Decision Tree for Dissolution Profile Comparison in Product Quality Assessment of Similarity

September 13, 2018

Yanbing Zheng, Jian-Hwa Han, James Reynolds, Mark Johnson, Karin Rosenblatt, Tzuchi R Ju, Yi Gao, Bei Chen, Ying Zhu, Hesham Fahmy
Disclosure

This presentation was sponsored by AbbVie. AbbVie contributed to the design, research, and interpretation of data, writing, reviewing, and approving the publication. The authors are employees of AbbVie, Inc.
Outline

• The f_2 factor and regulatory Application – Bioequivalence (BE) and Similarity (Quality Control)
• Model independent statistical methods
• Simulation studies
• Decision tree and real case studies
• R Shiny tool
f_2 Similarity Factor

- f_2 factor:

$$f_2 = 50 \times \log_{10} \left[\frac{100}{\sqrt{1 + \frac{\sum_{t=1}^{p}(R_t - T_t)^2}{p}}} \right]$$

where p is the number of time points, R_t and T_t are the mean dissolution values at time point t for reference batch and test batch, respectively.

- $f_2 = 100$ would mean the mean difference at each time point is 0.

- If $f_2 \geq 50$ the two profiles are considered “bioequivalent” or “similar.”

- Average mean difference equal to 10 results in f_2 around 50.
f_2 Rules (FDA 1997 Guidance)

- N=12 of (i) Reference (or prechange) and (ii) Test (or postchange) products
- Use the Mean values only for calculation
- Model Independent Method - most suitable for dissolution profile comparison when three to four or more dissolution time points are available
 - Same time points (minimally 3 times points)
 - Only one measurement should be considered after 85% dissolution of both the products
 - %RSD – NMT 20% at early points (e.g. 10 minutes); NMT 10% for all other points
Regulatory Applications – Focused on “Efficacy” and “Quality”

- **Bioequivalence Assessment**: Establishes procedure for granting biowaivers
 - New Drug and generic drug application
 - Higher strengths
 - Lower strengths

- **Quality Assessment**: Assures product “Sameness” under FDA, WHO, Japanese and European guidance, e.g. Scale-Up and Post-Approval Changes (SUPAC)
When and Where Similarity Factor \((f_2) \) is Required

- **Comparing dissolution profiles**
 - Evaluate relative in vitro performance resulting from changes in raw materials, formulation and/or manufacturing for both development and commercial products

- **Prior to regulatory filing**
 - Support study for impact assessment concerning formulation and process variables during product development, scale-up and optimization
 - Formulation & process design, assessment of critical material attributes (CMAs), critical process parameters (CPPs), design space, risks, and development of control strategy, etc.

- **Post-approval**
 - Justify certain levels of product and manufacturing process changes
 - Raw materials, source, formulation, process, scale, equipment and manufacturing site, etc.
What if f_2 assumptions are not satisfied?

- It is critical to identify a right tool/method in order to make meaningful assessment for product quality
 - Model independent statistical methods
 - f_2 bootstrap (Shah, et al. 1998)
 - Tsong’s MSD method (Tsong, et al. 1996)
 - SK method (Saranadasa and Krishnamoorthy 2005)
 - Saranadasa’s Hotelling’s T^2 based method (Saranadasa 2001)
 - Intersection union test (Berger and Hsu 1996)

- Simulation studies were performed to evaluate the power and type I error of different approaches.

- Around 80 real cases data were used for assessment.
Model Independent Statistical Methods

Methods are based on some function of the distance between the profiles at each time point

- f_2 – Euclidean distance (pythagorean theorem) based on equal weights (1/p)
- Tsong’s MSD and Hotelling’s T^2 – Euclidean distance weighted by standard deviations and correlations
- SK – common distance weighted by complex function of standard deviations and correlations
- Intersection Union Test – maximum distance weighted by standard deviations
f_2 Similarity Factor

Using 2 time points as an example

Circle of radius $\sim 10\sqrt{2}$ centered at average of the reference at the two dissolution time points

If the distance between the averages for the reference and test is inside the circle then the profiles are similar

Does not include standard deviation or correlation in the statistic

f_2 Similarity Factor and f_2 Bootstrap

- f_2 transforms a multidimensional region to a single number
- Bootstrap confidence interval includes variation

f_2 Bootstrap

Sample with replacement from the original test and reference product profiles separately. Compute f_2 for each bootstrap sample. Determine the 5th percentile of the computed f_2 values. Similarity is claimed if the 5th percentile of the computed f_2 values ≥ 50.

Multivariate Statistical Distance (MSD)

\[D_M = \sqrt{(R - T)'\Sigma^{-1}(R - T)} \]

- Vector of averages for Test at each dissolution time point
- Vector of averages for Reference at each dissolution time point
- Covariance Matrix

Covariance matrix is unit diagonal for \(f_2 \)
Covariance matrix is unstructured for Tsong’s MSD method
If the confidence region falls within the similarity region, then similarity.

Saranadasa and Krishnamoorthy (SK) Method

SK Method - Is the distance of the best fitting line, parallel to the 45 degree line, more than 10% away?

![Graph showing the SK method assumption of two parallel curves.](image-url)
Intersection Union Test (IUT) Method

Using a constant threshold of 10%, is the maximum distance from the 45 degree line more than 10% away? Allowable distance threshold can vary by time point.

Based on Two One-Sided Test (TOST) for each time point.

IUT is very conservative and has very low power to claim similarity.
Simulation Study

- Mean for test profile = (35, 45, 70, 85) and compound symmetry covariance structure with correlation = 0.5. Assume equal covariance matrices.
- RSD% = (5.7, 4.4, 2.9, 2.4)% for test profile
- Assume parallelism between reference and test dissolution profiles (δ: constant difference over time points between two profiles)
Simulation Study

- Assume equal covariance matrices and RSD% = (14.3, 11.1, 7.1, 5.8)% for test profile
Simulation Study

- Assume equal covariance matrices and RSD% = (28.6, 22.2, 7.1, 5.8)% for test profile
Simulation Study

- Assume equal covariance matrices and RSD% = (28.6, 22.2, 7.1, 5.8)% for test profile

<table>
<thead>
<tr>
<th>Similarity passing rate</th>
<th>Mean Diff= (28, 22, 10, 5) f2=36.7</th>
<th>Mean Diff= (18, 13, 8, 5) f2=45.8</th>
<th>Mean Diff= (12, 10, 9, 5) f2=51.3</th>
<th>Mean Diff= (10, 10, 3, 3) f2=56.4</th>
<th>Mean Diff= (5, 4, 3, 3) f2=70.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>f2</td>
<td>0.001</td>
<td>0.203</td>
<td>0.586</td>
<td>0.822</td>
<td>0.982</td>
</tr>
<tr>
<td>Bootstrapped f2</td>
<td>0</td>
<td>0.014</td>
<td>0.094</td>
<td>0.257</td>
<td>0.728</td>
</tr>
<tr>
<td>MSD</td>
<td>0.005</td>
<td>0.054</td>
<td>0.073</td>
<td>0.373</td>
<td>0.623</td>
</tr>
<tr>
<td>f2>=50 & (Bootstrapped f2 / MSD)</td>
<td>0.001</td>
<td>0.041</td>
<td>0.137</td>
<td>0.445</td>
<td>0.804</td>
</tr>
<tr>
<td>SK</td>
<td>0.410</td>
<td>0.625</td>
<td>0.529</td>
<td>0.974</td>
<td>0.978</td>
</tr>
<tr>
<td>IUT</td>
<td>0</td>
<td>0.006</td>
<td>0.024</td>
<td>0.162</td>
<td></td>
</tr>
</tbody>
</table>

Caution!

- Assume equal covariance matrices and RSD% = (28.6, 22.2, 7.1, 5.8)% for test profile.
Summary/Remarks

• IUT is very conservative and has very low power to claim similarity.

• SK method has good power to detect similarity and control of type I error when the two dissolution profiles are parallel. But when the underlying assumption of parallelism fails, SK method could be too liberal with high type I error (pass similarity when dissimilar).

• Comparing to SK, f2 bootstrap and MSD method are relatively conservative for highly variable cases.

• MSD is inconsistent in its result comparing to bootstrapped f2. MSD method is likely to be less discriminating and sensitive in some scenarios (e.g. Paixão, et al. 2017 and Mangas-Sanjuan, et al. 2016). But on the other hand, MSD method can also have higher power to detect similarity in some scenarios when the two profiles are similar.

• f2 is a conservatively biased estimator. Although f2 and MSD are testing different hypotheses, comparisons may fail bootstrap and pass MSD in part because of the conservative bias of f2.
Decision Tree

Scenario 1: \(f_2 \geq 50 \)
- Pass \(f_2 \)

Scenario 2: \(f_2 < 50 \);
- Additional assessment

Scenario 3: \(f_2 \geq 50 \) but can’t use \(f_2 \);
- Pass \(f_2 \) Bootstrap;

Scenario 4: \(f_2 \geq 50 \) but can’t use \(f_2 \);
- Fail \(f_2 \) Bootstrap and Tsong’s MSD Method;
- Additional assessment

Scenario 5: \(f_2 \geq 50 \) but can’t use \(f_2 \);
- Fail \(f_2 \) Bootstrap;
- Pass Tsong’s Method

Note: Only one measurement should be considered after 85% dissolution of both the products
Real example for Scenario 2

Scenario 2: $f_2 < 50$; ➔ Additional assessment
Real example for Scenario 3

Scenario 3: f2≥50 but can’t use f2; Pass f2 Bootstrap
Real example for Scenario 5

Scenario 5: $f_2 \geq 50$ but can’t use f_2;
Fail f_2 Bootstrap;
Pass Tsong’s Method
R Shiny App

Dissolution Profiles Comparison

Choose Ref lot to upload
Browse... Reflex.csv

Choose Test lot to upload
Browse... Test.csv

Time Unit
minute

All time points (eg, 10,20,30)
10,15,30,45,60,90

Number of time points for comparison (>= 3)
4

Plot Title
Dissolution Profile Comparison

Submit
Generate report
User Instruction

Dissolution Profile Comparison

<table>
<thead>
<tr>
<th>Methods</th>
<th>Statistics.Value</th>
<th>Reference.Value</th>
<th>Pass Or Not</th>
<th>Recommend</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2</td>
<td>60.23</td>
<td>>=50</td>
<td>PASS</td>
<td>0</td>
</tr>
<tr>
<td>T2 bootstrap</td>
<td>98.86</td>
<td>>=50</td>
<td>PASS</td>
<td>1</td>
</tr>
<tr>
<td>Tsong MSD</td>
<td>3.43</td>
<td><= 11.55</td>
<td>PASS</td>
<td>0</td>
</tr>
</tbody>
</table>

The study belongs to Scenario #3. Similarity is confirmed.

Note: If similarity is confirmed, then the recommended method for similarity assessment will be highlighted yellow with value 1 in the Recommend column.

Warning: The assumptions of T2 method are not satisfied.
The CV for the latter time points exceeds 10%.
References
