A Bayesian Approach in the Non-Inferiority Setting

Cristiana Mayer

Janssen R&D, Johnson & Johnson In collaboration with Wouter Willems and the project team

ASA Biopharm Regulatory Industry Statistics Workshop September 14, 2018 Washington DC

Hepatitis C

JNJ-4178= 3DAA

Proven Efficacy and Safety Robust dataset of SMV+SOF

Highly synergistic with other MOAs

AL-335

Odalasvir (ODV)

HCV NS5A inhibitor Promising data ODV+SOF

- HCV leading cause of liver disease
- 2% of global population is infected
- Chronic infection, can lead to liver cirrhosis, hepatocellular carcinoma, liver transplantation or death

PHARMACEUTICAL COMPANIES

HPC3003 Phase 3 Trial

- Required pivotal phase 3 head-to-head non-inferiority study
- The current standard of care (SOC) is the active control (Harvoni

 ß by Gilead)
- Primary efficacy endpoint: SVR12 (binary) endpoint
- Primary efficacy hypothesis: JNJ-4178 is non-inferior to 8 or 12 weeks of SOC
- Non-inferiority because efficacy of SOC >95%
- Conventional NI design powered with N=400 in JNJ-4178 and N=200 in SOC

How to Include Innovation in the NI Study Design?

Cure rates by patient type ORIGINAL AF **Based on clinical studies** Cure means the Hep C virus is not detected The NEW ENGLAND Ledipasvir and Sofosbi treatment is completed. If used in combination with ribavirin, follow the recommendations for ribavirin dosing and dosage modifications (2.1)
 A dosage recommendation cannot be made for patients with severe renal impairment or end stage renal disease (2.2) HCV Genotype **JOURNAL** of eded to us GT4, 5, or 6 GT1 Nezam Afdhal, M.D., Stefan Zeuzem, M.D., P --- DOSAGE FORMS AND STRENGTHS Tablets: 90 mg ledipasvir and 400 mg sofosbuvir (3) Norman Gitlin, M.D., Massimo Puoti, M.D., N nitial U.S. Approval: 2014 ESTABLISHED IN 1812 APRIL 1 Jean-Pierre Zarski, M.D., Ph.D., Kosh Aga ---RECENT MAJOR CHA -----CONTRAINDICATIONS-ndications and Usage (1) If used in combination with ribavirin, all contraindications to ribavirin also apply to HARVONI combination therapy (4) 02/2016 02/2016 11/2015 **Genotype 1 Adults Without Cirrhosis** Graham R. Foster, Ph.D., Norbert Bräu, M.I Contraindications (4) Ira M. Jacobson, M.D., G. Mani Subramar Ledinaevir and Sofoebuvir fo WARNINGS AND PRECAUTION

The NEW ENGLAND IOURNAL of MEDICINE

There is a wealth of SOC efficacy data in the public domain. Why repeat the SOC efficacy assessment?

How can we use the external SOC data to make our study more EFFICIENT?

PHARMACEUTICAL COMPANIES

Leveraging SOC Historic Data in the Bayesian Framework

What the Bayesian Approach

<u>is NOT</u>

lansse

- Matched-pairs design
- Extracting patient-level data from SOC historic trials
- Weighted average of historic SVR12 with the observed SVR12 in the study

What the Bayesian Approach IS

Method to synthesize data by combining probability distributions with the observed data

From D. Ohlssen (Novartis) April 2016 with permission

Why?

- **Motivation**: Augment the efficacy data of subjects randomized to SOC in the HTH study with historic SOC randomized historic control data in a *comparable* patient population to:
 - Increase probability of positive study to claim non inferiority: **Power**
 - Reduce resources allocated on SOC arm in HTH:
 - Reduce time to complete the study: **Trial duration**
- **Method**: Use Bayesian approach to statistically combine SOC efficacy data from historic control with HTH trial data

Factors Supporting The Approach in The Hep C Context

- ✓ Expected <u>large treatment effect</u> (SVR12 >95%)
- ✓ <u>Consistency</u> across historical control response rates (Low variability)
- ✓ <u>Difficult to bias & accurately ascertained outcome</u> (lab assessment)
- ✓ Use of historic data from randomized <u>clinical trials</u> of similar design rather than KOL opinions or subjective sources
- Historic data <u>not too far back</u> in time (reduced time effect and other potential confounding factors in older clinical trials)
- ✓ <u>Large, broad-based historical datasets</u> especially relative to total size of patient population and size of treatment arm
- ✓ <u>Same similar key baseline characteristics</u> in historic and HTH trial

Concepts borrowed from M. Walton (Janssen); December 2012 Short Course at CDER FDA; with permission

pharmaceutical companie of **Johnson⊲Johnson**

Statistical Approaches to Be Compared

Bayesian Posterior Probability

95% Confidence Interval approach

Posterior prob(r_JNJ4178-r_SOC > - 5% | data)> cutoff

SOC Historic Ph3 Studies – A Simplification

Study SOC 8 or 12 wks	ION1 w/o cirrhosis 12 wks	ION3 w/o cirrhosis 12 wks	ION3 w/o cirrhosis 8 wks	Total
sample size	177	216	215	608
Successes	176	208	202	586
SVR12 rate	0.994	0.963	0.939	0.964

Source: SOC USPI Label Revised 2016: Tables 10; 11; 8 Note: Simplification for initial exploratory simulations= 8 wks and 12 wks regimens pooled; ION1: subset of non cirrhotic subjects

OF Johnson + Johnson

FDA Guidance: "We may recommend discounting of historical/prior information if the prior distribution is too informative relative to the current study. What constitutes "too informative" is also a case-by-case decision. "

Assumptions and Initial Scenarios

- **Historic studies:** ION1 and ION3, subgroup GT=1, non cirrhotic patients (pooled mean SVR=0.964)
- Non inferiority margin: 0.05
- **SOC rates**: range between 0.96 and 0.99
- JNJ-4178 rates: range between 0.90 and 0.99
- **Prior Distribution**: Beta family for SOC and JNJ-4178
- N for JNJ-4178 = 400
- Amount of borrowing: N-equivalent= 1, 10, 20, 40, 50, 60,80 and 100
- N for SOC: 199, 190, 180, 160, 150, 140,120 and 100
- N-eq. borrowed + N SOC in study = 200 fixed
- 10,000 simulations per scenario

False Positive by Amount of Borrowing, and Rate in SOC, Delta= -0.05

The larger the observed SOC rate (each panel from top to bottom left to right), the larger the inflation of false positive rate

The smaller the cutoff for posterior prob. (red line vs. purple line), the larger the inflation of false positive rate, with increasing amounts of "borrowing" (x-axis)

Posterior Prob > 98.5% vs 99% Criterion

Larger gains in prob. of success with more borrowing for negative delta's, i.e. JNJ-4178 rate< SOC rate (red or green lines).

SOC Sample Size in HTH Study

SOC rate 97% ; JNJ-4178 rate = 97%; Delta =0; JNJ-4178 n=400 ; 5% Margin

Posterior Probability (r_JNJ4178 - r_SOC > - 5% | data, priors) \geq cutoff

N SOC in study	N borrowed (equivalent)	Weight on prior	<mark>Cut off</mark>	False positive (delta= -0.05)	Prob Success (%)	NI Conventional Power (%)	
180	20	3.3%	0.985	0.016	94.0%	91.3%	
160	40	6.6%	0.985	0.015	94.1%	90.2%	
150	50	8.2%	0.985	0.016	94.2%	89.5%	
140	60	9.9%	0.985	0.014	96.0%	88.9%	Mara stringant
100	100	16.4%	0.985	0.015	96.4%	85.1%	More stringent the cutoff 0.9,
							the tighter the
180	20	3.3%	0.99	0.011	92.1%	91.3%	Type 1 error
160	40	6.6%	0.99	0.010	92.0%	90.2%	control
150	50	8.2%	0.99	0.011	92.7%	<u>89.5%</u>	
140	60	9.9%	0.99	0.009	93.0%	88.9%	Do we need to
100	100	16.4%	0.99	0.010	95.1%	85.1%	<i>be so stringent?</i>

SOC Sample Size in HTH Study

SOC rate 97%, 98%, 99% ; JNJ-4178 rate = 97%; JNJ-4178 n=400 ; 5% Margin Cut off =0.985

N SOC in study	N borrowed (equivalent)	SOC Rate	JNJ-4178 Rate	False positive (delta= -0.05)	Prob Success (%)	NI Conventional Power (%)
180	20	0.97	0.97	0.016	94.0%	91.3%
160	40	0.97	0.97	0.015	94.1%	90.2%
150	50	0.97	0.97	0.016	94.2%	89.5%
140	60	0.97	0.97	0.014	96.0%	88.9%
180	20	0.98	0.97	0.019	86.8%	83.2%
160	40	0.98	0.97	0.021	89.3%	82.0%
150	50	0.98	0.97	0.023	90.0%	81.4%
140	60	0.98	0.97	0.025	91.4%	80.7%
180	20	0.99	0.97	0.0249	74.9%	68.6%
160	40	0.99	0.97	0.030	80.8%	67.9%
150	50	0.99	0.97	0.033	81.4%	67.6%
140	60	0.99	0.97	0.044	84.8%	67.1%

Team Proposal To Start Thorough Simulations

N SOC in study	N borrowed (equivalent) ~ 8.2% of historic data	SOC Rate	JNJ-41 78 Rate	False positive (delta= -0.05)		NI Conventional Power (%)
150	50	0.97	0.97	0.016	94.2%	89.5%
150	50	0.98	0.97	0.023	90.0%	81.4%
150	50	0.99	0.97	0.033	81.4%	67.6%

Savings ~7MM=

- Δ^{-} Cost SOC treatment +
- Δ^{-} Total time recruitment +
- Δ^{-} Time to complete study +
- Δ^- Cost of visits & procedures/patient

Show Team One Concrete Example

Jansser

Show Team Another Concrete Example

PHARMACEUTICAL COMPANIES of **Johnson Johnson**

lansse

Possible Study Outcomes

One-Year Story and Regulatory Interactions

Modeling and Simulation Report

We understand the attractiveness of the Bayesian approach in the setting where there is previous information on the highly efficacious active control, and we encourage exploration of the approach. We have the following comments:

janssen

Conclusions

- Bayesian designs can bring innovation into drug development
- Statisticians to work with the team in "education" on new approaches and in thinking "out of the box"
- Discuss Bayesian designs early with the Regulatory Agencies
- PDUFA VI and Pilot Program on Complex Innovative Design likely to stimulate a more frequent use of such designs
- More experience discussing the Simulation Report with the FDA is needed
- Plan early with the team and simulate, simulate and simulate.....

LOVE SIMULATION

