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    Data issues indicative of potential fraud  
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    Data issues indicative of potential fraud  

Lack of variability 
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    Data issues indicative of potential fraud  

Data propagation 
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    Data issues indicative of potential fraud  

Shift in mean 
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    Data issues indicative of potential fraud  

Atypical correlation 
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    These ideas aren’t new 
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    So, what _is_ new in CSM? 

Central Statistical Monitoring (CSM) should be  

• Unsupervised – no prior assumptions needed 

• Agnostic – generic statistical tests not requiring any 

context knowledge 

• Exhaustive – all data, regardess of importance, 

submitted to wide range of tests 

• Robust – statistical tests require minimal distributional 

assumptions 

• Sensitive and specific – use of mixed effects models to 

allow for natural variability 
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    CSM generates large matrix of  P-values... 

 104 to 106 P-values 

– 20 to 100 clinical sites 

– 250 to 1000 variables to test 

– 5 to 10 statistical tests per variable 
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13 
Charles Francis Richter 

... and a data consistency score* for each site 

* Data inconsistency score for N tests = [i=1,N -log(Pi )]/N 
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Type Typical examples Intent 

Fraud 
Falsified  data 

(e.g. fabrication of ePRO data) 
Intention to cheat 

Tampering 
Fabricated data 

(e.g. propagation of blood pressure) 
Deliberate 

Sloppiness 
Incorrect reporting 

(e.g. under-reporting of AEs) 
Limited awareness 

Errors 
Technical problems 

(e.g. miscalibrated thermometers) 
Unintentional 

Fraud is only one type of issue 
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    Simulation setting (1) 

Data fabricated by 34 applied scientists (height & weight 

of 40 hypothetical students), based on known distribution  

 

 

 
Variable Minimum Maximum Mean 

Standard 

deviation 
Correlation 

Weight 

(kg) 
39 84 54.5 9.2 

r = 0.43  

(P < 0.001) Height 

(cm) 
145 175 159.5 7.2 
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    Simulation setting (2) 

Simulations:  

• Generate 100 trials with 20 centers of 40 patients each, 

19 « genuine » centers (height and weight sampled from 

known distribution) and 1 « fraudulent » center (heights 

and weights fabricated) 

• For each trial, calculate the data inconsistency score of 

all centers 

• Detect outlying centers (large data inconsistency scores) 
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    Sensitivity of data inconsistency score 
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    Conclusions: data fabrication is detectable 

• People (including scientists) cannot invent plausible data 

• Computer algorithms can (investigator #13) 

• CSM has high sensitivity (and specificity) for the 

detection of most fabricated data 
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    Data visualization 
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    Data visualization 

Too good to be true Detected as fabricated 
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    Conclusions: visual inspection is not sufficient 

• People (including scientists) cannot invent plausible data 

• Computer algorithms can 

• CSM has high sensitivity (and specificity) for the 

detection of most fabricated data 

• Data visualization tools are generally not sufficient 

 

 



24 

    
    Sensitivity with increasing number of tests 
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    Conclusions: one variable is not sufficient  

• People (including scientists) cannot invent plausible data 

• Computer algorithms can 

• CSM has high sensitivity (and specificity) for the 

detection of most fabricated data 

• Data visualization tools are generally unhelpful 

• Sensitivity increases dramatically when the number of 

variables / tests increases 
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Simulation setting (1) 

Used data from actual clinical trial conducted in Japan 

Data contamination: 
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Simulation setting (1) 
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Simulation setting (2) 
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sensitivity              specificity          Youden’s index 
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    Conclusions 

• The data inconsistency score has high specificity 

• The data inconsistency score has higher sensitivity when 

• a smaller proportion of centers have data issues 

• the number of variables affected increases 

• variables affected are continuous  

• variables are repeatedly measured over time 
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