

Evolution of Statistical Science: Translating Data to Innovative Health Care September 12–14, 2018 Washington Marriott Wardman Park

Using Central Statistical Monitoring of Clinical Trials for Real-Time Detection of Data Anomalies

Marc Buyse, ScD marc.buyse@cluepoints.com

Central Statistical Monitoring Fabricated Data Actual Clinical Trial Data

3

Lack of variability

Data propagation

Shift in mean

Atypical correlation

Patients in center x

7

These ideas aren't new

STATISTICS IN MEDICINE Statist. Med. 18, 3435–3451 (1999)

THE ROLE OF BIOSTATISTICS IN THE PREVENTION, DETECTION AND TREATMENT OF FRAUD IN CLINICAL TRIALS[†]

MARC BUYSE¹*, STEPHEN L. GEORGE², STEPHEN EVANS³, NANCY L. GELLER⁴, JONAS RANSTAM⁵, BRUNO SCHERRER⁶, EMMANUEL LESAFFRE⁷, GORDON MURRAY⁸, LUTZ EDLER⁹, JANE HUTTON¹⁰, THEODORE COLTON¹¹, PETER LACHENBRUCH¹² AND BABU L. VERMA¹³

for the ISCB SUBCOMMITTEE ON FRAUD

These ideas aren't new

Table III. Some patterns that may reveal fraud in clinical trial data

One variable at a time	Digit preference Round number preference Too few or too many outliers Too little or too much variance Strange peaks Data too skewed
Several variables at a time	Multivariate inliers Multivariate outliers Leverage Too weak or too strong correlation
Repeated measurements	Interpolation Duplicates Invented patterns
Calendar time	Breach of randomization Days of week (Sundays or holidays) Implausible accrual Time trends

These ideas aren't new

So, what _is_ new in CSM?

Central Statistical Monitoring (CSM) should be

- Unsupervised no prior assumptions needed
- Agnostic generic statistical tests not requiring any context knowledge
- Exhaustive all data, regardess of importance, submitted to wide range of tests
- Robust statistical tests require minimal distributional assumptions
- Sensitive and specific use of mixed effects models to allow for natural variability

CSM generates large matrix of *P*-values...

- 20 to 100 clinical sites
- 250 to 1000 variables to test
- 5 to 10 statistical tests per variable

	А	В	DZ	EA	EB	EC	ED	EE	EF	EG	EH	El
1		test	mean	sdGlobal	mean	sd	sdGlobal	propagate	mean	sdGlobal	mean	sdGloba
2		dataset	labs	labs	labs	labs	labs	labs	labs	labs	labs	labs
3		variable	lab1	lab1	lab1r	lab1r	lab1r	lab1r	lab2	lab2	lab3	lab3
4	Center	Score										
5	1	0.0005	-0.63	0.41	-0.56		-0.33		-0.91	-0.3	-0.77	0.3
6	2	0.022	0.035	-0.97	0.42	-0.82	0.95	0.39	-0.31	0.81	0.96	0.8
7	3	0.074	-0.35	-0.34	-0.22	-1	-0.029	1	-0.41	0.61	-0.14	0.07
8	4	0.15	-0.51	-0.12	-0.39	1	-0.00068	1	0.7	-0.041	-0.75	-0.7
9	5	0.27	-0.47	-0.19	-0.78	-0.81	-0.29	0.62	0.88	-0.61	-0.46	0.3
10	6	0.27	-0.99	-3.7E-05	-0.87	-0.15	-0.3	0.15	0.22	0.9	0.31	-0.7
11	7	0.33	-0.87	-0.82	0.68		0.71		0.32	-0.19	0.15	-0.8
12	8	0.48	0.6	0.86	0.59		-0.095		0.68	-0.039	0.45	0.
13	9	0.52	-0.95	0.9	-0.86	0.74	0.89	0.46	-0.88	-0.041	0.94	-0.8
14	10	0.71	0.98	-0.16	0.89	-0.11	-0.32	0.11	0.62	-0.7	0.52	0.1
15	11	0.78	-0.94	-0.013	-0.21		-0.058		0.18	-0.41	0.28	-0.2

 \rightarrow 10⁴ to 10⁶ P-values

... and a data consistency score* for each site

Table 1: Interpretation of scores	(S	$= -log_{10}(P))$
-----------------------------------	----	-------------------

Score	Interpretation	Expected frequency
(S)		under the null
S < 1.3	No statistical signal	0.95
$1.3 \le S < 2.0$	Minor statistical signal	0.04
	possibly due to chance	
$2.0 \le S < 4.0$	Moderate statistical signal	0.0099
	requiring attention	
$4.0 \le S < 6.0$	Strong statistical signal	0.000099
	requiring further scrutiny	
$S \ge 6.0$	Extreme statistical signal	0.000001
	requiring detailed investigation	

Charles Francis Richter

* Data inconsistency score for N tests = $[\Sigma_{i=1,N} - \log(P_i)]/N$

Fraud is only one type of issue

Туре	Typical examples	Intent
Fraud	Falsified data (e.g. fabrication of ePRO data)	Intention to cheat
Tampering	Fabricated data (e.g. propagation of blood pressure)	Deliberate
Sloppiness	Incorrect reporting (e.g. under-reporting of AEs)	Limited awareness
Errors	Technical problems (e.g. miscalibrated thermometers)	Unintentional

Central Statistical Monitoring Fabricated Data Actual Clinical Trial Data

Simulation setting (1)

Data fabricated by 34 applied scientists (height & weight of 40 hypothetical students), based on known distribution

Variable	Minimum	Maximum	Mean	Standard deviation	Correlation
Weight (kg)	39	84	54.5	9.2	r = 0.43
Height (cm)	145	175	159.5	7.2	(P < 0.001)

Simulation setting (2)

Simulations:

- Generate 100 trials with 20 centers of 40 patients each, 19 « genuine » centers (height and weight sampled from known distribution) and 1 « fraudulent » center (heights and weights fabricated)
- For each trial, calculate the data inconsistency score of all centers
- Detect outlying centers (large data inconsistency scores)

Sensitivity of data inconsistency score

Score P-value

Investigator

Sensitivity of data inconsistency score

Investigator

Conclusions: data fabrication is detectable

- People (including scientists) cannot invent plausible data
- Computer algorithms can (investigator #13)
- CSM has high sensitivity (and specificity) for the detection of most fabricated data

Data visualization

Data visualization

Too good to be true

Detected as fabricated

Conclusions: visual inspection is not sufficient

- People (including scientists) cannot invent plausible data
- Computer algorithms can
- CSM has high sensitivity (and specificity) for the detection of most fabricated data
- Data visualization tools are generally not sufficient

Sensitivity with increasing number of tests

Conclusions: one variable is not sufficient

- People (including scientists) cannot invent plausible data
- Computer algorithms can
- CSM has high sensitivity (and specificity) for the detection of most fabricated data
- Data visualization tools are generally unhelpful
- Sensitivity increases dramatically when the number of variables / tests increases

Central Statistical Monitoring Fabricated Data Actual Clinical Trial Data

Simulation setting (1)

Used data from actual clinical trial conducted in Japan Data contamination:

 Table 1. Parameters for data contamination

Parameter	Values	Number of patterns
Number or proportion of contaminated centers	1, 2, 5, 10%, 20%, 50%	6
Proportion of patients con- taminated by center	25%, 50%, 100%	3
Number and types of vari- ables contaminated	See Scenarios in Table 2	9
Total number of patterns		162

Simulation setting (2)

Table 2. Scenarios for data contamination

		Variable type				
		Continuo	ous Categor	ical Date		
One variable	Scenario 1	1	0	0		
contaminated	Scenario 2	0	1	0		
	Scenario 3	0	0	1		
Several	Scenario 4	1	1	1		
variables	Scenario 5	2	2	2		
contaminated	Scenario 6	3	3	3		
Proportion	Scenario 7	5%	5%	5%		
of variables	Scenario 8	10%	10%	10%		
contaminated	Scenario 9	20%	20%	20%		

			Variable typ	е
		Conti	nuous Catego	rical Date
One variable	Scenario 1	1	0	0
contaminated	Scenario 2	0	1	0
	Scenario 3	0	0	1

		Variable type				
		Conti	nuous Catego	rical Date		
Several	Scenario 4	1	1	1		
variables	Scenario 5	2	2	2		
contaminated	Scenario 6	3	3	3		

		Variable type				
		Continuous	Categorical	Date		
Proportion	Scenario 7	5%	5%	5%		
of variables	Scenario 8	10%	10%	10%		
contaminated	Scenario 9	20%	20%	20 %		

Conclusions

- The data inconsistency score has high specificity
- The data inconsistency score has higher sensitivity when
 - a smaller proportion of centers have data issues
 - the number of variables affected increases
 - variables affected are continuous
 - variables are repeatedly measured over time

Some references

- Buyse M, et al. The role of biostatistics in the prevention, detection and treatment of fraud in clinical trials. *Statistics in Medicine* 1999; 18: 3435-51.
- Venet D, et al. A statistical approach to central monitoring of data quality in clinical trials. *Clinical Trials* 2012; 9: 705-13.
- George S, Buyse M. Data fraud in clinical trials. *Clinical Investigation* 2015; 15:161-73.
- Buyse M, Evans SJW. Fraud in clinical trials. In: Wiley StatsRef: Statistics Reference Online, 2016, John Wiley & Sons. DOI 10.1002/9781118445112.stat04938.pub2
- Trotta L, et al. Unsupervised statistical monitoring for the detection of atypical data in multicenter clinical trials. 2018 (Submitted).

Further questions? marc.buyse@cluepoints.com