

Some Thoughts on Implementation of E9(R1)

Thomas Permutt Associate Director for Statistical Science and Policy Office of Biostatistics Office of Translational Sciences Center for Drug Evaluation and Research

Regulatory Context

- E9(R1) is authoritative (means what it says)
 But not yet definitive (will be revised)
- FDA policy will conform to E9(R1) as revised
 - Possible regional guidance
 - Not yet under way
 - Formal process for dissemination
- No new research to be presented
- So what is the purpose of this talk?
 - Points to consider

FDA

Comparisons

- Causal estimand means treatment effect
- Treatment effect means comparison of outcomes under different treatments
 - In the same subjects (Rubin causal model) or ...
 - In comparable subjects
- Kinds of comparison
 - External comparisons
 - Nonrandomized comparisons
 - Randomized comparisons

Kinds of Comparison

- External comparisons
 - To something not in study
 - Very, very hard
- Nonrandomized comparisons
 - Between not necessarily comparable groups
 - Very hard
- Randomized comparisons
 - Between necessarily (on average) comparable groups
 - Easy, but not always exactly what is wanted

Kinds of Comparison

- External comparisons
 - Very, very hard, but sometimes needed
- Nonrandomized comparisons
 - Very hard
- Randomized comparisons
 - Easy, but not always exactly what is wanted
 - But there may be more choices than are apparent
- Nonrandomized comparisons
 - An easy one!

External Comparisons

- Historical controls
 - Because the randomized study is impractical or unethical
 - Rely on constancy of outcome
- Noninferiority—Putative placebo
 - Because the randomized study is impractical or unethical
 - Rely on constancy of effect (of comparator vs. placebo)
- If no rescue ("hypothetical")

If No Rescue

- Not in patients not needing rescue
- Rather, in a study (world?) without rescue
 - Is this relevant?
 - Sometimes
 - Compare to noninferiority
- What constancy assumption is needed?
 - Quasi-internal comparison (before rescue)
 - What sensitivity analysis is needed?
- Widely known methods may not be enough

Nonrandomized Comparisons

- Goldilocks epidemiology
- Adjusting for confounders
- What to adjust to

Nonrandomized Comparisons

- Are hard
- Are necessary in epidemiology
 - May not be necessary in randomized trials even with dropouts
 - Because this is not missing data
- Adjust for everything in sight
- Then worry about what's not in sight
- No unmeasured confounders means
 - Measured, and
 - Correctly modeled

Nonrandomized Comparisons

- Can use MAR techniques
- Can't just hypothesize MAR

What to Adjust to

What to Adjust to

It doesn't matter!

Average Treatment Effect, Plug-In Estimator

- Fit curves for treatment groups
- Plug in some observed values of confounders
- Calculate deltas
- Average deltas

FDA

Which Observed Values of Confounders to Adjust to?

- Matters some when treatment effects vary with confounders
- Differently weighted averages of valid treatment effects
- But not adjusting gives confounded effect

FDA

What to Adjust to?

- Effect among the treated
 - Population that would adhere to test drug, whether or not they would adhere to control
 - Other populations possible
 - If all patients adhered
 - See SBR paper
- Important thing is to adjust
 - Because it's nonrandomized comparison
 - Doesn't matter very much to what
 - Do not accept an informal interpretation of "if all patients adhered"
 - Sounds more like intent-to-treat, but it isn't (nonrandomized)
 - Different kind of hypothetical

Randomized Comparisons

- Classic—ITT
- Modified

Intent to Treat

- Don't redefine it
 - Get all primary outcome data
 - But missingness is inevitable, so ...
 - Just use what you have without exclusions
 - Serious follow-up and adjustment
- Minimize missing data
 - Minimize loss to follow-up
 - Do not minimize nonadherence

Modified Randomized Comparisons

- While on treatment
- Dropout as failure

While on Treatment

- Last observation
 - Not carried forward
- Average observation
 - $\approx MMRM$ main effect
 - Not MAR (wrt simple model)
 - Not de jure
 - if that exists, ...
 - MMRM still doesn't estimate it ...
 - Except under MAR
 - Maybe even under MAR (see SBR paper)

While on Treatment

- Fine statistically
 - Unbiased (but ...)
 - Preserves Type I error (but ...)
- Meaningful estimand/hypothesis?
 - Yes—Discontinuation due to cure
 - No—Discontinuation due to failure (toxicity/lack of efficacy)
 - Especially when some failures are given good scores and others bad scores
 - Measure benefit!

Dropout as Failure

- Need not dilute treatment effect
- Need not lose much information
 - Possible gain in information compared to handling as "missing" (but see Cro et al.)
- Trimmed mean, rank methods
- Compare to survival
 - Don't treat survival as "missing" time to event
 - Don't impute time of death for surviving patients!
 - Dropout considered as failure is censoring/competing risk, not missingness

Easy Nonrandomized Comparison

- Nonrandomized comparisons are hard
 - Because "no measured confounders" is a very strong assumption
- But there might be an easy one
 - Be suspicious!

Easy Nonrandomized Comparison

- Suppose:
 - ITT effect (all patients followed and counted) is 5
 - Half the patients on active drug adhere
 - It doesn't matter whether you adhere to placebo
 - Not: placebo nonadherents are like placebo adherents
 - You have to adhere to active drug for it to work
- Then the effect in adherents is diluted by the noneffect in nonadherents
- How much is it diluted?

How Much Dilution?

• ITT effect =

(proportion of adherents)(effect in adherents) +
(proportion of nonadherents)(effect in nonadherents)
= (0.5)(y) + (0.5)0 = 5

• y = 10

Two Questions

- Why follow after discontinuation if interest is in adherent subjects?
- How can nonrandomized comparisons ever be easy?

Nonrandomized Comparison Hard Because ...

- Need to adjust for confounders
- What is the best confounder to adjust for?

Nonrandomized Comparison Hard Because ...

- Need to adjust for confounders
- What is the best confounder to adjust for?
 Good predictor of (placebo) outcome
- But there is perfect predictor of placebo outcome in dropouts!
 - If they are followed

Estimands/Effects/Comparisons

- External comparisons
 - Very, very hard, but sometimes needed
- Nonrandomized comparisons
 - Very hard
- Randomized comparisons
 - Easy, but not always exactly what is wanted
 - But there may be more choices than are apparent
- Nonrandomized comparisons
 - An easy one!

References

- Cro S, Carpenter JR, Kenward MG. Information-Anchored Sensitivity Analysis: Theory and Application. arXiv preprint arXiv:1805.05795
- Permutt T. Effects in Adherent Subjects.
 Statistics in Biopharmaceutical Research. 2018 (what to adjust to, what MMRM estimates)
- Permutt T, Hebel JR. Simultaneous-equation estimation in a clinical trial of the effect of smoking on birth weight. Biometrics. 1989:619-22 (easy nonrandomized comparison)