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OPC Trials and Historical Borrowing
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OPC trials

OPC trial goal:

Determine the minimum acceptable success rate for demonstrating 

treatment effectiveness

• Enrolling patients into studies is time consuming, expensive, and 

potentially dangerous

−Need to maximize safety, i.e., do not enroll more patients than 

necessary to demonstrate effectiveness

• New medical treatments under investigation rarely exist in a vacuum

−Pre-clinical trials and pilot studies

−Clinical trials used for approval under a different regulatory body

−Post-approval trials
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OPC trials

Historical borrowing

• Augmenting current trial data with data collected at a previous 

time point

• Typically discussed in two camps: static and dynamic

−Static: choose historical data weight before collecting data

−Dynamic: estimate historical data weight using new data

• If data completely agree, give 100% weight to historical data

• If data are disparate, give 0% weight to historical data

• Everything in-between is a source of controversy

• Main idea: added protection against frequentist decision 

errors about the current data, i.e., type 1 error and reduced 

power
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OPC trials

Historical borrowing
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OPC criterion at 0.15
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OPC trials

How to determine which data are OK to borrow?

• Can’t address everything here (topic worthy of its own session)

• Data should be representative

• Expert opinion and guidance

−Can inform an upper tolerable limit on amount of weight to 

give to historical data

• Data should not be cherry picked

• Data could arise from sources including literature search, pilot 

study, etc.
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Historical Data Borrowing Via Discount Functions
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Historical data borrowing

Running example: designing reliability analysis

• OPC criterion: 

−Failure rate 𝜃 < 0.15

• Statistically: upper bound of 95% CI around 𝜃 is less than 0.15
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Historical Data

▪ 𝑁0 = 100 observations

▪ 𝑦0 = 7 failures

▪ Failure rate: 𝜃0 = 0.07

Current Data

▪ 𝑁 observations

▪ 𝑦 failures

▪ Failure rate: 𝜃
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Historical data borrowing

Incorporation of historical data involves weighting a likelihood

• 𝜃 is the parameter of interest

• 𝒚0 is the historical data

• 𝛼 is the historical data weight

• Known generally as the power prior approach
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Historical data borrowing

Incorporation of historical data involves weighting a likelihood

• 𝒚 is the current data

• Here, we’ll explore the case when 𝛼 is held fixed

• Discount functions are concerned with how 𝛼 is estimated
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Historical data borrowing via 

discounting

Discount function approach

• Discounting reduces the impact of the historical data likelihood 

on the prior 

1. Similarity measure 𝑝 between 

current/historical data

2. Discount function 𝐻 modulates the effect 

of the similarity on the historical data weight
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Historical data borrowing via 

discounting

Similarity measure

• First, construct a surrogate statistic, ෨𝜃, derived from 𝑦 to 

facilitate the comparison between the current and historical 

data

−E.g., ෨𝜃 = 𝑦/𝑁

• Similarity measure function examples 𝑔 ෨𝜃, 𝜃0 :

o ෨𝜃 − 𝜃0 < 𝛿

oΦ
෩𝜃−𝜃0

𝜎2+𝜎0
2
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Historical data borrowing via 

discounting

Discount function examples 𝐻 𝑝

• 1 − exp −𝑝/𝜆 𝛾

oWeibull CDF (Haddad et. al. 2017)

o𝜆 is the shape and 𝛾 is the scale, both tuning parameters

• 𝑝𝑘/𝑝

o𝑘 a tuning parameter (Liu et al. 2018)

• 𝑝

oThe identity function
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Historical data borrowing via 

discounting

Discount function examples
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scale = 0.95

scale = 0.05

𝐻 𝑝 = 1 − exp −𝑝/3 𝛾

Identity
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Historical data borrowing via 

discounting

Discount function examples
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shape = 0.01

shape = 10

𝐻 𝑝 = 1 − exp −𝑝/𝜆 0.25

≈ 0.632
when 

p = scale

Identity
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Historical data borrowing via 

discounting

Discount function examples
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k=100

k=0.001

𝐻 𝑝 = 𝑝𝑘/𝑝
Identity
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Historical data borrowing via 

discounting

Why discount functions?

• Computationally efficient

−Do not require monitoring posterior chains for convergence –

especially useful when powering adaptive trials

• Allow for easily controlling type 1 error and power

• Open source software is freely available

−See the bayesDP R package on CRAN

−Implemented for binary, continuous, and survival data

• Easy for clinicians to understand
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Examples
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Reliability example

Reliability data

• Determine required enrollment sample size so that the total 

effective sample size is 300

−Total effective sample size = 𝑁 + 𝛼𝑁0

• Recall historical data:

−𝑦0/𝑁0 = 0.07

−𝑦0 = 7

−𝑁0 = 100

• Trial success declared if upper limit of 95% CI < 0.15
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Reliability example

Reliability data

• Prior and posterior: Beta-Binomial model

− Hyperparameters a = b = 1
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Updated prior

Posterior
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Reliability example

Effective sample size and required enrollment

• Solid black line is the identity function
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True proportion (y/N) True proportion (y/N)
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Reliability example – Power/Type 1 Error

True proportion (y/N)True proportion (y/N)

True proportion (y/N) True proportion (y/N)

Weibull 

discount 

function

Fixed

weights
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Discussion and Concluding Remarks
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Discussion and concluding remarks

Concerns

• Cherry picking historical data

−Dynamic borrowing is a natural safeguard to prevent historical 

data borrowing when previously observed data is not 

compatible with the current data

• Type 1 error inflation

−Depends on historical data

−With dynamic borrowing, type 1 error inflation is limited but 

not guaranteed to not exist

• Historical borrowing weight based on outcome of interest

−In the context of 2+ arm trials, this can be alleviated by basing 

the weight on a comparison within arm only
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Discussion and concluding remarks

Other borrowing methods

• Hierarchical model

• Commensurate prior (Hobbs et al. 2012)

• Propensity score matching (Lin et al. 2018)

Additional uses

• Incorporation into adaptive trial designs

• Weighting more than one arm of a trial

• Other data types:

−Continuous data with/without covariate adjustment

−Survival data
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Discussion and concluding remarks

Conclusion

• Historical borrowing via discounting is a computationally 

efficient method for incorporating historical data into a trial

−In the context of Empirical Bayes, the estimation procedure 

follows the Bayesian formality

• The method is easy to implement and easy to understand

• Other methods can be difficult to implement

−Especially in the context of adaptive trials

• Discount function methods implemented in the bayesDP R 

package
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