Estimand and analysis considerations of phase 3 clinical trials involving CAR-T – A case study in lymphoma

Michael Yiyun Zhang, on behalf of Novartis Team

2018 ASA Biopharmaceutical Section Regulatory-Industry Statistics Workshop
Sep 13, 2018
What is the Estimand framework

ICH E9 Addendum

- A structured **framework** that translates the **trial objective** into a precise definition of the **treatment effect** that is to be estimated.

- It aims to **facilitate the dialogue** between disciplines involved in clinical trial planning, conduct, analysis and interpretation, as well as **between sponsor and regulator**, regarding the treatment effects of interest that a clinical trial should address.
Kymriah (CTL019) – Chimeric antigen receptor T cell (CAR-T) therapy

A living drug designed to target CD19+ B cells

Patient’s T cell

CTL019 cell

Anti-CD19 CAR construct

Native TCR

Lentiviral vector

Tumor cell

Dead tumor cell

CD19

Cytokine release

CTL019 proliferation

Oncology / CAR-T Program

Business Use Only
CAR-T Cell Manufacturing process

1. LEUKAPHESIS

2. ENRICHMENT & ACTIVATION

3. TRANSDUCTION

4. EXPANSION

5. FORMULATION & QUALITY ASSESSMENT

6. ADMINISTRATION
Motivating example: Pivotal Phase II Single Arm Study

- Adult relapse or refractory diffuse large B cell lymphoma (DLBCL) patients after 2 systematic therapies
- Primary endpoint: Overall Response Rate (ORR) in All Infused Patients

CR: Complete response

Screening, apheresis, and cryopreservation

Bridging chemotherapy

Enrollment

CAR-T manufacturing

Restaging, lymphodepletion

CAR-T infusion

Safety and efficacy follow-up Imaging at months 1, 3, 6, 9, 12...

Dropped out

Achieved CR

CR: Complete response
What is the treatment effect of interest?

- CAR-T infusion? (Infused set)
- Bridging chemo followed by CAR-T infusion? (Enrolled set)
Polling Question:
Which study population would you propose for the primary efficacy analysis?

1. Enrolled set
2. Infused set
What is the proper baseline?

- Timing of baseline?
- Evidence of disease at baseline?
 - At enrollment, all patients had disease
 - Some patients may have transient response to bridging chemotherapy prior to CAR-T infusion
Regulatory feedback during Kymriah approval process

• EMA: Focused on enrolled patients with evidence of disease at enrollment
 – Sensitivity analyses performed using all enrolled patients regardless of disease status prior to CAR-T infusion for all relevant endpoints

• FDA: Focused on infused patients with evidence of disease prior to infusion
 – Retrospectively identified sub-group among infused patients
 – Excluded patients without documented disease after bridging and prior to CAR-T infusion
Questions to be addressed in the Phase 3 design

• What is the scientific objective?
• What is the treatment effect of interest?
 – Entire strategy or only CAR-T infusion?
 – What is the right timing of randomization?
• What are the intercurrent events and how to handle them?
• How to test for the presence of a treatment effect and measure its size?
CAR-T Phase III study design

Earlier line; patients eligible for allo stem cell transplant (ASCT)

CAR-T infusion ~ week 6
- Bridging chemo as needed
- Lympho-depleting chemotherapy

- **6 wk CT**
 - Week 6 for treatment decision
 - Week 12 +/-1w for disease assessment

- **12 wk PET /CT**
 - Crossover allowed, if no response ≥ 11 weeks by BIRC

Follow-up
- Bridging chemo as needed
- Lympho-depleting chemotherapy

Standard of Care (SOC)
- CR
- PR
- SD/PD by BIRC
- High dose chemo + ASCT
- SOC 2 – 6w

Follow-up
- Manufacturing
- Start CAR-T manufacturing if PD/SD at week 6

1° Endpoint: Event Free Survival
- EFS event:
 - SD/PD by BIRC at/after wk 11
 - Death at any time

Oncology / CAR-T Program

Business Use Only
Challenges in defining the treatment effect

• CAR-T treatment not readily available at randomization:
 – Patients in CAR-T arm need to wait, and may take bridging therapy
 – Tumor may progress or respond to bridging therapy, before receiving CAR-T
 – Manufacturing process may fail and patients may not receive CAR-T
 – Delayed treatment effect and possible curative effect are expected: highly non-proportional hazards

• SOC is a complex treatment algorithm:
 – Possibly involving several lines of treatment, including ASCT or not
 – Decisions made based on tumor response to different treatment courses
 – In contrast, CAR-T is a single infusion, regardless of response to bridging therapy

• Crossover needs to be allowed:
 – CAR-T approved in US & EU in patients after 2 or more lines of treatment
 – No other available option for patients failing SOC
Estimand

Defining treatment strategy is a critical step to define other estimand attributes!
Complex treatment strategies

• CAR-T strategy:
 – Kymriah after optional bridging chemotherapy and lymphodepleting chemotherapy

• SOC strategy:
 – Standard of care chemotherapy followed by transplant (ASCT) if eligible

• Patients may not receive final treatment in both arms!!

Population:
All randomized patients regardless of receiving final treatment (CAR-T or ASCT)
Estimand

- All randomized patients defined by I/E criteria

Population

Variable

Treatment Strategy

Summary measure

Intercurrent Event

• ???

• ???

• ???

• ???
Primary endpoint

Event-free survival (EFS):

- Composite event of
 1) disease progression / stable disease at or after 11 weeks post randomization; or
 2) death at any time
- Disease progression prior to week 11 is not the final outcome of the treatment strategy
 - Used for treatment decision only for SOC strategy
 - Not used for CAR-T strategy
Estimand

- All randomized patients defined by I/E criteria
- Event free survival with SD/PD at or after week 11 or death anytime as event

Population

Variable

Treatment Strategy

Summary measure

Intercurrent Event

• ???

• ???

• ???
Intercurrent events

<table>
<thead>
<tr>
<th>Intercurrent event</th>
<th>Handling strategy</th>
<th>Justification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturing failure in Kymriah arm, or failing to receive SCT in SOC arm</td>
<td>Treatment policy: Ignore, and follow patients until events or end of follow-up</td>
<td>Intrinsic to treatment strategy</td>
</tr>
<tr>
<td>New cancer therapy before observing event</td>
<td>Hypothetical: Censor</td>
<td>Not part of treatment strategy</td>
</tr>
<tr>
<td>SD/PD at Week 6</td>
<td>Treatment policy: Ignore, and follow patients until events or end of follow-up</td>
<td>Only used for treatment decision for SOC arm. Not used for Kymriah arm.</td>
</tr>
</tbody>
</table>
Event free survival with SD/PD at or after week 11 or death anytime as event

Failure/delay to reach final treatment
 • SD/PD at week 6
 • New therapy

All randomized patients defined by I/E criteria

Summary measure

Intercurrent Event

Population

Variable
Summary measures

Challenge:

Non-proportional hazards

- Both arms are on a very similar treatment before CTL is available (in case of bridging therapy).
- Plateauing after ~9 month
Estimation of treatment effect

Which one (or which ones) should be of interest?

- Cox HR
- Weighted HR
- Piecewise HR
- Difference in restricted mean survival time
- Difference in milestone survival
- Difference in median survival
- Other?
Hypothesis testing

What is the primary focus?

Focus on the comparison during all periods after randomization

More focus on comparison during periods where differences are expected

- Regular log-rank test
- Weighted log-rank tests (e.g. Fleming-Harrington)
- Max combo tests
- Piecewise weighted log-rank test
- Generalized piecewise weighted log-rank test

Both can be of interest!!
Estimand

Population

• All randomized patients defined by I/E criteria

Variable

• Event free survival with SD/PD at or after week 11 or death anytime as event

Treatment Strategy

Summary measure

• Cox HR
• Weighted HR
• Piecewise HR
• Etc.

Intercurrent Event

• Failure/delay to receive final treatment
• SD/PD at week 6
• New therapy
Acknowledgement

• Amy Racine
• Antonella Maniero
• Bjoern Bornkamp
• David Lebwohl
• Ekkehard Glimm
• Emmanuel Zuber
• Eric Bleickardt
• Evgeny Degtyarev
• Feng Tai

• Frank Bretz
• Jessie Gu
• Kalyanee Appanna
• Kapildeb Sen
• Lisa Hampson
• Mouna Akacha
• Oezlem Anak
• Yanqiu Weng
Thank you