);

model event ~ binomial(n,p);

run;

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

p 20000 0.0158 0.00595 0.0114 0.0150 0.0193

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

p 0.050 0.00640 0.0294 0.00579 0.0280 0.00 0.01 0.02 0.03 0.04 0.05

p

Haldane Posterior
Uniform Posterior

0.00 0.01 0.02 0.03 0.04 0.05

p

Haldane Posterior
Uniform Posterior
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Binomial Model

Suppose that you do not want to have fixed hyperparameter values and
want to consider hyperprior distributions on these parameters:

π(a) ∝ exponential(scale = 100)

π(b) ∝ exponential(scale = 100)

This prior has mean of 100 and variance 10,000. The following statements
fit a hierarchical binomial model:

proc mcmc data=trials seed=17 nmc=10000 outpost=bmc;

parms p;

parms a b;

prior a b ~ expon(scale=100);

prior p ~ beta(a,b);

model event ~ binomial(n,p);

run;
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Posterior Density Comparison
Having hyperprior distributions is essentially equivalent to using a uniform
prior on p—there is no information in the data that can help with
estimating the hyperparameters.
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Logistic Model

Crowder (1978) reported an
experiment on germinating seeds.
The data set is a 2× 2 factorial
layout with

Two types of seeds

Two root extracts

The experiment included five or six
replicates for each combination of
seeds and root extracts.

A subset of the data:

r n seed extract ind

10 39 0 0 1

23 62 0 0 2

23 81 0 0 3

26 51 0 0 4

17 39 0 0 5

5 6 0 1 6

53 74 0 1 7

55 72 0 1 8

32 51 0 1 9

...
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Visualizing the Data Set
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Logistic Regression

A natural way to model proportion data is to use the logistic regression
with normal prior on the coefficients:

ri ∼ binomial(ni , pi )

µi = β0 + β1 · seedi + β2 · extracti + β3 · seedi · extracti

logit(pi ) = log

(
pi

1− pi

)
= µi

π(β0, β1, β2, β3) ∝ normal(0, sd = 1000)

where i = {1, · · · , 21}.
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Fitting Logistic Regression in PROC MCMC

proc mcmc data=seeds outpost=postout1 seed=332786 nmc=20000

stats=(summary intervals) diag=none;

parms beta0-beta3;

prior beta: ~ normal(0, sd=1000);

mu = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;

pi = logistic(mu);

model r ~ binomial(n = n, p = pi);

run;

logistic : pi = exp(µ)
1+exp(µ)
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Posterior Summary and Interval Statistics

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

beta0 20000 -0.5596 0.1256 -0.6457 -0.5583 -0.4704

beta1 20000 0.1444 0.2250 -0.00375 0.1458 0.2933

beta2 20000 1.3190 0.1792 1.1988 1.3189 1.4354

beta3 20000 -0.7723 0.3107 -0.9786 -0.7727 -0.5592

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

beta0 0.050 -0.8175 -0.3210 -0.7989 -0.3059

beta1 0.050 -0.3015 0.5822 -0.3043 0.5763

beta2 0.050 0.9672 1.6852 0.9597 1.6752

beta3 0.050 -1.3891 -0.1716 -1.3474 -0.1414
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Fit of the Logistic Model
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Probit Model

You can change from a logistic to a probit regression:

yi |pi ∼ binomial(ni , pi )

µi = β0 + β1 · seedi + β2 · extracti + β3 · seedi · extracti

pi = Φ (µi )

π(β0, β1, β2, β3) ∝ normal(0, sd = 1000)

proc mcmc data=seeds outpost=postout1 seed=332786 nmc=20000

stats=(summary intervals) diag=none;

parms beta0-beta3;

prior beta: ~ normal(0, sd=1000);

mu = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;

pi = cdf("normal", mu, 0, 1);

model r ~ binomial(n = n, p = pi);

run;
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Poisson Model

Or a Poisson model, if the response variable is count data:

yi |λi ∼ poisson(λi )

µi = β0 + β1 · seedi + β2 · extracti + β3 · seedi · extracti

λi = exp (µi )

π(β0, β1, β2, β3) ∝ normal(0, sd = 1000)

proc mcmc data=seeds outpost=postout1 seed=332786 nmc=20000

stats=(summary intervals) diag=none;

parms beta0-beta3;

prior beta: ~ normal(0, sd=1000);

mu = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;

lambda = exp(mu);

model y ~ poisson(lambda);

run;
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Random-Effects Model

Recall that in the trials analysis, we considered a simple model:

eventi ∼ binomial(ni , p)

p ∼ beta(a, b)

which assumes that all groups share the same characteristic (success or
failure probability).

Random-effects models enable you to model group-specific characteristics,
such as different trials share similar but different failure probabilities:

eventi ∼ binomial(ni , pi )

pi ∼ prior
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A Typical Random-Effects Model
A generic setup of a random-effects model:

Yij = α · Xij + βj + εij , j = 1 · · · J, i = 1 · · · nj (1)

where

Yij is the response value of the ith subject in the jth cluster

J is the total number of clusters, and nj is the total number of
subjects in the jth cluster.

α is the fixed-effects parameter for Xij

εij are the i.i.d. errors from a common distribution

βj is the varying intercepts

Often it is assumed that βj arise from the same distribution,

βj ∼ π(θ) (2)

where θ are the hyperparameters.
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Different Types of Random-Effects Models

If εij in model (1) is assumed to have a normal distribution, then the
model becomes a linear random-effects model.

If you choose to model

E (Yij) = g(α · Xij + βj)

where Yij is assumed to arise from the exponential family and g(·) is
a one-to-one monotone transformation, then the model becomes a
generalized linear random-effects model.

If Yij relates to the regression via nonlinear transformation, the model
becomes a more general nonlinear random-effects model.
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Varying-Intercept Models

Yij = α · Xij + βj

Cluster A

Cluster B

Cluster C

Cluster D

Cluster E

Cluster F

X

Y
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Varying-Slope Models

Yij = γj · Xij + C

Cluster A

Cluster B

Cluster C

Cluster D

Cluster E

Cluster F

X

Y
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Varying-Intercept and Varying-Slope Models

Yij = γj · Xij + βj

Cluster A

Cluster B
Cluster C

Cluster D

Cluster E

Cluster F

X

Y
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The RANDOM Statement

The RANDOM statement is designed to construct random-effects models
in PROC MCMC. The statement

specifies the random-effects parameters (βj , γj , and so on).

makes the following conditional independence assumption:

βj ∼ π(θ)

βi ⊥ βj a priori

where θ are the hyperparameters.
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Syntax

RANDOM random-effect ∼ distribution SUBJECT= <options> ;

random-effect : defines the effect

distribution : specifies its prior distribution
(beta/binary/gamma/igamma/laplace/normal/mvn/general)

SUBJECT= : identifies group membership

options : control initial values, monitoring list, and so on
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Random Effects

A program can have multiple RANDOM statements:
I one for the classroom-level
I one for the school-level
I ...

You can fit nested or nonnested models:
I nested models: levels of one factor must cluster within the levels of

another factor, such as students clustered within classrooms.
F the classroom effect can be the hyperparameters to the student effects

I nonnested models: levels of factors can cross, such as a student effect
and an age effect;

The effects can enter the model in any linear or nonlinear form
I βj + γk
I exp(βj)
I ...
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The SUBJECT= Variable

This is a data set variable that indicates clustering of the random effects.

The number of random-effects parameters in a RANDOM statement
is determined by the number of unique values in the SUBJECT=
variable.

The SUBJECT= variable be numeric or character, and doesn’t have
to be sorted

1

1

2

2

...

27513

27513

01440

17923

...

07/13/1995

01/31/2003

10/12/1997

08/03/2010

...

John

Mary

Ken

John

...

188 / 295

The MCMC Procedure Random-effects models

Understand the SUBJECT= Syntax

y x gender group

0 13 female 1

1 10 male 2

1 11 female 3

0 7 male 4

0 10 female 5

We want to fit a model with two random effects, gender (αj) and group

(βk), that has this general form:

µi = g(αj · xi + βk)

yi ∼ dist(µi )

where i = {1, · · · , 5}, j = {1, 2}, and k = {1, · · · , 5}.
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Understand the SUBJECT= Syntax

random alpha ~ dist() subject=gender;

random beta ~ dist() subject=group;

mu = g(alpha * x + beta);

model y ~ dist(mu);

PROC MCMC internally creates two α parameters (αfemale, αmale), five
β parameters (β1, · · · , β5), and interprets the input data set as:

y x gender group equation processed

0 13 αfemale β1 µ = g(αfemale · 13 + β1)

1 10 αmale β2 µ = g(αmale · 10 + β2)

1 11 αfemale β3 µ = g(αfemale · 11 + β3)

0 7 αmale β4 µ = g(αmale · 7 + β4)

0 10 αfemale β5 µ = g(αfemale · 10 + β5)
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Recall the Logistic Example
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Excessive Variation

Crowder (1978) noted heterogeneity of the proportions between replicates.
To account for excessive variation, Brewslow and Clayton (1993)
suggested a random-effects logistic regression:

ri ∼ binomial(ni , pi )

µi = β0 + β1 · seedi + β2 · extracti + β3 · seedi · extracti

pi = logistic(µi + δi )

π(β0, β1, β2, β3) ∝ normal(0, sd = 1000)

δi ∼ normal(0, var = σ2)

σ2 ∼ igamma(shape = 0.01, scale = 0.01)

where δi is the random-effects parameter, and σ2 is the hyperparameter
variance.

193 / 295



The MCMC Procedure Random-effects models

Random-Effects Logistic Regression

The following program fits a logistic random-effects model:

proc mcmc data=seeds outpost=postout seed=332786 nmc=20000

stats=(summary intervals) diag=none;

parms beta0-beta3 s2 1;

prior beta: ~ normal(0, sd=1000);

prior s2 ~ igamma(0.01, s=0.01);

mu = beta0 + beta1*seed + beta2*extract + beta3*seed*extract;

random delta ~ normal(0, var=s2) subject=_obs_;

pi = logistic(mu + delta);

model r ~ binomial(n = n, p = pi);

run;

subject= obs : fits observational level random effects
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Model Parameters Information

Parameters

Block Parameter
Sampling
Method

Initial
Value Prior Distribution

1 s2 Conjugate 0.00990 igamma(0.01, s=0.01)

2 beta0 N-Metropolis 0 normal(0, sd=1000)

beta1 0 normal(0, sd=1000)

beta2 0 normal(0, sd=1000)

beta3 0 normal(0, sd=1000)

Random Effect Parameters

Parameter
Sampling
Method Subject

Number of
Subjects

Subject
Values

Prior
Distribution

delta N-Metropolis _OBS_ 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... normal(0, var=s2)
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Posterior Inference
By default, PROC MCMC does not display posterior estimates of the
random-effects parameters (there could be too many):

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

beta0 20000 -0.5519 0.1943 -0.6799 -0.5523 -0.4259

beta1 20000 0.0986 0.3167 -0.1026 0.1119 0.3075

beta2 20000 1.3606 0.2815 1.1844 1.3580 1.5385

beta3 20000 -0.8785 0.4589 -1.1652 -0.8824 -0.5905

s2 20000 0.1239 0.1099 0.0528 0.0968 0.1619

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

beta0 0.050 -0.9347 -0.1547 -0.9525 -0.1865

beta1 0.050 -0.5636 0.7045 -0.4972 0.7486

beta2 0.050 0.8072 1.9280 0.8089 1.9284

beta3 0.050 -1.7696 0.0271 -1.7329 0.0615

s2 0.050 0.00895 0.3964 0.00221 0.3180
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Monitoring Random-Effects Parameters

The MONITOR= option enables you to display

all of these random-effects estimates:

random delta ~ n(0, var=s2) subject=_obs_ monitor=(delta);

a subset of these estimates:
random delta ~ n(0, var=s2) subject=_obs_ monitor=(1 2 6);

have the procedure choose a subset:
random delta ~ n(0, var=s2) subject=_obs_ monitor=(random(3));
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Monitored Random-Effects Parameters

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

beta0 20000 -0.5519 0.1943 -0.6799 -0.5523 -0.4259

beta1 20000 0.0986 0.3167 -0.1026 0.1119 0.3075

beta2 20000 1.3606 0.2815 1.1844 1.3580 1.5385

beta3 20000 -0.8785 0.4589 -1.1652 -0.8824 -0.5905

s2 20000 0.1239 0.1099 0.0528 0.0968 0.1619

delta_7 20000 0.0644 0.2403 -0.0809 0.0595 0.2175

delta_8 20000 0.1972 0.2508 0.0301 0.1821 0.3555

delta_19 20000 -0.00081 0.2869 -0.1650 -0.00755 0.1563
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Fit of the Random-Effects Model
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Caterpillar Plot

A side-by-side bar plot of the 95% equal-tail posterior intervals for
multiple parameters

Useful in visualizing and comparing parameters.

Better than overlay kernel density plots.

The %CATER autocall macro creates a caterpillar plot:

%cater(data=postout, var=delta_:);
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Caterpillar Plot
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Hyperprior in Random-Effects Models

Back to the trials analysis model:

eventi ∼ binomial(ni , pi )

where i indexes the group.

The group-specific pi is a weighted average of the pooled estimate (shared
p) and independent estimates (seperate analysis). The amount of
shrinkage is determined by the hyperprior distribution.

Here we consider two common choices:

pi ∼ beta(a, b)

logit(pi ) ∼ normal(µ, σ2)
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Hyperparameters

If you choose constant values for a, b, or σ2, you decide a priori the
amount of shrinkage you want on the pi . For example:

Choosing a = 1 and b = 1, or σ2 =∞, implies no shrinkage on the
pi . The random-effects model becomes an independent model.

Choosing σ2 = 0 imposes no variation amongst pi . This reduces the
random-effects model to the pooled model.
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Hyperparameters

Empirical Bayes offers one way of choosing these hyperparameters.

find estimates a, b, µ, or σ2 by maximizing the posterior marginal
distributions of π(a, b|x, y) or π(µ, σ2|x, y)

plug in these estimates as the hyperparameters

This provides reasonable inferences if there are enough units or groups in
the data to estimate the variance.

But the plug-in approach ignores uncertainty that your data indicates
about the amount of shrinkage that should be used.

205 / 295



The MCMC Procedure Random-effects models

Hyperprior Distributions

Ideally, the data should decide the right amount of strength you want to
borrow from different groups in the analysis. This amounts to placing
hyperprior distributions on the hyperparameters.

For example, see Spiegelhalter, Abrams, and Myles (2004), and Gelman et
al. (2003) for discussions on how to select such prior distributions.
Strategies include:

noninformative

elicitation

summary of evidence

206 / 295

The MCMC Procedure Random-effects models

Hyperprior Distributions

First, let’s consider the beta hyperprior model and use proper but diffuse
prior distributions on a and b:

eventi ∼ binomial(ni , pi )

pi ∼ beta(a, b)

a, b ∼ exponential(scale = 100)

proc mcmc data=trials nmc=50000 outpost=outm seed=17;

parm a b;

prior a b ~ expon(scale=100);

random p ~ beta(a, b) subject=center;

model event ~ binomial(n, p);

run;
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Posterior Estimates of Probabilities
Compare to Page 217

95% HPD intervals and estimates for pi . The solid line is the
random-effects model; the dashed line is the independence model
(individual analysis); the bottom line is the overall (pooled) model. 208 / 295
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Modeling σ2 in Hierarchical Models

Secondly, we consider the following model:

eventi ∼ binomial(ni , pi )

γi = logit(pi ) ∼ normal(µ, σ2)

µ ∼ normal(0, precision = 10−6)

What type of (noninformative) prior distribution should be used on σ2?
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Some Frequently used Prior Distributions for σ2

The Jeffreys’ prior is a popular choice for the variance parameter in a
normal model:

π(σ2) ∝ 1

σ2

which is equivalent to a uniform prior on log(σ2)

prior s2 ~ general(-log(s2), lower=0);

BUT, this leads to an improper posterior distribution in the
random-effects model and SHOULD NOT BE USED.

Uniform on variance:
π(σ2) ∝ 1

prior s2 ~ general(0, lower=0);

When there are few groups, π(σ) ∝ 1 if often recommended.
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Some Frequently used Prior Distributions for σ2

Conjugate prior:

π(σ2) ∝ iΓ(shape=α, scale=β)

prior s2 ~ igamma(shape=, scale=);

π(σ2) ∝ iΓ(ε, ε)⇔ π(τ =
1

σ2
) ∝ Γ(ε, iscale = ε)

with ε = 0.001 being used frequently. This is a prior that “mimics”
the Jeffreys’ prior (However, it can be highly influential) .

For more detailed discussion on noninformative prior selections on σ2, see
Gelman (2006, Bayesian Analysis 1:515).
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Fitting the Model in PROC MCMC

For illustrative purposes, consider

σ2 ∼ igamma(0.001, scale = 0.001)

proc mcmc data=trials nmc=50000 outpost=outmc seed=17;

parms mu s2;

prior mu ~ n(0, prec=1e-6);

prior s2 ~ igamma(0.001, s=0.001);

random gamma ~ n(mu, var=s2) subject=center;

logitP = logistic(gamma);

model event ~ binomial(n,logitP);

run;

logistic : logitP = exp(γ)
1+exp(γ)
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Posterior Estimates

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

mu 50000 -3.9977 0.3544 -4.2103 -3.9641 -3.7630

s2 50000 0.1460 0.5927 0.00578 0.0239 0.1060

gamma_1 50000 -3.9709 0.3923 -4.2067 -3.9450 -3.7151

gamma_2 50000 -3.9452 0.4051 -4.1859 -3.9312 -3.6923

gamma_3 50000 -4.0280 0.4235 -4.2615 -3.9840 -3.7524

gamma_4 50000 -4.0751 0.4441 -4.2995 -4.0066 -3.7916

gamma_5 50000 -4.0667 0.4266 -4.2979 -4.0098 -3.7870

gamma_6 50000 -3.8935 0.3645 -4.1182 -3.8869 -3.6530
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Transform γi to pi Parameters

proc mcmc data=trials nmc=50000 outpost=outmc seed=17

monitor=(mu s2 p);

array p[6];

parms mu s2;

prior mu ~ n(0, prec=1e-6);

prior s2 ~ igamma(0.001, s=0.001);

random gamma ~ n(mu, var=s2) subject=center;

logitP = logistic(gamma);

model event ~ binomial(n, logitP);

p[center] = logitP;

run;

ARRAY : allocates an array to store pi , which are functions of γi

MONITOR : outputs model parameters and all elements of the array p

p : p[center] saves the correct transformation for each γi
according to its cluster/center membership.

214 / 295

The MCMC Procedure Random-effects models

Posterior Estimates of the pi Parameters

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

mu 50000 -3.9977 0.3544 -4.2103 -3.9641 -3.7630

s2 50000 0.1460 0.5927 0.00578 0.0239 0.1060

p1 50000 0.0198 0.00757 0.0147 0.0190 0.0238

p2 50000 0.0205 0.00842 0.0150 0.0192 0.0243

p3 50000 0.0189 0.00727 0.0139 0.0183 0.0229

p4 50000 0.0181 0.00677 0.0134 0.0179 0.0221

p5 50000 0.0182 0.00683 0.0134 0.0178 0.0222

p6 50000 0.0212 0.00761 0.0160 0.0201 0.0253
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Prior Matters!

Top panels are π(σ|y) based on three different prior distributions: uniform
on σ, iΓ(1,1) and iΓ(0.001, 0.001) on σ2. The popular choice of
inverse-Gamma distribution is hardly noninformative.
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Posterior Estimates of Probabilities
Compare to Page 208
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95% HPD credible intervals and posterior point estimates for each pi .
There is an excessive amount of shrinkage using the iΓ(0.001, 0.001) prior.
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Shrinkage Effects

P1 P2P3P4P5 P6

Pulled Model

s2 ~ igamma(0.001, 0.001)

s2 ~ igamma(0.01, 0.01)

s ~ unif(0, 10)

s2 ~ unif(0, 10)

s2 ~ pareto(1, 1)

Independent

0.01 0.02 0.03

P
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Repeated Measurements

Individual subjects have repeated observations, for example, over time
(longitudinal), or within subjects (test scores).

Different from time series data in the sense that the number of
measurements per subject is generally not very large

Covariates information is avaliable either at subject or measurement
level.

Subjects can have same number of repeated measures (balanced) or
uneven number of measures (unbalanced)
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Two-Arm Study

The data comes from a two arms (control vs treatment) experiment
that is carried out at eight sites.

The response variables are success counts, yc and yc , out of the same
number of trials, nc = 132 and nt = 148, respectively.

Each site sees different numbers of repeats (from 1 up to 13).

Additional covariates information is withheld (but you can easily add
them).
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Control Data (nc = 132)

id yc1 yc2 yc3 yc4 yc5 yc6 yc7 yc8 yc9 yc10 yc11

1 40 26 0 1 20 . . . . . .

2 2 0 0 10 1 7 19 . . . .

3 2 . . . . . . . . . .

4 2 . . . . . . . . . .

5 0 2 43 . . . . . . . .

6 1 2 2 8 20 1 8 14 1 1 1

7 0 0 1 3 2 1 2 2 2 . .

8 2 14 . . . . . . . . .

Treatment Data (nt = 148)

id yt1 yt2 yt3 yt4 yt5 yt6 yt7 yt8 yt9 yt10 yt11

1 57 34 2 3 27 . . . . . .

2 7 2 2 24 3 2 19 . . . .

3 3 . . . . . . . . . .

4 0 . . . . . . . . . .

5 2 2 75 . . . . . . . .

6 4 4 1 13 28 2 13 15 3 2 3

7 4 2 2 13 6 8 4 0 1 . .

8 0 18 . . . . . . . . .

Input data is in a
vector format.

id rep yc yt

1 1 40 57

1 2 26 34

1 3 0 2

1 4 1 3

1 5 20 27

2 1 2 7

2 2 0 2

2 3 0 2

2 4 10 24

2 5 1 3

2 6 7 2

2 7 19 19

3 1 2 3

4 1 2 0

5 1 0 2

5 2 2 2

5 3 43 75

6 1 1 4

...
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Simple Model

For every i = {1, · · · , 39}

yc i ∼ binomial (nc , pc)

logit(pc) = γ

yt i ∼ binomial (nt , pt)

logit(pt) = γ + θ

γ, θ ∼ normal(0, sd = 10)

where γ is the baseline (for control group) and θ is the treatment effect
(log of odds ratio).

Some quantities of interest could be:

Difference in probabilities: pt - pc

Odds ratio: exp(θ)
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Fitting the Population Model

proc mcmc data=TwoArms nmc=20000 seed=1

monitor=(p_diff or);

parm gamma theta;

prior gamma theta ~ n(0, sd=10);

pc = logistic(gamma);

model yc ~ binomial(132, pc);

pt = logistic(gamma + theta);

model yt ~ binomial(148, pt);

or = exp(theta);

p_diff = pt - pc;

run;

0.00 0.01 0.02 0.03 0.04

Diff in Prob

1.00 1.25 1.50 1.75 2.00

Odds Ratio
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Observational-level Model

For every i = {1, · · · , 39}

yc i ∼ binomial (nc , pc i )

logit(pc i ) = γi

γi ∼ normal(µγ , τγ)

yt i ∼ binomial (nt , pt i )

logit(pt i ) = γi + θi

θi ∼ normal(µθ, τθ)

µγ , µθ ∼ normal(0, sd = 10)

τγ , τθ ∼ Γ(3, iscale = 1)

The number of parameters jumps from 2 to 82.
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Fitting the Observational-Level Model

proc mcmc data=TwoArms nmc=20000 seed=1 outpost=ObsOut;

parms mu_g mu_t tau_g tau_t;

prior mu_g mu_t ~ n(0, prec=0.1);

prior tau_g tau_t ~ gamma(3, iscale=1);

random gamma ~ n(mu_g, prec=tau_g) subject=_obs_;

random theta ~ n(mu_t, prec=tau_t) subject=_obs_;

pc = logistic(gamma);

model yc ~ binomial(132, pc);

pt = logistic(gamma + theta);

model yt ~ binomial(148, pt);

run;

%ess(data=ObsOut, var=mu: tau: gamma: theta:, out=ess);
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ESSs of All Parameters
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Observational-level odds ratios are rather similar to each other, indicating
maybe an over-simplifying assumption on the random effects.

compare to page 231
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Multi-level Model

It is more realistic to consider the site-effect in the model, where the
repeated measures are modelled as similar to each other within each site:

yc i ∼ binomial (nc , pc i )

logit(pc i ) = γi

γ{i ,(j)} ∼ normal(µγ j , τγ j)

µγ j ∼ normal(µγ , τγ)

µγ ∼ normal(0, sd = 10)

τγ , τγ j ∼ Γ(3, iscale = 1)

yt i ∼ binomial (nt , pt i )

logit(pt i ) = γi + θi

θ{i ,(j)} ∼ normal(µθ j , τθ j)

µθ j ∼ normal(µθ, τθ)

µθ ∼ normal(0, sd = 10)

τθ, τθ j ∼ Γ(3, iscale = 1)

where i = {1, · · · , 39} indexes observations, j = {1, · · · , 8} indexes sites,
and {i , (j)} indexes repeated measures in the jth site.
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Fitting the Observational-Level Model

proc mcmc data=TwoArms nmc=20000 seed=1 outpost=MultOut;

parms mu_g0 mu_t0 tau_g0 tau_t0;

prior mu_g0 mu_t0 ~ n(0, prec=0.1);

prior tau_g0 tau_t0 ~ gamma(3, iscale=1);

random mu_g ~ n(mu_g0, prec=tau_g0) subject=id;

random tau_g ~ gamma(shape=3, iscale=1) subject=id;

random gamma ~ n(mu_g, prec=tau_g) subject=_obs_;

random mu_t ~ n(mu_t0, prec=tau_t0) subject=id;

random tau_t ~ gamma(shape=3, iscale=1) subject=id;

random theta ~ n(mu_t, prec=tau_t) subject=_obs_;

pc = logistic(gamma);

model yc ~ binomial(132, pc);

pt = logistic(gamma + theta);

model yt ~ binomial(148, pt);

run;

The SUBJECT= variables must be nested.
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Odds Ratios Estiamtes by the Multi-level Model
compare to page 228
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Posterior Densities of µθj

-3 -2 -1 0 1 2
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-3 -2 -1 0 1 2
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Introduction

Missing data problems arise frequently in practice and are caused by
many circumstances.

I study subjects might fail to answer questions on a questionnaire,
I data can be lost
I covariate measurements might be unavailable
I and so on...

The impact of missing data on inference is potentially important,
especially if subjects that have missing data differ systematically from
those that have complete data.

Coherent estimation and valid inference require adequate modeling of
the missing values.
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Bayesian Approach

Bayesian methods for missing data problems are straightforward.

Bayesian paradigm treats any unknown quantities as random variables.

Missing values are treated as additional variables that need to be
estimated.

The approach is very general and capable of handling complex
missing data scenarios.
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Notations

Let Y =
{

Yobs,Ymis
}

be the response variable of length n ({yi}),
where Yobs and Ymis denote the observed and missing values,
respectively.

The sampling distribution is assumed to have the generic form:

yi ∼ f (yi |xi , θ)

where f (·) is a known distribution (e.g. the likelihood), xi are the
covariates, and θ is the parameter of interest.

Let RY = (r1, · · · , rn) be the missing value indicator, also called the
missingness random variable, where ry i = 1 if yi is missing and
ry i = 0 otherwise. R is known when the Y are known.
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Covariates Missing

Similar to missing in response variables, you can have missing covariates.

Let X =
{

Xobs,Xmis
}

, and X can be multidimensional.

Typically, covariates are considered to be fixed constants. But here, X
is treated as a random variable:

xi ∼ π(xi |ui , η)

where π(·) is a “prior” distribution. The model can have ui as
additional covariates and η the parameter of interest.

Similarly, you have RX the missing value indicator for each covariate
X .
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Objective

In the Bayesian approach, you can estimate the joint posterior distribution:

π(θ, η, ymis, xmis|yobs, xobs,u)

The Monte Carlo in MCMC enables you to obtain the posterior marginal
distributions for the parameters of interest:

π(θ|yobs, xobs,u)

π(η|yobs, xobs,u)

Uncertainty about the missing values is fully propagated and incorporated
in your inferences.
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Classifications of Missing Data

Generally speaking, there are three types of missing data models (Rubin
1976):

Missing Completely at Random

Missing at Random

Missing not at Random

I selection model
I pattern-mixture model
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Missing Complete at Random

Missing Complete at Random (MCAR) – if the failure to observe
a value does not depend on any data, observed or missing.

I The probability of observing a missing yi is independent of other yj , for
j 6= i , and is independent of other covariates xi .

Under the MCAR assumption, you can use only the observed data in
the analysis. This is called a complete-case (CC) analysis.

I If the MCAR assumption fails to hold, a CC analysis is biased.
I If the MCAR assumption holds, a CC analysis is unbiased but less

efficient than an analysis that uses the full data.
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Missing at Random

Missing at Random (MAR) – if the failure to observe a value is
independent of missing values but may depend on observed value.

MCAR assumes that the observed quantities are no longer random
samples and adjustments should be made accordingly (a more realistic
assumption than MCAR).

In MAR, the missing mechanism, (RY ), does not need to be modeled
and can be ignored.

MAR is sometimes referred to as ignorable missing; it is not the
missing values but the missing mechanism that can be ignored.
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Missing not at Random

Missing not at Random (MNAR) – if the failure to observe a value
depends on unobserved observations (the would-have-been values).

MNAR is the most general and most complex missing data scenario,
and is frequently encountered in longitudinal studies with repeated
measures.

I In a Quality of Life (QOL) study, a patient can drop out depends on
how sick they are, which is unobserved.

The missing mechanism is no longer ignored and a model for RY is
required. MNAR is sometimes referred to as nonignorable missing.
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Modeling MNAR

In MNAR, you have a joint likelihood function over (R,Y ):

fR,Y (r , y |x , θ)

The selection model factors joint distribution into:

f (r , y |x , θ) ∝ f (y |x , α) · f (r |y , x , β)

where θ = (α, β).
I f (y |x , α), known as the outcome model, is the typical likelihood.
I f (r |y , x , β): typically a binary model

The pattern-mixture model factors the opposite way:

f (r , y |x , θ) ∝ f (y |r , x , δ) · f (r |x , γ)

where θ = (γ, δ).
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Selection vs Pattern-Mixture

Some prefer the selection approach:

It is a natural way of decomposing the joint distribution.

In MAR analysis, you don’t need to include R in the analysis.

When MNAR analysis is required, adding the conditional model is
easy.

Others prefer the pattern-mixture approach:

The marginal model can model different patterns in R.

You can build meaningful models for subsets of the response variable
conditional on different missing patterns.

On the other hand, you must always model R.
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Handling of Missing Values in PROC MCMC

The MODEL statement handles the estimation of all missing values:

MODEL variable-list ∼ distribution / <options> ;

The distribution is the usual likelihood function when the MODEL
statement is applied to a response variable;

It becomes a prior distribution for a covariate;

The procedure steps through the input data set, identifies all missing
values that are in variable-list, creates a separate parameter for each
missing value, and draw samples from their posterior distributions.
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Handling of Missing Values in PROC MCMC

PROC MCMC models missing values only for variables that are
specified in the MODEL statement. For example, suppose that there
are missing values in y:

MODEL y ~ normal(mu, var=1);

Each missing value in y becomes a parameter and is sampled in the
Markov chain.

Records that contain missing values in other data set variables (that
are not in the MODEL statement) are discarded. Suppose that there
are missing values in x:

mu = beta0 + beta1 * x;

MODEL y ~ normal(mu, var=1);

PROC MCMC does not model any missing values in x.
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Options in the MODEL Statement

The options in the MODEL statement are avaliable only when there are
missing values in the variables:

MODEL variable-list ∼ distribution / <options> ;

Option Description
INITIAL= specifies the initial values of the missing data, which

are used to start the Markov chain.
MONITOR= outputs analysis for selected missing data variables.
NAMESUFFIX= specifies how to create the names of the missing data

variables.
NOOUTPOST suppresses the output of the posterior samples of the

missing data variables.
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Bivariate Normal with Partial Missing

x1 1 1 –1 –1 2 2 –2 –2 . . . .
x2 1 –1 1 –1 . . . . 2 2 –2 –2

Table : Bivariate Normal Data with Partial Missing (Murray 1977)

The data are assumed to have zero means, and the parameter of interest is
the covariance matrix Σ and correlation ρ. The likelihood is

π(x|µ,Σ) ∝ MVN(µ = 0,Σ)

The prior on Σ is

π(Σ) ∝ iWishart(ν = 3,S = I)

A CC analysis uses first four observations, which produces a rather simple
estimate of ρ of 0. But this throws away all of the information that is in
the other partially observed data.
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Fitting MAR of the bivariate normal data with partial missing using PROC
MCMC:

proc mcmc data=binorm nmc=20000 seed=17 outpost=pout

monitor=(rho);

array x[2] x1 x2; ! response variable

array mu[2] (0 0);

array sigma[2, 2];

array S[2,2] (1 0, 0 1);

parms sigma;

prior sigma ~ iwish(3, S);

rho = sigma[1,2]/sqrt(sigma[1,1]*sigma[2,2]);

model x ~ mvn(mu, sigma) monitor=(x); ! outputs Xmis

run;

This is virtually identical to the program for fitting a bivariate normal data
without missing values.
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Procedure Outputs

Number of Observations Read
Number of Observations Used

12
12

Missing Data Information Table

Variable
Number of

Missing Obs
Observation
Indices

Sampling
Method

x1 4 9 10 11 12 Direct

x2 4 5 6 7 8 Direct
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Posterior Estimates

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

rho 20000 0.0270 0.6272 -0.6197 0.0772 0.6519

x2_5 20000 0.0473 1.8898 -1.3000 0.0657 1.3932

x2_6 20000 0.0700 1.8839 -1.2648 0.0891 1.4010

x2_7 20000 -0.0652 1.9042 -1.4005 -0.0659 1.2936

x2_8 20000 -0.0746 1.9147 -1.4345 -0.0825 1.2706

x1_9 20000 0.0575 1.8807 -1.2914 0.0834 1.3871

x1_10 20000 0.0606 1.8876 -1.2808 0.0785 1.3945

x1_11 20000 -0.0497 1.8942 -1.4079 -0.0661 1.2815

x1_12 20000 -0.0456 1.8839 -1.3938 -0.0762 1.2909
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Posterior Interval Estimates

Posterior Intervals

Parameter Alpha
Equal-Tail

Interval HPD Interval

rho 0.050 -0.8845 0.8870 -0.8796 0.8895

x2_5 0.050 -3.5461 3.6009 -3.5456 3.6009

x2_6 0.050 -3.5444 3.6455 -3.5311 3.6503

x2_7 0.050 -3.7211 3.5754 -3.5998 3.6847

x2_8 0.050 -3.7148 3.5835 -3.6730 3.6130

x1_9 0.050 -3.5345 3.6513 -3.5372 3.6432

x1_10 0.050 -3.5735 3.5786 -3.4702 3.6568

x1_11 0.050 -3.6167 3.5969 -3.7271 3.4786

x1_12 0.050 -3.5976 3.5840 -3.5339 3.6202
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Estimate of the Correlation Parameter
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Example Data Set

The data are based on a double-blind antidepressant clinical trial
originally reported by Goldstein et al (2004).

The Drug Information Association (DIA) working group on missing
data have made this data set available at www.missingdata.org.uk.

To avoid implications for marketed drugs, all patients who took active
medication are grouped into a single DRUG group and only a subset of
the original trial patients are included.

There are 171 subjects in the data set, 88 in the control arm, and 83
in the active arm.
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Variables in the Data Set

patient: patient ID

baseval: baseline assessment on the Hamilton 17-item rating scale for
depression (HAMD17, Hamilton 1960).

change1–change4: change in HAMD17 at weeks 1, 2, 4, and 6.

r1–r4: missing data indicator for each of the change variables.

therapy: treatment (DRUG vs PLACEBO)

poolinv: blocking information (Groups formed by pooling investigator).

last: week index to last non-missing change value. Patient’s last visit week.

wkMax: maximum number of weeks to be included in the analysis.

The first few observations of the selection data set:

data selection;

input PATIENT baseval change1-change4 r1-r4 THERAPY $ POOLINV $ last wkMax;

datalines;

1503 32 -11 -12 -13 -15 0 0 0 0 DRUG 006 4 4

1507 14 -3 0 -5 -9 0 0 0 0 PLACEBO 006 4 4

...
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Average Mean Changes of HAMD17 by Withdrawl Pattern
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Data Characteristics

Dropout probabilities appear to be correlated with the observed level
of improvement (change in score).

Patients failing to see improvement (flat or up-swinging lines), are
more likely to withdraw.

The probability of withdrawal could also depend on how they felt at
the first unobserved visit - the MNAR part of the model.

Fit a selection model:

f (change|x, θ) · f (r|change, φ)
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Outcome Model

For every subject i , changei = {changej i} is modeled using a MVN(µi , Σ),

where j = {1, 2, 3, 4} is the week index.

The mean variables, µi = (µ1i , µ2i , µ3i , µ4i ), are modeled via:

µj i = mkj + βj · (baseval-18) + γl

where k = {1, 2} indexes the treatment, l indexes pooling investigator.

The following prior distributions are used in the analysis:

π(mkj , βj , γl) ∝ 1

Σ ∼ iWishart(4, I)
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The Selection Model

The selection model (Diggle-Kenward model) includes the previous and current
(possibly missing) response variables for each week:

rkj i ∼ binary(qkj i )

qkj i = logistic(φk1 + φk2 · change(j−1)i
+ φ3k · changej i )

The parameters φk· account for treatment effect in separate regression models.
Flat prior is used:

π(φk·) ∝ 1
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proc mcmc data=selection nmc=20000 seed=176 outpost=seleout;

array Change[4] Change1-Change4; ! response

array mu[4]; ! µi

array Sigma[4,4]; ! Σ
array S[4,4] (1 0 0 0, 0 1 0 0, 0 0 1 0, 0 0 0 1);! S = I
array beta[4] ; ! βj
array M[2,4] m1-m8; ! mkj

array phi[2,3] phi1-phi6; ! φk·

parms beta: 0 ;

parms m1-m8 0;

parms phi1-phi6 0;

parms Sigma ;

prior beta: m1-m8 phi: ~ general(0); ! π(mkj , βj , φk ) ∝ 1
prior Sigma ~ iwish(4, S); ! π(Σ) = iWishart(4, S)

/* outcome model */

random gamma ~ general(0) subject=poolinv zero=first init=0; ! π(γl ) ∝ 1
do j=1 to 4;

if therapy eq "DRUG" then do;

mu[j] = m[1,j] + gamma + beta[j]*(baseval-18); ! µ{k = DRUG}j
end; else do;

mu[j] = m[2,j] + gamma + beta[j]*(baseval-18); ! µ{k = PLACEBO}j
end;

end;

model Change ~ mvn(mu, Sigma); ! likelihood
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MCMC Code for the Selection Model

/* selection mechanism */

array r[4] r1-r4; ! missing data indicator

llike = 0;

do j = 23 to wkMax

if therapy eq "DRUG" then do;

mn = phi[1,1] + phi[1,2] * change[j-1] + phi[1,3] * change[j];

q = logistic(mn); ! q{k=DRUG}j
end; else do;

mn = phi[2,1] + phi[2,2] * change[j-1] + phi[2,3] * change[j];

q = logistic(mn); ! q{k=PLACEBO}j
end;

llike = llike + lpdfbern(r[i], q); ! accumulates binary

! likelihood over weeks

end;

model r2 r3 r4 ~ general(llike); ! declares joint likelihood

run;

3 Variable change1 doesn’t contain any missing values, making r1 irrelevant to the analysis.
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Outcome Model Estimates

Comparison of posterior distributions of mdrug,j and mplacebo,j over the weeks:

The treatment difference at week 1 is
negligible.

The difference becomes larger as the
trial progresses, with the predicted
score change for the DRUG group
declining at a faster pace. The
difference (mean difference is -2.42)
is largest at the end of the trial.
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Selection Model Estimates, When All are Estimated

Posterior distributions of φk·, which model the change in the probability of
dropouts given the score changes in the last and the current, potentially missing,
week:

φdrug,2 (phi2) and φplacebo,2

(phi5) are positive, suggesting that
as the patient felt worse (increase in
HAMD17 score) in their previous visit,
they were more likely to dropout.

φdrug,2 (phi3) φplacebo,2 (phi6) are

negative, suggesting that patients
were less likely to withdraw from the
trial had they felt worse in the current
week.
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Sensitivity Analysis Fixing MNAR Parameter Values

The parameters in this complete model are poorly estimated. An idea is to fix the
regression on the potentially unobserved values (phi3 and phi6) and observe
sensitivity to changing these. The estimated model (1st boxplot) produces similar
point estimates (but larger s.d.) to the MAR model (2nd).

when phi3 < phi6, boxplots shift to
the left (3rd, 7th, and 8th). DRUG

patients were more likely to drop out
if they felt improvement in the
current week. This results in stronger
estimated treatment effect as the
estimate is corrected for these missed
patients.

when phi3 > phi6, boxplots shift to
the right (4th, 5th, and 6th), resulting
in weaker treatment effect estimates.
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Outline

3 The MCMC Procedure
A Primer on PROC MCMC
Monte Carlo Simulation
Single-level Model: Hyperparameters
Generalized Linear Models
Random-effects models
Missing Data Analysis
Survival Analysis (Optional)

Piecewise Exponential Model with Frailty
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Piecewise Exponential Model

Let {(ti , xi , δi ), i = 1, 2, . . . , n} be the observed data. Let
a0 = 0 < a1 < . . . < aJ−1 < aJ =∞ be a partition of the time axis.
The hazard for subject i is

h(t|xi ;θ) = h0(t) exp(β′xi )

where
h0(t) = λj aj−1 ≤ t < aj (j = 1, . . . , J)

The hazard for subject i in the jth time interval is

h(t) = λj exp(β′xi ) aj−1 < t < aj

267 / 295



The MCMC Procedure Survival Analysis (Optional)

Piecewise Exponential Model

From the hazard function, first define the baseline cumulative hazard
function:

H0(t) =
J∑

j=1

λj∆j(t)

where

∆j(t) =


0 t < aj−1

t − aj−1 aj−1 ≤ t < aj
aj − aj−1 t ≥ aj
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Piecewise Exponential Model

The log likelihood is:

l(λ,β) =
n∑

i=1

δi

[ J∑
j=1

I (aj−1 ≤ ti < aj) log λj + β′xi

]

−
n∑

i=1

[ J∑
j=1

∆j(ti )λj

]
exp(β′xi )

where δi is the event status:

δi =

{
0 if ti is a censored time
1 if ti is an event time

This model has two parameter vectors: λ and β.
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Fitting Piecewise Exponential Models Using PROC MCMC

Road map (what needs to be done)

I Reformulate the likelihood to a Poisson likelihood, which enables us to
treat hazards as random effects

I Manipulate the data
I Fit using PROC MCMC
I Extend to frailty model
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Fitting Piecewise Exponential Models Using PROC MCMC

Recall the hazard function

h(t|xi ;θ) = h0(t) exp(β′xi )

Define Ni (t) to be the number of observed failures of the ith subject up to
time t, then the hazard function is a special case of a multiplicative
intensity model (Clayton, 1991, Biometrics, 467-485). And the intensity
process for Ni (t) becomes

Ii (t) = Yi (t)h0(t) exp(β′xi )

where

Yi (t) =

{
1 if the subject is observed at time t
0 o.w.
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Under noninformative censoring, the corresponding likelihood is
proportional to

n∏
i=1

∏
t≥0

Ii (t)

dNi (t)

exp

[
−
∫
t≥0

Ii (t)dt

]

where dNi (t) is the increment of Ni (t) over the small time interval
[t, t + dt):

dNi (t) =

{
1 if the subject i fails in the time interval
0 o.w.
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Poisson Process as the Likelihood Function

This is a Poisson kernel with the random variable being the increments of
dNi and the means Ii (t)dt

dNi (t) ∼ Poisson(Ii (t)dt)

where
Ii (t)dt = Yi (t) exp(β′x)h0(t)

and

h0(t) =

∫ t

0
h0(u)du.

The integral is the increment in the integrated baseline hazard function
that occurs during the time interval [t, t + dt).
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Alternative Approach

The alternative formulation of the piecewise exponential model

dNi (t) ∼ Poisson(Yi (t) exp(β′x)h0(t))

makes it a random-effects model, with each hazard rate, h0(t) being a
random effect.

You need to manipulate the data and create Yi (t) and dNi (t) for each
interval.
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Piecewise Exponential Model

Consider a randomized trial of 40 rats exposed to carcinogen:

Drug X and Placebo are the treatment groups.

Event of interest is death.

Response is time until death.

What are the effects of treatment and gender on survival?
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Piecewise Exponential Model

A subset of the data:

proc format;

value Rx 1=’X’ 0=’Placebo’;

data Exposed;

input Days Status Trt Gender $ @@;

format Trt Rx.;

datalines;

179 1 1 F 378 0 1 M

256 1 1 F 355 1 1 M

262 1 1 M 319 1 1 M

256 1 1 F 256 1 1 M

...

268 0 0 M 209 1 0 F

;
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Piecewise Exponential Model

The following regression model and prior distributions are used in the
analysis:

β′xi = β1Trt + β2Gender

β1, β2 ∼ normal(0, var = 1e6)

h0(t) ∼ gamma(shape = 0.5, iscale = 0.5)

where t = 1 · · · 8 (time intervals).
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A Little Problem
Both Trt and Gender are character variables and PROC MCMC does not
support a CLASS statement.

PROC TRANSREG to the rescue:

proc transreg data=exposed design;

model class(trt gender / zero=first);

id days status id;

output out=exposed_d(drop=_: Int:);

run;

design : specifies design matrix coding
class : expands the variables to “dummy” variables
zero : controls reference level (first sets 0 to the first sorted

category)

zero="X" "F"

ID : includes additional variables to the OUT= data set
OUTPUT : creates a new data set 278 / 295
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The New Data Set

Obs Days Status Trt Gender

1 179 1 X F

2 378 0 X M

3 256 1 X F

4 355 1 X M

5 262 1 X M

6 319 1 X M

7 256 1 X F

8 256 1 X M

9 255 1 X M

10 171 1 X F

⇒

Gender

Obs TrtX M Days Status

1 1 0 179 1

2 1 1 378 0

3 1 0 256 1

4 1 1 355 1

5 1 1 262 1

6 1 1 319 1

7 1 0 256 1

8 1 1 256 1

9 1 1 255 1

10 1 0 171 1

Automatically created macro variable & trgind contains the list of
independent variables created:

%put &_trgind;

TrtX GenderM
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Partition of the Time Axis

You can find a partition along the time axis using PROC UNIVARIATE,
placing roughly the same number of event times in each interval:

%let npar_e = 7;

%let inc = %sysevalf((1/&npar_e) * 100);

proc univariate data=exposed_d(where=(status=1)) pctldef=4;

var days;

output out=interval pctlpre=P_ pctlpts= 0 to 100 by &inc;

run;

Alternatively, we use the same partition as PROC PHREG:

data partition;

input int_1-int_9;

datalines;

0 193 221 239.5 255.5 256.5 278.5 321 1000

;
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Manipulate the Data

The next step is to create Yi (t) and dNi (t) using Days and Status:

Yi (t) =

{
1 if the subject is observed at time t
0 o.w.

dNi (t) =

{
1 if the subject i failes in the time interval
0 o.w.
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Create Yi (t) and dNi (t)
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Modify the Data
The following statements calculate Yi (t) for each observation i , at every
time point t in the Partition data set. The statements also find the
observed failure time interval, dNi (t), for each observation:

%let n = 8;

data _a;

set exposed_d;

if _n_ eq 1 then set partition;

array int[*] int_:;

array Y[&n];

array dN[&n];

do k = 1 to &n;

Y[k] = (days - int[k] + 0.001 >= 0);

dN[k] = Y[k] * ( int[k+1] - days - 0.001 >= 0) * status;

end;

output;

drop int_: k;

run;
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First few observations of the new data set:

S

t D

T a T

O i t y T d d d d d d d d

b I m u p r i Y Y Y Y Y Y Y Y N N N N N N N N

s D e s e t d 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

1 5 46.23 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

2 5 46.23 0 1 0 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

3 14 42.50 0 0 1 3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

4 14 31.30 1 0 0 4 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0

5 16 42.27 0 0 1 5 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

6 16 42.27 0 0 0 6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

...

This being the Partition data set:

0 193 221 239.5 255.5 256.5 278.5 321 1000
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Input Data Set

Each observation in the a data set has 8 Y and 8 dN, meaning that
you would need eight MODEL statements in a PROC MCMC call,
each for a Poisson likelihood.

model dN1 ~ poisson(Y1 * exp(beta * x) * h1);

model dN2 ~ poisson(Y2 * exp(beta * x) * h2);

...

model dN8 ~ poisson(Y8 * exp(beta * x) * h8);

Alternatively, you can expand a, put one Y and one dN in every
observation, and fit the data using a single MODEL statement in
PROC MCMC. This enables you to treat the hazards (h0(t)) as
random-effects and use the RANDOM statement.
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The following statements expand the data set a and save the results in
the data set b:

data _b;

set _a;

array y[*] y:;

array dn[*] dn:;

do i = 1 to (dim(y));

y_val = y[i];

dn_val = dn[i];

int_index = i;

output;

end;

keep y_: dn_: &_trgind int_index id;

run;

data _b;

set _b;

rename y_val=Y dn_val=dN;

run;
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The data set b now contains 320 observations. The int index variable is
an index variable that indicates interval membership of each observation.

Gender int_

Obs TrtX M id Y dN index

1 1 0 1 1 1 1

2 1 0 1 0 0 2

3 1 0 1 0 0 3

4 1 0 1 0 0 4

5 1 0 1 0 0 5

6 1 0 1 0 0 6

7 1 0 1 0 0 7

8 1 0 1 0 0 8

9 1 1 2 1 0 1

10 1 1 2 1 0 2

...
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Further Clean Up the Data

Recall the likelihood is:

dNi (t) ∼ Poisson(Yi (t) exp(β′x)h0(t))

where Yi (t) does not contribute to the likelihood calculation when it takes
a value of 0, you can remove these observations.

data inputdata;

set _b;

if Y > 0;

run;

This steps reduces the size of the input data set (to 174 observations) and
shortens the run time of PROC MCMC.
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Fitting Piecewise Exponential Model Using PROC MCMC

The following statements fit a piecewise exponential model in PROC
MCMC:

proc mcmc data=inputdata nmc=10000 outpost=postout seed=12351

stats=summary diag=ess;

parms beta1-beta2 0;

prior beta: ~ normal(0, var = 1e6);

random h0 ~ gamma(0.5, iscale = 0.5) subject=int_index;

bZ = beta1*trtx + beta2*genderM;

idt = exp(bz) * h0;

model dN ~ poisson(idt);

run;

Note that the Yi (t) term is omitted in the assignment statement for the
symbol idt because Y = 1 in all observations.
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Posterior Estimates

Posterior Summaries

Percentiles

Parameter N Mean
Standard
Deviation 25% 50% 75%

beta1 10000 -0.5659 0.3288 -0.7869 -0.5666 -0.3514

beta2 10000 -1.5919 0.3520 -1.8310 -1.5916 -1.3586
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Hazards Estimates
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Frailty Model

Now suppose you want to include patient-level information and fit a frailty
model to the exposed data set.

β′xi = β1Trt + β2Gender + uid

uid ∼ normal(0, var = σ2)

σ2 ∼ igamma(shape = 0.01, scale = 0.01)

β1, β2 ∼ normal(0, var = 1e6)

h0(t) ∼ gamma(shape = 0.5, iscale = 0.5)

dNi (t) ∼ Poisson(Yi (t) exp(β′x)h0(t))

where t = 1 · · · 8 and id indexes patient.
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The actual coding in PROC MCMC of a piecewise exponential frailty
model is rather straightforward:

proc mcmc data=inputdata nmc=10000 outpost=postout seed=12351

stats=summary diag=none;

parms beta1-beta2 0 s2;

prior beta: ~ normal(0, var = 1e6);

prior s2 ~ igamma(0.01, scale=0.01);

random h0 ~ gamma(0.01, iscale = 0.01) subject=int_index;

random u ~ normal(0, var=s2) subject=id;

bZ = beta1*trtx + beta2*genderM + u;

idt = exp(bZ) * lambda;

model dN ~ poisson(idt);

run;

And you are done!
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Learning Objectives

Attendees will

understand basic concepts and computational methods of Bayesian
statistics

be able to deal with some practical issues that arise from Bayesian
analysis

be able to program using SAS/STAT procedures with Bayesian
capabilities to implement various Bayesian models.
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