

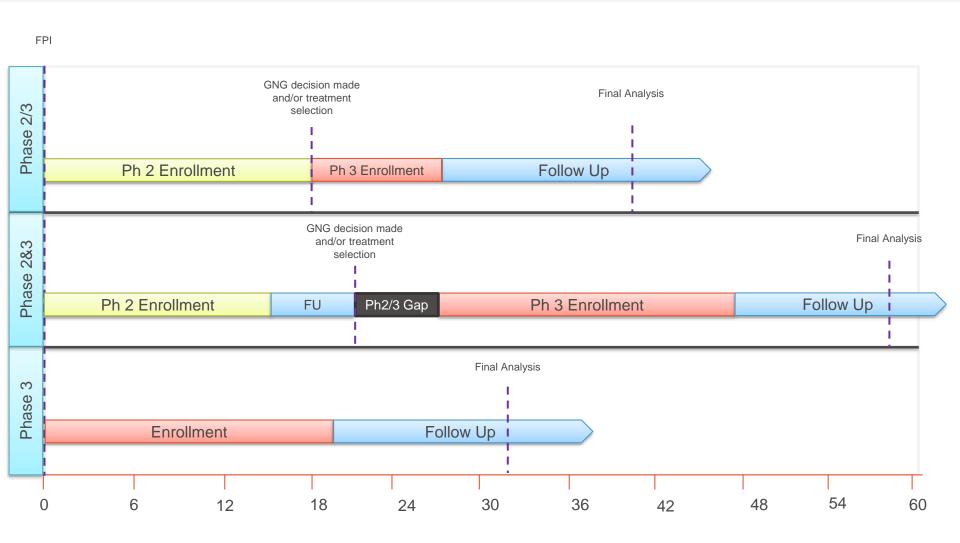
Optimal Seamless Phase 2/3 Oncology Trial Designs Based on Probability of Success (PoS)

Zhaoyang Teng¹, Liang Liang², Guohui Liu¹, Yi Liu³

¹Takeda Pharmaceuticals; ²Harvard University; ³Nektar Therapeutics

2018 ASA Regulatory-Industry Statistics Workshop 14 Sept, 2018

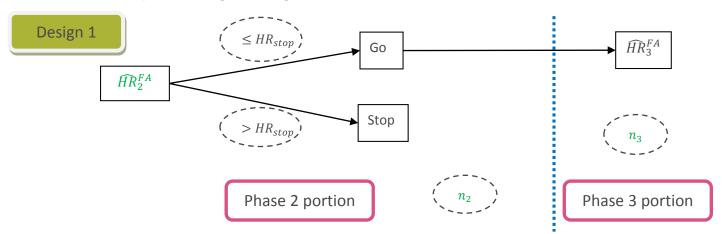
Outline


- Introduction
 - Definition and advantages
 - Study design comparison: phase 3, phase 2+phase 3, seamless phase 2/3
 - Motivation
- Methods
 - Notations and Assumptions
 - Probabilities of Success (PoS) used for study design
- Seamless phase 2/3 study designs
 - Phase 2 portion without interim analysis
 - Phase 2 portion with interim analysis
- R Shiny App
- Practical consideration on implementation of seamless phase 2/3 trial

Introduction

- Seamless phase 2/3 clinical trials are conducted in two stages with Go/No-Go decision or/and treatment selection at the first stage and efficacy confirmation at the second stage.
- Seamless phase 2/3 trials have a few advantages compared to the traditional approaches (phase 3 with 1 FA; phase 2 & 3).
 - Reduce the lead time between phase 2 and phase 3 studies. In practice, the lead time between phase 2 study and phase 3 study is about 6-12 months.
 - Mitigate risk of failed Phase 3 study with prespecified Go/No-Go criteria compared with traditional phase 3 design with only 1 final analysis.
 - Allow us to fully utilize data collected from both stages so that minimize study size because phase 2 patient data contribute to the phase 3 analysis by maintaining the same population and study design between phase 2 and phase 3.

Study Design Comparison: Seamless Phase 2/3 vs. Phase 2 & 3 vs. Phase 3



Motivation

- For simplicity
 - Seamless phase 2/3 oncology trial with a single treatment vs. a control.
 - Go/No-GO decision after phase 2 portion is based on the same endpoint at the final analysis, e.g. Progression Free Survival (PFS)

- Question: how to design a seamless phase 2/3 oncology trial : (n_2 , HR_{stop} , n_3)
 - How confident of making a right Go/No-Go decision?
 - What is the probability of success for the seamless phase 2/3 program?

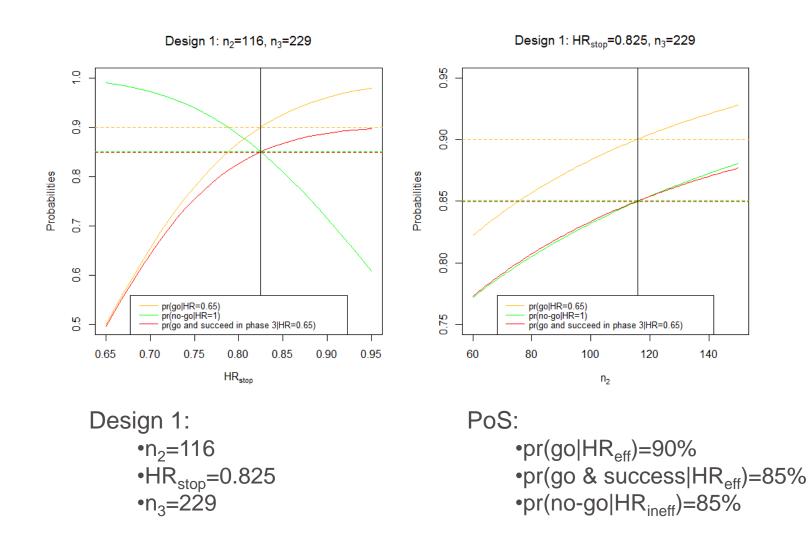
- Proportional hazard: HR constant over time
- $\theta = -log(HR)$: treatment effect.
- n_2 , n_3 : the number of events in phase 2 portion and phase 3 portion.
- $\hat{\theta}_2, \hat{\theta}_3$: estimates of θ obtained from the phase 2 portion and phase 3 portion.
 - 1:1 randomization between treatment and control
 - $\hat{\theta}_2 \sim N(\theta, 4/n_2)$, and $\hat{\theta}_3 \sim N(\theta, 4/n_3)$
- Number of events n_3 could be calculated based on log-rank test

$$n_3 = \frac{4(z_{1-\alpha/2} + z_{1-\beta})^2}{\theta^2}$$

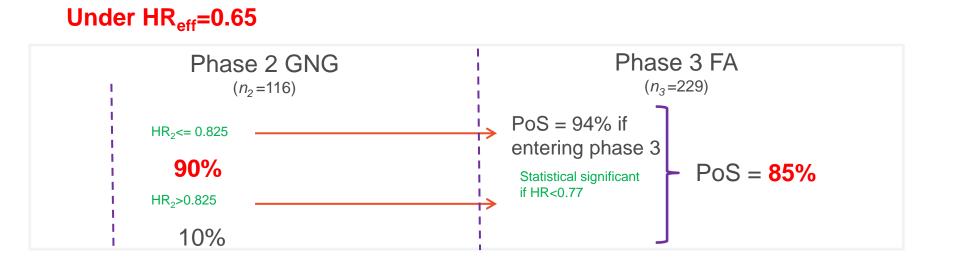
- α is the two-sided significance level, α =0.05
- $1-\beta$ is the power

- **Goal:** design a seamless phase 2/3 oncology trial (n_2, HR_{stop}, n_3)
 - Certain confidence of making a right Go/No-Go decision
 - Ensure sufficient probability of success (Power) for the seamless phase 2/3 program
- Probabilities of Success (PoS) of Interest
 - given an **efficacious** treatment, e.g., $HR_{eff} = 0.65$
 - pr(go after phase 2 portion) = $pr(HR_2 \le HR_{stop} | HR_{eff})$
 - pr(go after phase 2 portion & successful phase 3) = $pr(HR_2 \le HR_{stop}, T_3 > z_{1-\alpha/2} \mid HR_{eff})$
 - given an **inefficacious** treatment, e.g., $HR_{ineff} = 1$
 - pr(no-go after phase 2 portion) = $pr(HR_2 > HR_{stop} | HR_{ineff})$

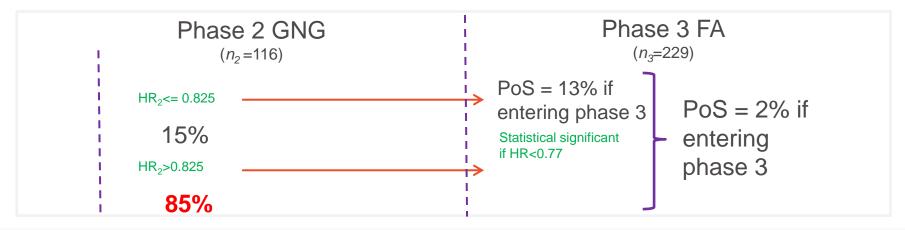
Takeda

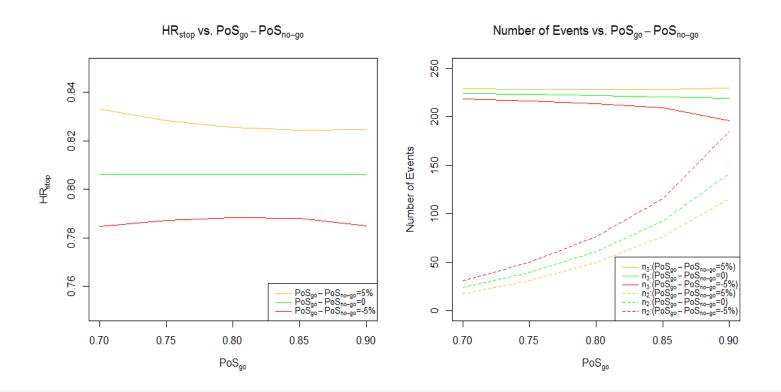

(a)

(b)

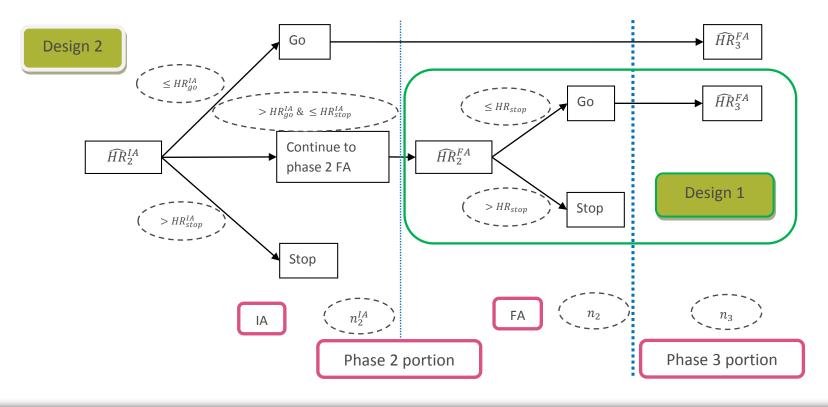

(C)

- Find the optimal combination of (n_2, HR_{stop}, n_3) which meet the following criteria
 - Treatment is **efficacious**, e.g., $HR_{eff} = 0.65$
 - pr(go after phase 2 portion) ≥ 90%
 - pr(go after phase 2 portion & successful phase 3) \geq 85%
 - Treatment is **inefficacious**, e.g., $HR_{ineff} = 1$
 - pr(no-go after phase 2) $\ge 85\%$
- Utility function:
 - Option 1: Earliest timing (n_2) for Go/No-Go decision making
 - Option 2: Average sample size (n_2, n_3)
- Two-step procedure to find $(n_2, HR_{stop}, n_3)^{opt}$ for option 1:
 - Step1: Find the combination (n₂, HR_{stop})^{opt} with smallest n₂ based on (a) and (c) since both are not impacted by n₃
 - Step 2: Find the optimal/minimal $(n_3)^{\text{opt}}$ to meet (b) given the optimal combination $(n_2, HR_{stop})^{\text{opt}}$ identified from Step 1.




Under HR_{ineff}=1

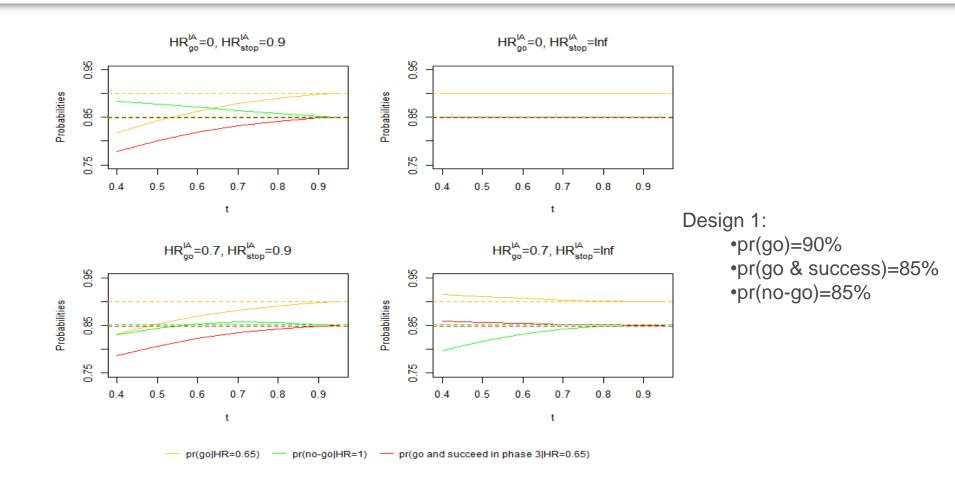
Design 1: Operational Characteristics



- HR_{stop} is mainly driven by the difference of PoS_{go} and PoS_{no-go} .
- n_2 is determined by the magnitude of PoS_{go} and PoS_{no-go} .
- n_3 is driven by (n_2, HR_{stop}) and the difference of PoS_{go} and PoS_{suc} .

- Usually, sponsor would like to make Go/No-Go decision as early as possible.
- Design 2: phase 2 portion with interim analysis to speed up the Go/No-Go decision making

Design 2: Probability of Success (PoS) with IA


- Probabilities of success (PoS) with IA
 - given an efficacious treatment, e.g., $HR_{eff} = 0.65$
 - pr(go at either phase 2 IA or FA)
 - pr(go at either phase 2 IA or FA & successful phase 3)
 - pr(go at phase 2 IA)
 - given an inefficacious treatment, e.g., HR_{ineff}=1
 - pr(no-go at either phase 2 IA or FA)
 - pr(no-go at phase 2 IA)
- **Goal:** find the optimal combination $(n_2, HR_{stop}, n_3, n_2^{IA}, HR_{go}^{IA}, HR_{stop}^{IA})^{opt}$ which meet the following criteria
 - Treatment is **efficacious**, e.g., $HR_{eff} = 0.65$
 - pr(go at either phase 2 IA or FA) \geq a
 - pr(go at either phase 2 IA or FA & successful phase 3) \geq c
 - $pr(go at phase 2 |A) \ge d$
 - Treatment is **inefficacious**, e.g., $HR_{ineff} = 1$
 - pr(no-go at either phase 2 IA or FA)≥ b
 - pr(no-go at phase 2 IA) \geq e

- Find an optimal design is challenging: six parameters
 - go/no-go decision rule at phase 2 IA
 - go/no-go decision rule at phase 2 FA
 - phase 2 IA time
 - phase 2 number of events
 - Phase 3 number of events
- Naive two-step procedure
 - Step 1: find the optimal design under Design 1
 - n_2 , HR_{stop} , n_3
 - Step 2: find the optimal IA time and go/no-go boundaries at IA given the optimal combination (n_2 , *HRstop*, n_3)^{opt} identified from Step 1.
 - n_2^{IA} , HR_{go}^{IA} , HR_{stop}^{IA}

Loss of PoS after adding IA at Phase 2

• There will be a certain extent of loss in PoS for at least one of three as long as go or/and no-go decision are allowed at phase 2 IA

- Three-step procedure for Design 2:
 - Step1: Find the optimal combination $(n_2, HR_{stop})^{opt}$ with smallest n_2 according to step 1 of Design 1 which meets the following criteria by assuming no interim analysis planned at phase 2 portion:

$$PoS'_{go} \ge a'; PoS'_{no-go} \ge b'$$

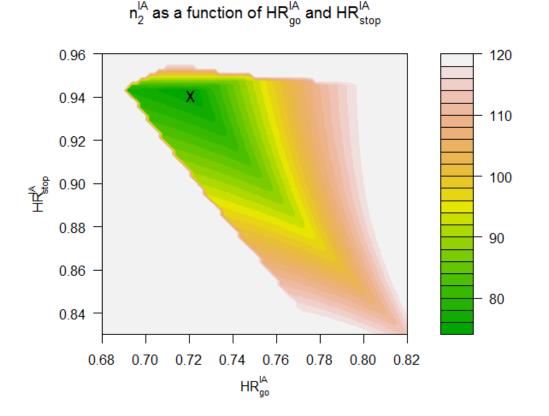
where a' > a, b' > b are the inflated boundaries for each PoS. And $im_a = a' - a$ and $im_b = b' - b$ are defined as inflated margin.

- Step2: Find combination $(n_2^{IA}, HR_{go}^{IA}, HR_{stop}^{IA})^{\text{opt}}$ with smallest n_2^{IA} which meets the following criterion with the optimal combination $(n_2, HR_{stop})^{\text{opt}}$ identified from Step 1.

 $PoS_{go} \ge a$; $PoS_{no-go} \ge b$, $PoS_{go}^{IA} \ge d$, $PoS_{no-go}^{IA} \ge e$

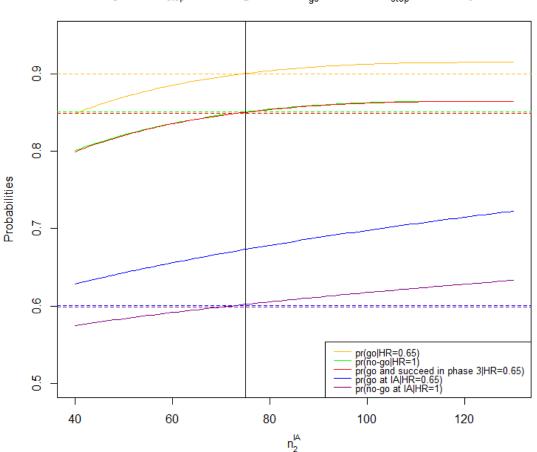
- Step 3: Find optimal/minimal $(n_3)^{\text{opt}}$ to meet the following criterion with the optimal combination $(n_2, HR_{stop}, n_2^{IA}, HR_{go}^{IA}, HR_{stop}^{IA})^{\text{opt}}$ identified from Step 1 and Step 2.

$$PoS_{suc} \ge c$$



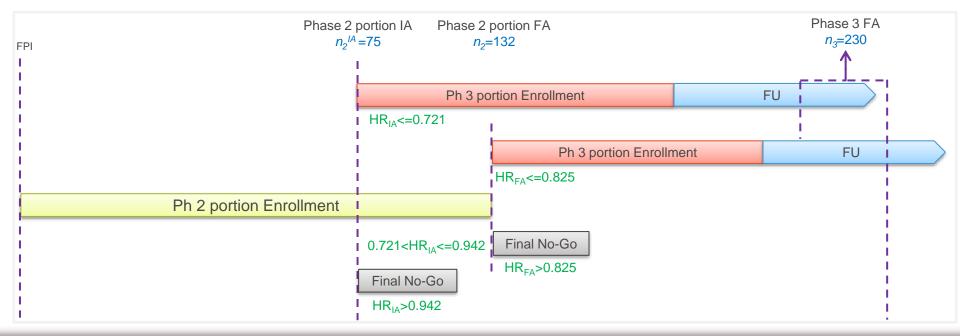
- PoS boundaries of Design 2 are selected as follows: $PoS_{go} \ge 90\%$, $PoS_{no-go} \ge 85\%$, $PoS_{suc} \ge 85\%$, $PoS_{go}^{IA} \ge 60\%$, $PoS_{no-go}^{IA} \ge 60\%$
- Three-Step Procedure with inflated margin of $im_a = im_b = 0.015$:
 - Step1: To achieve $PoS_{go} \ge 91.5\%$, $PoS_{no-go} \ge 86.5\%$ with smallest n_2 , the optimal combination $(n_2, HR_{stop})^{opt} = (132, 0.825)$.
 - Step2: With the optimal combination $(n_2, HR_{stop})^{opt} = (132, 0.825)$ identified from step 1, the optimal combination $(n_2^{IA}, HR_{go}^{IA}, HR_{stop}^{IA})^{opt} = (75, 0.721, 0.942)$ which meets all following criteria and gives earliest phase 2 portion interim timing.

 $PoS_{go} \ge 90\%, PoS_{no-go} \ge 85\%, PoS_{go}^{IA} \ge 60\%, PoS_{no-go}^{IA} \ge 60\%$

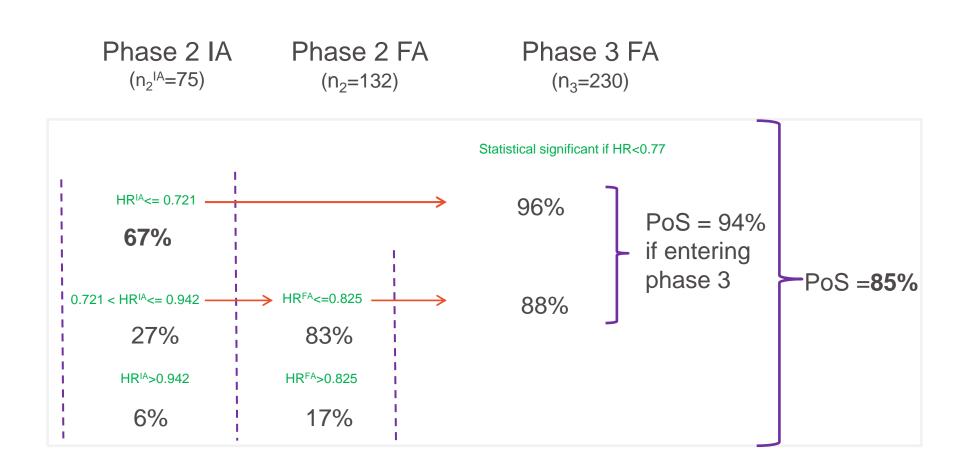

- Step 3: The optimal/minimal $(n_3)^{\text{opt}} = 230$ to meet the criterion of $PoS_{suc} \ge 85\%$ with the optimal combination $(n_2, HR_{stop}, n_2^{IA}, HR_{go}^{IA}, HR_{stop}^{IA})^{\text{opt}} = (132, 0.825, 75, 0.721, 0.942).$
- Thus, the final optimal study design with an IA at phase 2 portion is $(n_2, n_3, HR_{stop}, n_2^{IA}, HR_{go}^{IA}, HR_{stop}^{IA})^{\text{opt}} = (132, 230, 0.825, 75, 0.721, 0.942).$

- Takeda
- Optimal phase 2 portion IA go/no-go boundaries, cross (x) in the figure represents the point of smallest n_2^{IA}

Design 2: PoS with Optimal Design



Design 2: HR_{stop} =0.825, n_2 =132, HR_{go}^{IA} =0.721, HR_{stop}^{IA} =0.942, n_3 =230


Seamless Phase 2/3 Study Design: Design 2



- Probability of Success(PoS):
 - pr(go at either phase 2 IA or FA | HR_{eff}) = 90%
 - pr(go at either phase 2 IA or FA & successful phase 3 | HR_{eff}) = 85%
 - pr(no-go at either phase 2 IA or FA | HR_{ineff}) = 85%
 - pr(go at phase 2 IA | HR_{eff}) = 67%
 - pr(no-go at phase 2 IA | HR_{ineff}) = 60%

Scenario	PoS	Optimal Study Design							
	Inflated margin	PoS'go	PoS' _{no-go}	<i>n</i> ₂	<i>HR_{stop}</i>	n_2^{IA}	HR_{go}^{IA}	HR ^{IA} stop	<i>n</i> ₃
1 (Design 1)	0	0.85	0.90	116	0.825				229
2	0.005	0.855	0.905	121	0.825	85	0.718	0.946	230
3	0.01	0.86	0.91	127	0.825	79	0.720	0.944	230
4	0.015	0.865	0.915	132	0.825	75	0.721	0.942	230
5	0.02	0.87	0.92	138	0.826	72	0.722	0.941	230
6	0.025	0.875	0.925	145	0.826	69	0.723	0.940	230
7	0.03	0.88	0.93	152	0.826	67	0.724	0.939	230

- Trade-off between n_2 and n_2^{IA} : smaller n_2 leading to larger n_2^{IA} , and vice versa.
- Recommend the design with the ratio of n_2^{IA} to n_2 between 0.5 and 0.7 which usually can avoid the cases of too small n_2^{IA} and/or too large n_2 .

Scenario	PoS under Optimal Study Designs					Average Number of Events			
	PoSgo	PoS _{no-go}	PoS ^{IA} go	PoS _{no-go}	PoS _{suc}	\bar{n}_{2eff}	\bar{n}_{2ineff}	$\bar{n}_{2/3eff}$	$\bar{n}_{2/3ineff}$
1 (Design 1)	0.90	0.85	0	0	0.85	116	116	218	133
2	0.90	0.85	0.68	0.60	0.85	95	97	217	116
3	0.90	0.85	0.68	0.60	0.85	92	95	217	113
4	0.90	0.85	0.67	0.60	0.85	91	93	216	112
5	0.90	0.85	0.67	0.60	0.85	90	93	216	112
6	0.90	0.85	0.67	0.60	0.85	89	92	216	112
7	0.90	0.85	0.67	0.60	0.85	89	93	216	112

- Smaller number of events is needed to make go/no-go decision in Design 2.
- Smaller number of events for phase 2/3 program under inefficacious treatment effect is needed in Design 2.
- Number of events for phase 2/3 program under efficacious treatment effect are comparable between Design 1 and Design 2.

R Shiny App

• Design a seamless phase 2/3 oncology trail using the user friendly Shiny App we developed.

Optimal Seamless Phase II/III Oncology Trial Design

Options and Parameters		Description Results	
Choose a design		Optimal Number of Events:	
Design 1		 Optimal number of events in phase II n₂ = 115.835 and optimal total number of events n₃ = 229.086. Optimal Stopping rule: 	
Efficacious HR	Inefficacious HR	Optimal stop rule at phase II HR _{stop} = 0.825.	
0.65	1	Probabilities of success:	
Ratio r (TRT vs CTR)	Type I error rate α 0.025	 Prob of go = 0.900; Prob of succ = 0.850; Prob of no-go = 0.850. 	
1	0.025		
Set boundaries for probabilities of intere With an efficacious TRT, • Prob of go after phase II	0.9		
Prob of both phase II & III success	0.85		
With an inefficacious TRT,	a or	8	
Prob of no-go after phase II	0.85		
33 Get optimization procedure may take several minites. Pl	ease wait patiently.	af Success 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	
		0 - 0.70 0.75 0.80 0.85 0.90 0.95 e0 80 100 120 140 19 HR _{em}	т т 80 180

Practical Considerations on Implementation of Seamless Phase 2/3 Oncology Trial

- What is the difference between seamless phase 2/3 oncology trial and group sequential oncology trial with futility analysis?
 - Enrolment is usually completed at the futility analysis for group sequential oncology trial, but not recommended for seamless phase 2/3 trial.
 - Have chance to claim efficacy at the "futility" analysis as well for group sequential oncology trial, but not the intention of phase 2 portion of seamless phase 2/3 oncology trial.
- Consideration on enrollment
 - Challenge: enrollment completed before accumulating target number of evens for go/no-go decision making.
 - Solutions:
 - 1. Control the enrollment rate of phase 2 portion (slow) and phase 3 portion
 - 2. Set a cap for number of patients for phase 2 portion
 - 3. Enrollment pause at either IA or FA of phase 2 portion
 - More patients are needed if OS benefit is important in addition to PFS
 - Slowing down enrollment rate at phase 2 portion can effectively prevent exposing large number of patients (for OS) to investigational treatment before the efficacy is proven.

- The proposed method provides an informative way to design seamless phase 2/3 oncology trials using PoS
 - Calculation of phase 2 and phase 3 sample size.
 - Determination of GNG boundaries.
- Interim analysis could be considered to add on phase 2 portion to speed up the GNG decision making process.
 - Smaller N to make go/no-go decision.
 - Smaller N for phase 2/3 program under inefficacious treatment effect; comparable under efficacious treatment effect between Design 1 and 2.
- With proposed study design (Design 1, Design 2), we are clear on
 - How confident of making a right Go/No-Go decision.
 - What is the probability of success for the seamless phase 2/3 program.
- Implement proposed study design using R Shiny App.

 Teng Z, Liang L, Liu G, Liu Y. Optimal Seamless Phase 2/3 Oncology Trial Designs Based on Probability of Success (PoS). Stat in Med. Aug 2018.

Thank you!

Takeda Pharmaceutical Company Limited