Concentration-QTc Assessment in Early Phase Trials

Fang Liu*, Li Fan, Kuenhi Tsai, Devan V. Mehrotra

ASA Biopharmaceutical Section
Regulatory-Industry Statistics Workshop
September 14, 2018
Washington, D.C.

QT and QTc Interval

- QT and HR (hence RR) are correlated, so a HR "corrected" QTc is used for analysis: QTc=QT/RR^b
- Ideal "b" is such that corr(QTc, RR)=0.
 - b=1/3 (Fridericia's correction) is most common, but population and subject-specific b's are also popular

Background and Key Message

- In December 2015, ICH released 'E14 Q&A (R3)' supporting concentration-QTc (C-QTc) modeling to assess QT prolongation.
 - The C-QTc data could come from first-in-human single-ascending dose (SAD) trials, multiple-ascending dose (MAD) trials, or other trials.
 - If there is an intention to pool data from multiple trials, it is important to test for heterogeneity.
- We show that the power of C-QTc model to claim no QT prolongation using data combining SAD and MAD trials is only slightly higher than using SAD trial alone when the C-QTc association across SAD and MAD trials are consistent.
- We show that our proposed C-QTc model[‡] (Method M2) has better power than the C-QTc model in the white paper[†] (Method M1) and is adequate to reliably quantify the C-QTc association using SAD trial data, making a TQT study unnecessary in most cases.

[‡] Mehrotra DV, Fan L, Liu F, Tsai K. Enabling Robust Assessment of QTc Prolongation in Early Proprietary Phase Clinical Trials. Pharm Stat. 2017;16 (3):218-227.

[†] Garnett C et al, Scientific white paper on concentration-QTc modeling, J Pharmacokinet Pharmacodyn. 2018; 45 (3): 383-397.

Objectives of C-QTc Assessment in Early Phase Trials

Objective #1: guide early phase clinical development

Determine the highest "safe" concentration (C_safe) and/or dose level in terms of QTc prolongation.

Definition of "safe": 90% CI for true mean $\Delta\Delta$ QTc is < 10 msec. ($\Delta\Delta$ QTc means placebo-subtracted QTc change from baseline) C_safe is used for go/no-go, dose selection for next trial, etc.

• Objective #2: enable a TQT waiver in late phase development

Later in development, use the C-QTc model to forecast the outcome of a TQT study based on predictions at expected Cmax levels for the clinical and supra-therapeutic doses.

Typical SAD/MAD Trial Design at Merck

SAD: Alternating panel crossover, 4 periods, 8 dose levels, total N = 16 MAD: Parallel design with 3 dose levels

Study	Panel	Number of subjects	Period 1	Period 2	Period 3	Period 4
	А	N=2	Placebo	DOSE 3	DOSE 5	DOSE 7
		N=2	DOSE 1	Placebo	DOSE 5	DOSE 7
		N=2	DOSE 1	DOSE 3	Placebo	DOSE 7
SAD		N=2	DOSE 1	DOSE 3	DOSE 5	Placebo
(Holter ECG)	В	N=2	Placebo	DOSE 4	DOSE 6	DOSE 8
		N=2	DOSE 2	Placebo	DOSE 6	DOSE 8
		N=2	DOSE 2	DOSE 4	Placebo	DOSE 8
		N=2	DOSE 2	DOSE 4	DOSE 6	Placebo
		N=6	DOSE 3	NOTE: DO	SE 1 = 10 mg	
	Α	N=2	Placebo	DOSE 2 = 50 mg DOSE 3 = 100 mg		
MAD (Non-Holter ECG)	В	N=6	DOSE 5	DOSE 4 = 150 mg		
		N=2	Placebo	DOSE 5 = 200 mg		
	С	N=6	DOSE 7	DOSE 6 = 3	_	
		N=2	Placebo	DOSE 7 = 4 DOSE 8 = 6	_	

Motivating Example: Real SAD/MAD Trial

Modeling Objective

Estimate highest concentration for which true mean $\Delta\Delta QTc < 10$ msec (C_safe)

Analysis Steps

- Fit C-QTc model (How?)
- 2. From model fit, find highest concentration for which upper bound of 90% CI for true mean $\Delta\Delta QTc < 10$ msec

Two C-QTc Modeling Approaches

Base model for both methods:

ΔQTc ~ intercept + predose_QTc + (slope x conc) + time* + TRT §+ residual

- *: categorical time level to adjust for diurnal variation in ΔQTc
- §: treatment indicator, TRT=0 if receiving placebo, TRT=1 if receiving active drug

Method M1: random intercept and random slope model

- Different, potentially correlated subject-level random Gaussian components are added to both intercept and slope by studies;
- Does not leverage within/between-period feature of SAD study design

Method M2: dual compound symmetry (CS) model (details in paper)

 Different intra-subject QTc correlations are assumed for between and within dosing periods by studies (supported by real TQT and SAD study with Holter ECG)

Four Crossover TQT Trials: Correlation Box-Plots

Within-period correlations are larger than between-period correlations

Motivating Example: Correlation Box-plots

Within-period correlations are larger than between-period correlations

SAS Codes for the Two Methods

Method M1

```
PROC MIXED DATA=dataset;

CLASS time subjid study trt;

MODEL dQTc = predoseQTc time conc trt/DDFM=KR;

RANDOM intercept conc/SUBJECT=subjid type=UN group=study;

RUN;
```

Method M2

```
PROC MIXED DATA=dataset;

CLASS time period subjid study trt;

MODEL dQTc = predoseQTc time conc trt/DDFM=KR;

RANDOM subjid/ group=study;

REPEATED/SUB=subjid*period TYPE=CS group=study;

RUN;
```


Two Methods Applied to the Motivating Example

Two Methods Applied to the Motivating Example (continued)

Data	Parameters	M1 Random Int & Slope	M2 Dual CS
SAD Alone	Slope Estimate	0.185	0.165
	(Std. Error)	(0.033)	(0.029)
	C_safe	44.0	46.0
	AICC	1306	1300
SAD+MAD	Slope Estimate	0.179	0.174
	(Std. Error)	(0.031)	(0.026)
	C_safe	42.4	44.9
	AICC	4021	4009

M2 consistently delivers 'best' fit in crossover SAD datasets and SAD+MAD datasets

		M1	M2
Datasets	Example	Random Int & Slope	Double CS
SAD	Example 1	2989	2953
	Example 2	3165	3159
	Example 3	2028	2027
	Example 4	1799	1797
	Example 5	2201	2186
SAD+MAD	Example 6	7350	7193
	Example 7	5039	5031

$$AICC = 2k - 2\ln(L) + 2k(k+1)(n-k-1)^{-1}$$

In all 7 examples, the observed AICC ordering was: M1 > M2 (lower is better)

What Dataset should be Used in the C-QTc Model? Which Method is More Reliable?

We **simulated** a typical Merck SAD and MAD trials under two scenarios

True mean Cmax for highest simulated dose (Single dose 600 mg)

Assumption: C-QTc relationship are the same across SAD and MAD trials.

Simulation Result - % Bias and 90% CI Coverage

		% Bias of Slope Estimate		(% Simula 90% CI cor	erage* tion where tained true to at 600 mg)
		SAD	SAD+	SAD	SAD+
Scenario	Method	Alone	MAD	Alone	MAD
3/Cmax	M1	1.9	3.7	90.5	88.6
(600mg is safe)	M2	-1.6	1.9	88.9	89.2
10/Cmax	M1	0.6	1.1	90.5	88.6
(600mg is not safe)	M2	-0.5	0.6	88.9	89.2

Simulation Result - % of simulations where 600 mg was declared safe

		% of simulations where 600 mg was declared safe		
Scenario	Method	SAD Alone	SAD+MAD	
3/Cmax	M1	80.0	87.7	
(600mg is safe)	M2	88.3	92.0	
10/Cmax	M1	3.6	4.4	
(600mg is not safe)	M2	4.3	4.4	

Conclusions

- Our proposed methodology (Method M2) outperforms Method M1 and is adequate to reliably quantify the C-QTc association using SAD trial data, making a TQT study unnecessary in most cases.
- Assuming the concentration-QTc association is the same across SAD and MAD trials, the power to claim no QT prolongation using SAD+MAD is only slightly higher than SAD alone.
- If the assumption of same concentration-QTc association across SAD and MAD trials is wrong, power of SAD+MAD could be lower than SAD alone.

Email: fang.liu11@merck.com

