Dynamic Allocation in Clinical Trials: Past, Present, and Future

Introduction

Motivated by Oncology Landscape

- \checkmark Crowded \rightarrow encourages personalized medicine approach to identify characteristics of patients.
- Combination therapies \rightarrow as a "backbone" treatment is established, the next wave of development includes add-on therapies.
- Emerging unmet medical need often in later lines of therapy which may have diverse earlier lines.

Impact on Newer Trials

- "Just add it as a stratification factor" is often suggested in discussions (e.g., biomarker status, prior response to backbone therapy, prior exposure to X, Y, or Z).
- There may already be existing clinical factors thought to influence treatment that warrant stratification
- Interest in balancing randomization across arms, but difficult to reduce to reasonable size.

Motivating Example

Phase 2 trial of Nivolumab + Relatlimab vs. mono therapy of Nivolumab.

Stratification wanted on:

- Region (Asia/ Non-Asia)
- Biomarker Expression (Lag 3 +/-)
- Clinical factor (MVI +/-)
- Primary endpoint is objective response rate (ORR).

 \rightarrow 1:1 and 2:1 allocation was considered for 2 arm trial

 \rightarrow 2:1:2 allocation ratio was considered for 3 arm trial

Methods

Simple Randomization

- Conceptually, it is the simplest and most robust method
- This method does not guarantee equal distribution of treatment assignment.

Stratified Block Randomization

- Better control of Type 1 error for certain situations (e.g., adaptive allocation ratios, interactions between stratification variables)
- ✤ May lead predictability issue.
- Easier for recruitment and lower implementation cost
- Balances specified and unspecified covariates, including temporal effects

Dynamic Allocation (Minimization)

Hybrid Minimization Approaches

- Two novel approaches were proposed based on Minimization method. Minimization + Simple randomization) (Minimization + Permuted Block randomization)
- Approach 1: Alternating Minimization (Use) Approach 2: Stratified Nested Minimization
- Let n_{ijk} be the number of patients already assigned to treatment group k where k = 1, 2, ... Kat strata level j (j = 1, 2, ..., J) of the covariate i(i = 1, 2, ..., C). (Kuznetsova and Tymofyeyev, 2012, Jin et al., 2019) Assume the next patients is ready to allocate.
- Calculate the number of participants on each level of the covariates i(i = 1, 2, .., C - 1) for the new patients n_{ir_ik} is allocated to each treatment group k.

- Next, we will measure the resulting total imbalance by the range (RG):
- $G_{RG} = \sum_{i=1}^{C} RG \left[\frac{n_{ir_i^1}}{a_1}, \frac{n_{ir_i^2}}{a_2}, \dots, \frac{n_{ir_i^k}}{a_k} \right]$
- This new subject will hypothetically be assigned to the kth treatment group with $G_k =$ $\min(G_1, G_2, \dots, G_k)$ with a high probability p and equally distributed to any k - 1 groups with
- probability $\frac{1-p}{\nu-1}$.
- Record the hypothetical treatment assignment for each participant using biased coin minimization approach and create a new stratifying variable (S) based on C-1 covariate and the hypothetical treatment assignment as
- mentioned in previous steps. For this new stratifying covariates (S and C), we will use stratified permuted block
- randomization with equal / unequal block
- sizes. For example, In case of two arm trial, we will
 - have new stratifying variable based on $G_{RG} >$ factors, then the combined new strata will be
- $0 vs. G_{RG} < 0 vs. G_{RG} = 0$. If the C^{th} have 2
- 6.

Palash Sharma; University of Kansas Medical Center Tina Young, Bristol Myers Squibb

Minimization, a form of restricted randomization procedure. The minimization procedure maintains marginal balance for each stratum rather than attempting to achieve overall balance. ✤ Allow unequal allocation ratio (e.g., 2:1) ✤ Valid alternative for small-to-moderate sized trials with multiple significant prognostic factors having moderate to large treatment effects Makes treatment allocations unpredictable

Simulation Design

Design	Tuning Parameter	Method	Total No of Design		
Simple randomization	N/A	N/A	1		
Permuted Block Randomization	Block size = 4 (1:1), 3(2:1) 5(2:1:2)	N/A	1		
Minimization Approach	P = 0.80,0.90	Range/SD	4		
Alternating Minimization	P = 0.80,0.90	Range/SD	4		
Stratified nested	P = 0.80,0.90	Range/SD	4		

Design Parameter:

- randomization procedure, we apply stratified Cochran-Mantel-Haenszel (CMH) test. calculated with the proportion of response is same in both arms i.e., $p_1 = p_2 = 0.3$ and the
- ✤ 2 arm with 1:1 or 2:1 allocation ratio (N=200) ✤ 3 arm trial with 2:1:2 allocation ratio (N=250) To evaluate the type I error and power of For two arm trial, type I error rate was power was calculated with $p_1 = 0.50, p_2 =$ 0.30.
- For Minimization based approach, rerandomization test was implemented and recommended.

Table: Compare the balancing property n (%) at each level of covariates using the Stratified Nested **minimization method** for different allocation ratios and p = 0.90 and Range Method is considered.

Allocation	Method	Range		SD				
ratio		Treatment			Treatment			
		Arm A	Arm B	Arm C	Arm A	Arm B	Arm C	
1:1	Lag3+	49.99	50.03		49.94	50.03		
	Lag3-	50.01	49.97	Ì	50.06	49.96	Ì	
	Region(A)	49.96	49.96		50.08	49.99	Ì	
	Region (N- A)	50.05	50.04	Ì	49.92	50.01	Ì	
	MVI (Y)	49.88	49.97	Ì	50.04	49.93	Ì	
	MVI (N)	50.13	50.02	Ì	49.97	50.06	Ì	
2:1	Lag3+	66.68	33.37	Ī	66.65	33.28	1	
	Lag3-	66.59	33.32	Ì	66.69	33.38	Ì	
	Region(A)	66.67	33.32	Ì	66.68	33.34	Ì	
	Region (N- A)	66.64	33.37	Ì	66.66	33.33	Ì	
	MVI (Y)	66.63	33.38	ĺ	66.65	33.30	ĺ	
	MVI (N)	66.68	33.31	Ì	66.66	33.36	Ì	
2:1:2	Lag3+	49.99	24.99	50.01	49.97	25.07	49.97	
	Lag3-	49.99	25.01	50.01	50.06	25.05	49.91	
	Region(A)	49.98	24.95	50.01	49.95	25.07	49.95	
	Region (N- A)	50.01	25.06	50.00	50.04	25.05	49.93	
	MVI (Y)	49.93	24.99	50.01	50.04	25.05	49.94	
	MVI (N)	50.06	25.01	49.96	49.96	25.08	49.94	

Table: Simulation of the overall relative imbalance and Type I error and Power for different randomization procedures using the stratified CMH test

										
		1:1 (N = 20))0)		2:1 (N = 200)			2:1:2 (N = 250)		
Method	Prob. of	Imbalanc	Туре	Powe	Total	Туре	Power	Total	Type I	Powe
	assignmen	e	I	r	Imbalanc	I		Imbalanc	error	r
	t		error		e	error		e		
SR	N/A	0.239	0.050	0.821	0.170	0.047	0.772	0.166	0.048	0.732
Block Rand	N/A	0.170	0.049	0.824	0.122	0.048	0.777	0.117	0.049	0.730
Minimizati	0.90 (RN)	0.170	0.049	0.828	0.122	0.045	0.783	0.118	0.052	0.736
Alternating	0.90 (RN)	0.235	0.053	0.822	0.165	0.050	0.778	0.164	0.048	0.742
Stratified Nested	0.90 (RN)	0.170	0.045	0.831	0.121	0.051	0.774	0.118	0.052	0.730
Minimizati	0.80 (RN)	0.171	0.047	0.833	0.123	0.051	0.783	0.119	0.050	0.737
on Alternating	0.80 (RN)	0.237	0.056	0.807	0.169	0.050	0.779	0.163	0.046	0.741
Stratified Nested	0.80 (RN)	0.170	0.062	0.826	0.121	0.051	0.783	0.118	0.052	0.738
Minimizati on	0.90 (SD)	0.171	0.055	0.835	0.121	0.052	0.776	0.118	0.048	0.745
Alternating	0.90 (SD)	0.237	0.052	0.824	0.166	0.050	0.775	0.162	0.051	0.740
Stratified Nested	0.90 (SD)	0.172	0.052	0.819	0.121	0.047	0.784	0.119	0.054	0.746
Minimizati	0.80 (SD)	0.172	0.052	0.829	0.124	0.046	0.786	0.118	0.049	0.740
on Alternating	0.80 (SD)	0.238	0.046	0.826	0.167	0.049	0.772	0.162	0.047	0.738
Stratified Nested	0.80 (SD)	0.171	0.049	0.830	0.121	0.052	0.774	0.119	0.046	0.748

All the simulation ran for 10,000 times; Type I error calculated using the p1 = p2 = 0.30; Power was calculated using the P1 = 0.50, p2 = 0.30; For 3 arms, Power was calculated using the P1 = 0.50, p2 = 0.40, p3 = 0.30; RN indicate Range and SD indicate Standard Deviation was considered

Results

Re-randomization test

- Compute the test statistics of the CMH test for the observed responses using the randomization approach for treatment assignment.
- Reallocate the treatment assignment in accordance with the given randomization procedure.
- Reobtain the test statistics T for this reallocation and obtain reference test statistics.
- Repeat steps 2 and 3 for R repeated number of times
- The P-value of the re-randomization test can be estimated by the Monte-Carlo method.

Method	1:1 (N = 200)		2:1 (N = 200)		2:1:2 (N = 250)	
	Type I error	Power	Type I error	Power	Type I error	Power
SR.	0.054	0.819	0.048	0.769	0.051	0.734
Block Rand	0.049	0.822	0.051	0.776	0.046	0.738
Minimization	0.051	0.824	0.051	0.770	0.050	0.743
Alternating Minimization	0.051	0.817	0.049	0.774	0.049	0.738
Stratified Nested Minimization	0.049	0.821	0.051	0.773	0.050	0.735

All the simulation ran for 10,00 times with R = 1000 repetitions; Type I error calculated using the p1 = p2= 0.30; And Power was calculated using the P1 = 0.50 p2 = 0.30; For 3 arms, Power was calculated using the P1 = 0.50, p2 = 0.40, p3 = 0.30

SR = Simple Randomization

Conclusions

- Provide a brief summary of various randomization approach
- Propose a novel hybrid approaches that combines the strength of each existing methods without their drawbacks
- Hybrid approaches enables balance of additional stratification variables while maintaining balance.
- Stratified Nested Minimization method offer an alternative method which allow prioritization of the Cth variable for marginal balancing while minimizing the imbalance on the remaining C-1 variables.

Bibliography

- 1. Kuznetsova OM, Tymofyeyev Y. Preserving the allocation ratio at every allocation with biased coin randomization and minimization in studies with unequal allocation. Statistics in Medicine. 2012 Apr 13;31(8):701-23.
- 2. Sangro B, et al.. P-61 Relatlimab+ nivolumab in patients with advanced hepatocellular carcinoma who are naive to immuno-oncology therapy but progressed on tyrosine kinase inhibitors, a phase 2, randomized, open-label study: RELATIVITY-073. Annals of Oncology. 2021 Jul 1;32:S117.
- 3. Jin M, Polis A, Hartzel J. Algorithms for minimization randomization and the implementation with an R package. Communications in Statistics-Simulation and Computation. 2019 May 30:1-1.

Acknowledgement

I would like to thank BMS and my manager Dr. Tina Young for giving me the opportunity to work on this exciting summer intern project.