RECeUS: Ratio Estimation of Censored Uncured Subjects, A Different Approach for **Studying Sufficient Follow-Up in Studies of Long-Term Survivors**

Subodh Selukar and Megan Othus

MOTIVATION

Mixture-Cure Models

Mixture-cure models assume the observed data arise from a mixture of cured and uncured subpopulations

Sufficient Follow-Up

If a study ends too early, the right tail of the distribution may not be identifiable

Problem

Existing methods may:

- > Falsely conclude sufficient follow-up, causing bias
- > Falsely claim insufficient follow-up, possibly leading to additional, costly data collection

PROPOSAL

RATIO ESTIMATION OF CENSORED UNCURED SUBJECTS

$\hat{r}_n =$

 $\hat{S}_{uc}(\tau)$: estimate of proportion uncured remaining at study end

 $\succ S(\tau)$: estimate of proportion overall remaining at study end

RECeUS Advantages

Flexible

> Parametric or semiparametric mixture-cure models

Interpretable

- Standardized version of proportion uncured remaining at study end
- > Smaller \hat{r}_n , cure model more appropriate

SIMULATIONS

Truth	Rates of Concluding Cure Model Appropriateness*		
Cure Model Appropriate?	RECeUS	Maller & Zhou (1994)	Shen (2000)
No	Low	High	Low
Yes	High	High	Low

*Based on simulations from Weibull, Log-Logistic and Gamma mixture-cure distributions where RECeUS used an AIC-based model selection procedure to estimate \hat{r}_n and a criterion of (1) $\hat{r}_n < 0.05$ and (2) estimated cure fraction of at least 2.5%

0

0

Ο

DATA EXAMPLES

8 Years of Follow–Up Years since Registration

Cure Model RECeUS Maller & Shen **Appropriate?** (2000)Zhou (1994) X S1117: No \checkmark \checkmark X S0106: Yes \checkmark \checkmark X Incorrect Decision ✓ Correct Decision

Conclusion

RECeUS accurately classifies when a cure model is or is not appropriate in simulations and data examples