Global Biometrics and Data Sciences

Modulation of Dynamic Borrowing from Historical Control by Fine-Tuning the Parameters of Prior Distribution for Inter-Trial Variance

September, 2021

Xin Wei, Rong Liu Global Biometrics and Data Sciences, BMS

ll Bristol Myers Squibb™

Introduction

In order to save sample size and increase statistical power, the current control is augmented by borrowing historical control data in a Bayesian framework (BAC: Bayesian Augmented Control Design):

 Augment the current control data by fixed informative prior (caveat: discordance b/w current control and historical data lowers the power or inflates the type I error)

Bayesian hierarchical model that borrows historical information dynamically based on the concordance b/w the current and historical control
(Strength: more alike, more borrowing
caveat: difficulty to properly estimate inter-trial variance when the # of historical trials
are small)

Bayesian Hierarchical Model in Survival Analysis:

□Assuming an exponential likelihood model:

$$\lambda_{Ti} = \lambda_C \; e^{\sum_{j=0}^n \theta_j I_{ij}}$$

where:

- λ_{Ti} is hazard rate of the treatment arm for ith patient;
- λ_c is hazard rate of the control arm with minimally informative prior distribution;
- Θ is the log hazard ratio (HR) between the current treatment arm and the historical or current control;
- I is indicator variable for the historical trials or the current trial
- j is the index number of the current and historical trials. j=0 for the current trial

The prior distribution for the current and historical log HR:

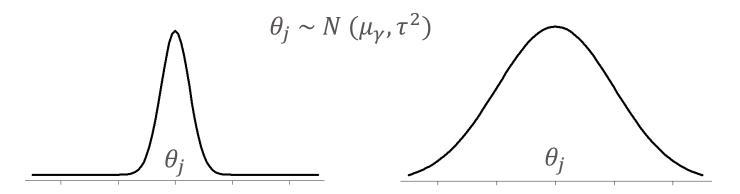
$$\theta_j \sim N \; (\mu_\gamma, \tau^2)$$

The mean and variance for log HR form hyperparameters

 $\mu_{\gamma} \sim N$ (0,1); $\tau^2 \sim IG(\alpha, \beta)$

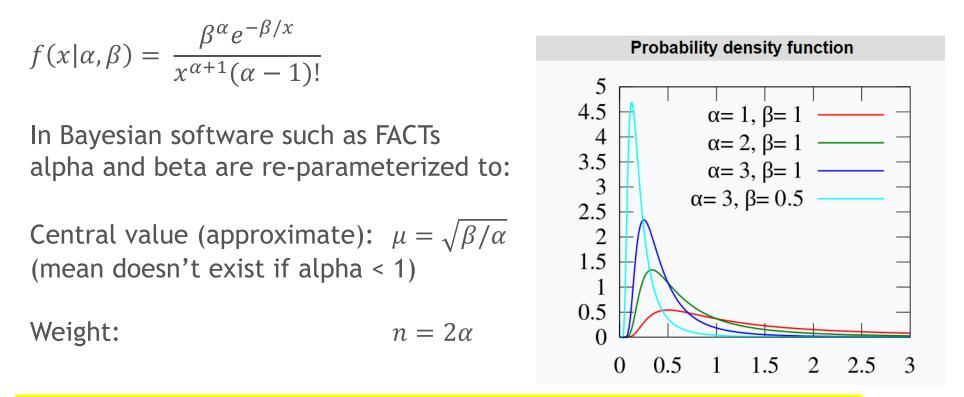
H Bristol Myers Squibb Division/Therapeutic Area

The Amount Dynamic Borrowing is Controlled by the Variance of log HR of Historical Trials



Small inter-trial variance $\frac{\tau^2}{\tau}$ indicates consistency among historical trials thus favor strong borrowing/pooling Large inter-trial τ^2 variance indicates discordance among historical trials thus prefer less borrowing/separate analysis

Parameterization of Inverse Gamma Distribution for the hyperparameter τ^2 as the Prior Distribution



In general, large central value and small weight favor non-borrowing

Historical Control Data (Glioblastoma Multiforme Study)

	Ν	mPFS (months)
Stupp 2005		
All comers	287	6.9
Gilbert 2013		
All comers	411	7.5
Gilbert 2014		
All comers	317	7.3

Sufficient Statistics used in hierarchical Modeling: # of Events and Exposure time

() New seconds Excession ()	
(wks) Num. events Exposure (wks	;)
250 11928	
	250 11928

weighted mean mPFS \approx event rate = 0.023/week

Simulation of the current control (as demo)

N = 80, 2:1 randomization ratio favoring treatment, median PFS ranging from 6 -12m, HR = 1 or 0.6, 10 pts/month accrual, follow-up time = 6 m, 1000 - 5000 simulated trials

Achieving Desired Dynamic Borrowing by Specifying the Prior Distribution of Hyperparameter τ^2

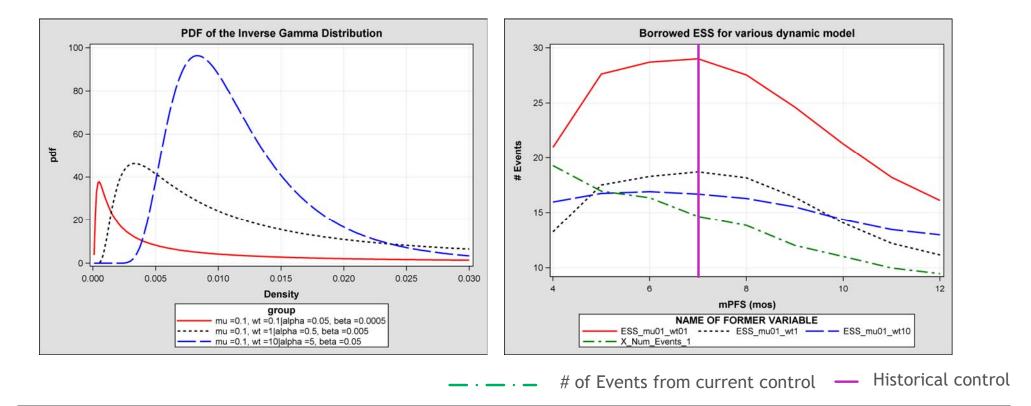
Quantification of Amount of Borrowing:

 $E_{borrowed} = E_{C}(\frac{\sigma^{2}(log\lambda_{c}| - borrowing)}{\sigma^{2}(log\lambda_{c}| + borrowing)} - 1)$

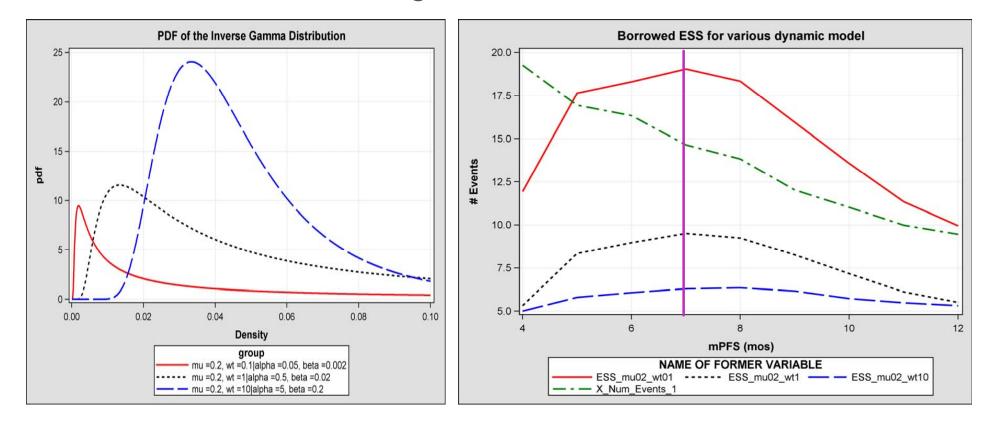
- Use the weakly informative prior with large central value (10) and small weight (0.1) to generate minimal model lacking borrowing as baseline;
- For each simulated trial, log HR can be estimated from posterior distributions based on models with and without borrowing using the formular above;
- The variance of log HR is calculated from 1000 simulated trial datasets;
- The estimated # of borrowed events is plotted against the difference between the hazard rates of the current and historical trials.

7

With small central value (0.1), lowering the weight (10 -> 1 -> 0.1) for the prior render the model more responsive to the discordance b/w current and historical data

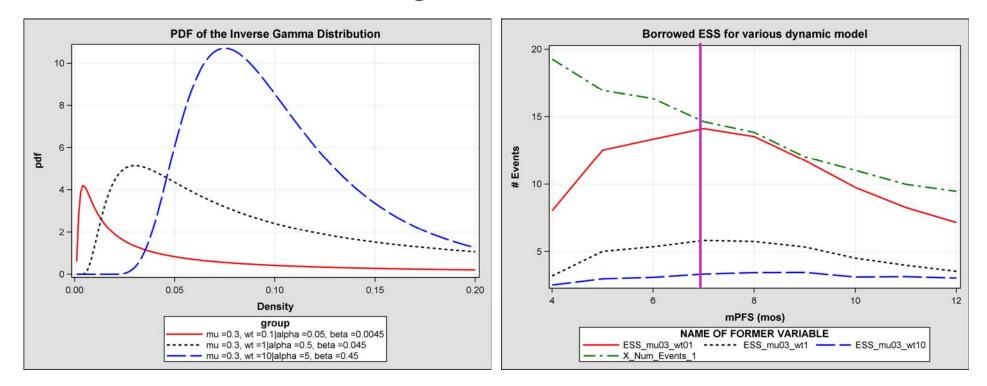


Central value = 0.2, weight = 10 -> 1 -> 0.1



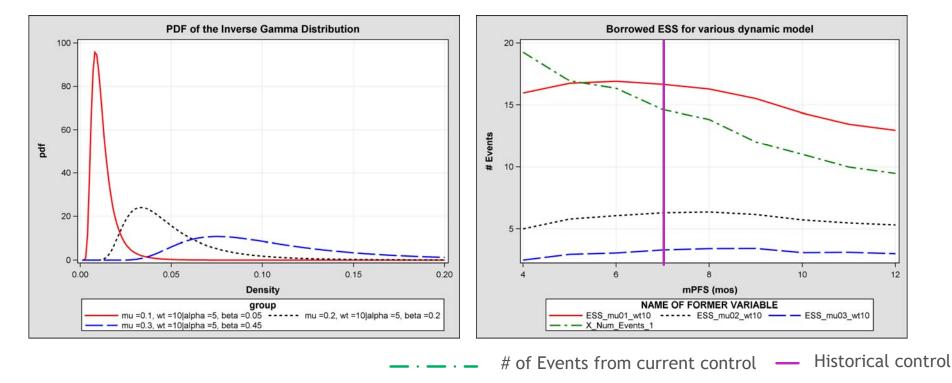
— # of Events from current control — Historical control

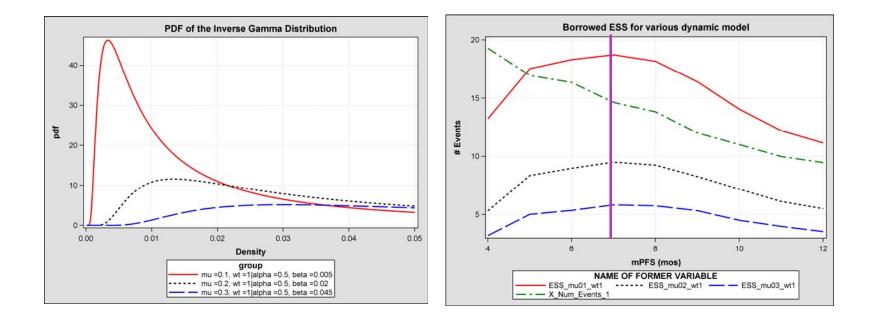
Central value = 0.3, weight = 0.1 -> 1 -> 10



. ____ # of Events from current control _____ Historical control

From another angel: lowering the central value increases the absolute amount of borrowing after large weight flattens the curve





_____ # of Events from current control _____ Historical control

Conclusion

For the inverse Gamma distribution as hyperparameter prior in BAC:

- With the same weight, smaller central value leads to more aggressive borrowing
- With the same central values, more dispersed distribution (large weight) render the model less sensitive to the discordance b/w the current and historical data

Acknowledgement

- BMS GBDS colleagues: Frank Shen, Hongtao Zhang, Yanping Chen and Alan Chiang
- Tom Parke and Kert Viele from Berry Consultants (www.berryconsultants.com).

Reference:

Smith et al. Leveraging historical data into oncology development programs: Two case studies of phase 2 Bayesian augmented control trial designs. Pharm Stat . 2020 May;19(3):276-290.

Han et al. Covariate-adjusted borrowing of historical control data in randomized clinical trials. Pharm Stat 2017 Jul;16(4):296-308.

Kert Viele et al. Phase 3 adaptive trial design options in treatment of complicated urinary tract infection. Pharm Stat. 2018 Nov;17(6):811-822.