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What is Regulatory Science?
- US FDA

» Regulatory Science is the science of developing new
tools, standards, and approaches to assess the
safety, efficacy, quality, and performance of all FDA-
regulated products.

www.fda.gov/ScienceResearch/SpecialTopics/RegulatoryScience/default.htm
Accessed 5 June 2018



What Do | Mean by
“‘Bayesian Approaches””

* Truly Bayes:
» Choose design points to maximize expected utility
- E.g., sample size for certain precision at fixed cost
- “Stylized” Bayes (or “calibrated” Bayes, etc.)
» Bayesian formulation of study data

» Choose design points to achieve “desirable”
frequentist operating characteristics

- E.g., choose prior parameters to attain monitoring
rules good sensitivity, specificity, & expected N



Acceptance When
Want to Borrow Information

- Change in device from previous version
» Historical information reasonable if minor change
» Population pharmacokinetics & pharmacodynamics
» Population modeling & hierarchical models
» Pediatric drug development

» Borrow information

 Rare diseases or adverse events

- Early phase studies (e.g., phases 1 & 2)



When Are Bayesian Statistical
Methods Not Accepted

» When want to be “objective”
» Concern about influence of prior distribution
- But frequentist methods are subjective, too!

» Model,

» Null & alternative hypotheses,
» Incorporating current trial in context of others

» Confirmatory drug studies



Sheiner: Two Major Learn-Confirm
Cycles in Clinical Drug Development
» st cycle: Clin Pharmacol Ther 61:275-91, 1997

» Phase 1: Learn what dose is tolerated
» Phase 2: Confirm dose has promise of efficacy
- Make decision based on this learn-confirm cycle
» 2nd cycle:
» Phase 2B: Learn how to use the drug in patients

» Phase 3: Confirm in large representative pt pop’n that
therapy achieves acceptable benefit:risk ratio

- |If acceptable, approval is granted



Sheiner (cont’d)

» Learning & confirming are distinct

» Different goals, designs, methods of analysis
- Analysis choice: Hypothesis testing or estimation?
- Learning involves estimation

» “The [B]ayesian view is well suited to this task
because it provides a theoretical basis for
learning from experience; that is, for updating

prior beliefs in the light of new evidence.”
Clin Pharmacol Ther 61:275-91, 1997

- Confirming involves hypothesis testing



Neyman & Pearson

* Need more than a test based on probability to establish
truth of a particular hypothesis

THE MOST EFFICIENT TESTS OF STATISTICAL HYPOTHESES. 291

as far as a particular hypothesis is concerned, no test based upon the theory of
probability* can by itself provide any valuable ev1dence of the truth or falsehood of

that hypothesns
~ But we may look at the purpose of tests from another view-point. Without hoping

to know whether each separate hypothesis is true or false, we may search for rules to

“ 'of g T '~ . e ' s, Here, forexample’ would be
such a “rule of behaviour ” : to decide whether a hypothesm H, of a given type be

Neyman, J., and Pearson, E. S. (1933). On the Problem of the Most
Efficient Tests of Statistical Hypotheses. Philosophical Transactions of the

Royal Society of London. Series A, 231, 289-337.



R. A. Fisher

» Discusses forming summary statistics & evaluating
deviation relative to a dist’n (for “tests of significance”).

only once in 370 trials, while Table II. shows that
to exceed the standard deviation sixfold would need
nearly a thousand million trials. The value for which
P =-05, or 1 in 20, is 196 or nearly 2 ; it is convenient
to. take thlS point as a hmlt in Judgmg whether a
tions exceedmg tw1ce ‘the standard devnatlon are thus
formally regarded as sngmﬁcant Usmg this criterion,

Fisher, R. A. (1934). Statistical Methods for Research Workers, 5th ed.
Edinburgh: Oliver and Boyd.



SN Goodman: Toward Evidence-
Based Medical Statistics 1 & 2

* A p value seems to provide

» a measmare of evidence against Ho from this study
an

» a means to control Type 1 error regarding rejecting Ho
in the long run.

» But, no single number can do both jobs!
» Describe long-run behavior & meaning in this study.

» Treat this study as one of infinitely many & provide a
measure of evidence for results in this study.

Goodman, S. N. (1999). Toward Evidence-Based Medical Statistics 1 & 2
Ann Intern Med 130, 995-1004 & 1005-1013.
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Hypothesis lesting

« Answer a gquestion

» Do observations agree with predictions based on one
hypothesis more than the other? Pr(y | Hy) vs. Pr(y | Ha)

* N-P testing
» Decision rule to limit long-run risks of errors
» Bayesian testing
» Compare Pr(H4 | y)to Pr(Hy |y) Condition on data

- Could be with Bayes factor and Jeffreys’s criteria
Pr(Ha|y) / Pr(Ha)

Pr(Hy | y) Pr(Hp)




Which Do We Want?

» Evidence one trt is superior to the other?
» Estimate with precision?

» Decision rule regarding hypothesis?
» “Yes” reject? “No” do not reject?

» Decision rule regarding next step?
» Continue to next phase of study?

» Approve the treatment for indication?
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Decision Theory & Clinical Trials

- Why decision theory?
» Clinical trials: Purpose is to lead to decisions
- What dose(s) to use?
- How best to apply the therapy?
- What is the next step for evaluating therapy?
- Should patients receive this therapy from now on?
- Which patients receive the most benefit?

Why not make decisions explicit and coherent?

» Put results in context via formal decision analysis
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Decision Theory & Clinical Trials

» Clinical trial design involves decisions, too

» Sample size,

» Duration of follow-up,

» Stopping rules,

» Whether to run the study in the 1st place

Why not make these decisions explicit and coherent?
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SUNDAY REVIEW  €he New ork Times

How to Make a Big Decision

Have no fear. An emerging science can now help you choose.

By Steven Johnson
Mr. Johnson writes about science and the history of innovation.

Sept. 1, 2018

» “Value model”
» Weight each “value” (utility for each outcome)
» Develop scenarios (simulate the trial)

» “Multiply each grade by the weight of each value and
add up the numbers for each scenario. The scenario
with the highest score wins.”



Decision [heory

» Consider
» Set of possible actions: A
- E.g., stop the study; move to phase 3
» Set of possible outcomes: Y
» Parameters characterizing stochastic nature: ®
- E.g., treatment effect, model parameters

» Utility function: u(a)
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Bayesian Optimal Design

- “Bayes” action maximizes expected utility
» Expectation to account for sources of uncertainty
- Uncertainty in parameters p(6)
- Variation in data resulting from action p,(y | 0)

fY f@ y)pa(y | 0)p(0)dody

- Choose: a* = argmaxf(a)
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Application

» Cancer & Leukemia Group B wanted to study Taxol
» Large population of women
» 3-hour infusion
» Many participating hospitals
» Outpatient
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FProblem

» Cannot carry out extensive sampling
» Large study
» Many institutions

* Devise limited-sampling scheme
» Optimal sampling times

Stroud JR, Muller P, Rosner GL. Optimal sampling times in population
pharmacokinetic studies. Applied Statistics. 2001;50(3):345-59.
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Objective: Maximize Precision

Concentration
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Optimal Sampling Times for AUC
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Dose Optimization
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Asymmetric Loss Function

- Want AUC in “optimal” range

* Loss function

LOSS

300
AUC

“(auc, AUCy)  if auc < AUy,

L
L(auc) = < 0 if
LT (auc, AUC,;) if

FAUC; < auc < AUC,;
auc > AUC,,;

24




log(Ke)

log(Ke)

-4.0 -3.5 -3.0
! | I

-4.5
I

-4.0 -3.5 -3.0
1 L I

-4.5
1

-5.0

Posterior for Pt's PK Parameters

First Study

Second Study

0.5

1.0 1.5 2.0 25 3.0

log(Volume)

log(Ke)

-3.0

-3.5

-4.0

-4.5

-5.0

Third Study

1st pt in 3rd study,
accounting for studies 1 & 2

|
0.5

I I T l I
1.0 1.5 2.0 2.5 3.0

log(Volume)

25



Optimal Dose w.r.t. Posterior

LOSS

Elu(y,d,0)] = / LIAUC(y)|p(y | d,0)p(0 | Data)dydo
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Learn About Benetfit:Risk

» Weigh chance of benefit
against risk of adverse event

» Dose finding based on
trade-offs between probs
of efficacy and toxicity :

Thall PF, Cook JD (2004). Dose-Finding
Based on Efficacy-Toxicity Trade-Offs.

Biometrics 60, 684-693.
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Trippa: Response-Adaptive Designs
for Basket Irials

 Strategies for choosing among baskets

+ Objective function is Bayesian decision rule (Exp. utility)

» Decisions during study work toward maximum
information at the end of the study

» Fully sequential hard!
» Bayesian Uncertainty Directed (BUD) designs
- Approximate optimal decision rules (myopic)

- Goal: Design rule that approximates Bayesian
decision and that one can compute
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Utility Function: Information Measure

* Information measure consistent with goal of study

» E.g., entropy of estimate, posterior variance, entropy
of posterior distribution of an indicator

- Entropy of posterior distribution
X ~p(X), H[p(X)|=—FEllogp(X) | Datal
see also Piantadosi (2005) Clinical Trials 2:182-192
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Can Incorporate Frequentist Criteria in
Utility Function

- Bayesian design optimizes expected utility

» Utility function can include different considerations
- Sample size or cost
- Precision
- Number of patients who benefit
- Prediction of future study outcomes

» E.g., Anscombe (’63), Berry & Ho ('88), Lewis & Berry
('94), Carlin, Kadane, & Gelfand (°98), Stallard, Thall,
& Whitehead ('99), Lewis, Lipsky, & Berry (’07),
Trippa, Rosner, & Muller ('12), Ventz & Trippa ('15)
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Platform or Master Protocols

Rossell, MUller, Rosner (2007) Biostatistics
Ding, Rosner, MUller (2008) Biometrics

- At any one time, multiple phase |l studies

Time Treatments Ay, data yy;, decisions dy;,a; n,
CICICICICHNR
decisions dy dy2 dy3 di4 dys
Y
stop :
a; = 0 a; = 1
new
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DecIsions

» At each analysis-decision time ¢
» Make decision d;; for current study or trt
- d;; = 1:Abandon current study trt
- dy; = 2:Stop study and move to phase 3
- dy; = 3:Continue current study
« Could have multiple trt-studies at ¢
» Then have d; = (dy1,dyo, ..., d)

» Only considering one at a time now d; = d;
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Utility Function

- Utility at decision-time ¢ (for current trt)

(—c,xn,xt if stop & discard

Phase 3 sample size & cost

—{C, XN, Xt ‘4

bx{6 -0 }I[z>z1_a]

new

u,(d,,0,Y,,Y,;)= <

=

Gain if “significant” phase 3/ Predict phase 3

gain proportional to effect outcome
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Stopping Boundaries
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Our Colleagues in Other Disciplines
Want Our Help

- Work with colleagues in other fields
News & Views the Clinical Chemist

Bayesian Inference Dilemma in Medical Cli-n Chem
Decision-Making: 62:1285-6, 2016

A Need for User-Friendly Probabilistic Reasoning
Tools

Ronald R. Henriquez™ and Nichole Korpi-Steiner™®

* They want our help

MEDICINE

Risk literacy in medical decision-making

How can we better represent the statistical structure of risk?

Operskalski JT, Barbey AK (2016). Risk literacy in medical decision-
making. Science 352:413-414
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Opportunities

- Work with colleagues in other fields

ASAN, Statistics and Pharmacometrics (1 S O p’)

AMERICAN STATISTICAL ASSOCIATION ’~,.
Promoting the Practice and Profession of Statistics* | nte reSt G ro u p SXP N“T'DNAL 900“’

NARMACOMETRIC®




Summary: Why Bayes”?

- Easier to combine or incorporate information

» Bayesian paradigm corresponds to learning
- External information feeds priors
* Frequentist methods seem impractical in some cases
» Evidence of treatment benefit for rare diseases
* Interest in complex designs & decision making
» Outcome adaptive randomization

» Matching treatments to subgroups

37



Conclusions

» Clinical drug development involves learning &
confirming

- Bayesian inference has a place in regulatory science
- Hypothesis testing in and of itself is not evil

» Need better measures of weight of evidence than p
- Clinical research involves decisions

» Incorporate statistical decision theory

» Include predictive dist’n for frequentist tests
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Thank You!



