
This project develops a toolset modeling the disease course of refractory and relapsed multiple myeloma 
with a continuous Markov chain (CMC) model. Based on the modeling, subject-level data of disease 
course/survival outcomes could be simulated with aggregate-level efficacy statistics as input. Simulated 
subject-level data is shown to have good approximation of reported external studies.
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Model Setting for R/RMM
 Everyone starts with a stable disease of R/RMM (SD);
 With an effective therapy, a proportion of subjects respond, i.e. transit from SD to partial response 

(PR), who later deepens to complete response (CR);
 The deeper the response a subject achieves, the less likely for him/her to progress/death; 
 Same chances of dropout apply to everyone, no matter of the response status (non-informative).
 Observation ends at dropout/death (these two are terminal states).
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 Transition intensity matrix Q – useful properties:
• Time waiting on state r before any move are exponentially distributed: Pr 𝑇 ≥ 𝑡 = exp( 𝑞 𝑡)
• Time waiting on state r before moving to each individual state s also exponentially distributed;
• Once moved (from r), the probability of being on s: − =

∑ !

Continuous Time Markov Process
 Transition intensity governs the next stage of transition, and the time of the change. 
 The transition intensity for each pair of transition, r and s for example:

where t is the current time, and z(t) are the covariates at t.

 𝑞 𝑡, 𝑧 𝑡 is independent of any history of states previously visited, or the time stayed there. It is a 
function constant over periods of time as defined 

 Transition intensity matrix Q:                                   Transition probability 𝑝 𝑡 :
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Parameterize Algorithm

Non-
Responding 

(SD)

Partial Response 
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Time to Response 
(Time before moving 
from SD to PR)

Overall Response Rate (ORR) 
(Proportion of individuals 
who moves from SD to PR)

PFS among 
non-Responders (Time 
before moving from SD 
to PD)

Duration of Response 
among PR Responders 
(Time before moving 
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Rate of 
Non-cancer Death
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Complete Response 
(CR) 
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Time from Partial Response (PR) 
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Time from PD to death among
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2. PR Responders
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Complete Response Rate (CRR) 
(Proportion of individuals 
who moves to CR)

Time

 In Oncology/Hematology clinical trials, we usually have observations of early efficacies in terms of 
response rate, depth, timing and duration. However, the follow-up may not be long enough to support 
the prediction of progression-free survival (PFS) or overall survival (OS), which are usually the 
primary endpoints for phase 3 studies. 

 We tackle the question of establishing a quantitative link between early efficacy outcomes and typical 
efficacy endpoints in phase 3 trials. Without loss of generalizability, we use R/RMM as disease 
model.

Application
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Input Parameters: 
• Overall Response Rate (sORR); Complete Response Rate (sCRR)
• Median Time from SD to Progression (PFS.SD); Time to Responses(TtR), Time to Complete Response(TtCR); Duration of Responses among responders (mDoR);
• Median Time from Progression to Death among non-responders, partial responders, complete responders (TPDtDth.SD, TPDtDth.ncr, TPDtDth.cr); 
• Dropout (annldpt.pd, annldpt.os), non-cancer death (annldth). 

Treatment effects accounting for crossover could be modeled with varying assumptions 
about response rates, median durations of responses. 
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Sense Check 

Informative censoring could be accommodated.
Time-dependent transition intensities could be explored.
The surrogacy strength of response endpoints (such as response rate, durations) could be simulated and evaluated.
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