Some Thoughts on Implementation of E9(R1)

Thomas Permutt
Associate Director for Statistical Science and Policy
Office of Biostatistics
Office of Translational Sciences
Center for Drug Evaluation and Research
Regulatory Context

• E9(R1) is authoritative (means what it says)
 – But not yet definitive (will be revised)
• FDA policy will conform to E9(R1) as revised
 – Possible regional guidance
 – Not yet under way
 – Formal process for dissemination
• No new research to be presented
• So what is the purpose of this talk?
 – Points to consider
Comparisons

• **Causal estimand** means treatment effect

• **Treatment effect** means comparison of outcomes under different treatments
 – In the same subjects (Rubin causal model) or ...
 – In comparable subjects

• Kinds of comparison
 – External comparisons
 – Nonrandomized comparisons
 – Randomized comparisons
Kinds of Comparison

• External comparisons
 – To something not in study
 – Very, very hard

• Nonrandomized comparisons
 – Between not necessarily comparable groups
 – Very hard

• Randomized comparisons
 – Between necessarily (on average) comparable groups
 – Easy, but not always exactly what is wanted
Kinds of Comparison

• External comparisons
 – Very, very hard, but sometimes needed

• Nonrandomized comparisons
 – Very hard

• Randomized comparisons
 – Easy, but not always exactly what is wanted
 – But there may be more choices than are apparent

• Nonrandomized comparisons
 – An easy one!
External Comparisons

- **Historical controls**
 - Because the randomized study is impractical or unethical
 - Rely on constancy of outcome

- **Noninferiority—Putative placebo**
 - Because the randomized study is impractical or unethical
 - Rely on constancy of effect (of comparator vs. placebo)

- **If no rescue (“hypothetical”)**
If No Rescue

• Not in patients not needing rescue
• Rather, in a study (world?) without rescue
 – Is this relevant?
 • Sometimes
 • Compare to noninferiority
• What constancy assumption is needed?
 – Quasi-internal comparison (before rescue)
 – What sensitivity analysis is needed?
• Widely known methods may not be enough
Nonrandomized Comparisons

• Goldilocks epidemiology
• Adjusting for confounders
• What to adjust to
Goldilocks Epidemiology

MCAR
Goldilocks Epidemiology

MNAR

MCAR
Goldilocks Epidemiology

Flowchart: MCAR (Missing Completely at Random), MAR (Missing at Random), MNAR (Missing Not at Random), OK (as a reference point).
Goldilocks Epidemiology

MCAR

MAR

MNAR

OK

true

sensitivity
Goldilocks Epidemiology

MCAR

MAR

OK

not OK

true

MNAR
Nonrandomized Comparisons

• Are hard
• Are necessary in epidemiology
 – May not be necessary in randomized trials even with dropouts
 – Because this is not missing data
• Adjust for everything in sight
• Then worry about what’s not in sight
• No unmeasured confounders means
 – Measured, and
 – Correctly modeled
Nonrandomized Comparisons

• Can use MAR techniques
• Can’t just hypothesize MAR
What to Adjust to

outcome

LSmean

LSmean

adjusted effect

\(\gamma_c \)

\(\gamma_c \)

mean

confounders
What to Adjust to

mean

not mean

multiple deltas then average

It doesn’t matter!
Average Treatment Effect, Plug-In Estimator

• Fit curves for treatment groups
• Plug in some observed values of confounders
• Calculate deltas
• Average deltas
Which Observed Values of Confounders to Adjust to?

• Matters some when treatment effects vary with confounders
• Differently weighted averages of valid treatment effects
• But not adjusting gives confounded effect
What to Adjust to?

• Effect among the treated
 – Population that would adhere to test drug, whether or not they would adhere to control
 – Other populations possible
 • If all patients adhered
 – See SBR paper

• Important thing is to adjust
 – Because it’s nonrandomized comparison
 – Doesn’t matter very much to what
 – Do not accept an informal interpretation of “if all patients adhered”
 • Sounds more like intent-to-treat, but it isn’t (nonrandomized)
 • Different kind of hypothetical
Randomized Comparisons

- Classic—ITT
- Modified
Intent to Treat

• Don’t redefine it
 – Get all primary outcome data
 – But missingness is inevitable, so ...
 – Just use what you have without exclusions
 – Serious follow-up and adjustment

• Minimize missing data
 – Minimize loss to follow-up
 – Do not minimize nonadherence
Modified Randomized Comparisons

• While on treatment
• Dropout as failure
While on Treatment

• Last observation
 – Not carried forward

• Average observation
 – ≈ MMRM main effect
 – Not MAR (wrt simple model)
 – Not de jure
 • if that exists, ...
 • MMRM still doesn’t estimate it ...
 – Except under MAR
 – Maybe even under MAR (see SBR paper)
While on Treatment

• Fine statistically
 – Unbiased (but ...)
 – Preserves Type I error (but ...)

• Meaningful estimand/hypothesis?
 – Yes—Discontinuation due to cure
 – No—Discontinuation due to failure (toxicity/lack of efficacy)
 • Especially when some failures are given good scores and others bad scores
 – Measure benefit!
Dropout as Failure

• Need not dilute treatment effect
• Need not lose much information
 – Possible gain in information compared to handling as “missing” (but see Cro et al.)
• Trimmed mean, rank methods
• Compare to survival
 – Don’t treat survival as “missing” time to event
 – Don’t impute time of death for surviving patients!
 – Dropout considered as failure is censoring/competing risk, not missingness
Easy Nonrandomized Comparison

• Nonrandomized comparisons are hard
 – Because “no measured confounders” is a very strong assumption
• But there might be an easy one
 – Be suspicious!
Easy Nonrandomized Comparison

• Suppose:
 – ITT effect (all patients followed and counted) is 5
 – Half the patients on active drug adhere
 – It doesn’t matter whether you adhere to placebo
 • Not: placebo nonadherents are like placebo adherents
 – You have to adhere to active drug for it to work

• Then the effect in adherents is diluted by the non-effect in nonadherents

• How much is it diluted?
How Much Dilution?

• ITT effect =
 \((\text{proportion of adherents})(\text{effect in adherents}) + (\text{proportion of nonadherents})(\text{effect in nonadherents}) \)
 = \((0.5)(y) + (0.5)0 = 5 \)

• \(y = 10 \)
Two Questions

• Why follow after discontinuation if interest is in adherent subjects?

• How can nonrandomized comparisons ever be easy?
Nonrandomized Comparison
Hard Because ...

- Need to adjust for confounders
- What is the best confounder to adjust for?
Nonrandomized Comparison
Hard Because ...

- Need to adjust for confounders
- What is the best confounder to adjust for?
 - Good predictor of (placebo) outcome
- But there is perfect predictor of placebo outcome in dropouts!
 - If they are followed
Estimands/Effects/Comparisons

• External comparisons
 – Very, very hard, but sometimes needed

• Nonrandomized comparisons
 – Very hard

• Randomized comparisons
 – Easy, but not always exactly what is wanted
 – But there may be more choices than are apparent

• Nonrandomized comparisons
 – An easy one!
References

• Permutt T. Effects in Adherent Subjects. Statistics in Biopharmaceutical Research. 2018 (what to adjust to, what MMRM estimates)