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Overview

·Valid surrogate endpoints are useful to decrease the duration
and cost of clinical trials

·Validating a potential surrogate endpoint is challenging:
correlation between outcomes is not sufficient for validation.
Determining whether the potential surrogate is causally associated
with the treatment and outcome can provide assurance that the
surrogate is indeed valid

·Surrogate-dependent treatment efficacy curves at a given
time show how we can validate the surrogate, or we can integrate over
time for an overall conclusion of surrogacy

·Use of baseline covariates and longitudinal outcomes:
Because identification in causal inference settings often relies on
untestable assumptions such as independence among counterfactuals,
conditioning on covariates can be beneficial. Here we also incorporate
repeated measurements of the trial outcome

·Gene therapy with the surrogate biologically constrained
to be zero in the placebo arm is a special case, and the
functional outcomes are measured repeatedly throughout the trial

Principal Surrogacy

·Principal surrogacy can be used to assess a surrogate endpoint S for a
true outcome T where S(z) and T (z) refer to the endpoint values had
the treatment, possibly counter-factually, been assigned to level z

·Can model the joint distribution
of normally-distributed potential
outcomes S(1), T (0), and T (1)
with or without repeated
measurements1,2

·We explored how baseline
measurements could be used to
stratify the validation analysis3

·The causal effect predictiveness (CEP) curves demonstrate if the
surrogate is valid, meaning small (large) causal effects on a surrogate
are associated with small (large) causal effects on the outcome4

·The causal quantities for validation, γ0 and γ1 based on
E(T (1)− T (0)|S(1) = s) appear on the CEP curves in linear form
showing γ0 + γ1s over values of S(1) = s with γ1 = ρ11σT1−ρ10σT0

σS1
and

γ0 = α3 − α2 − γ1α1 from the following specified model parameters

·When the distribution of outcomes is multivariate normal, validation
conditions are fulfilled if γ0 = 0 and γ1 6= 0

Longitudinal Outcomes

·Using the causal association framework, we previously considered the
joint distribution of three potential outcomes with covariates
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·Covariates may make proposed conditional independence assumptions
of outcomes more plausible and improve estimation efficiency

Random intercepts: Each individual i has multiple observed and
counterfactual outcomes S(1)i, T (0)ij, T (1)ij at time j modeled by
one random intercept for T (0)i: bi0, and one for T (1)i: bi1

T (0)ij = XT
i β2 + Zibi0 + eij0 T (1)ij = XT

i β3 + Zibi1 + eij1
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X could contain any number of baseline covariates

Random intercepts and slopes: We also consider Xi = Zi =
(1 timei) so that the validation metrics can also vary over time
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Estimation

·Some parameters are not identifiable. Using Bayesian
methods, parameters are drawn using Markov Chain Monte Carlo
(MCMC). We explore prior distributions to specify for the correlation
parameters and draw them from the appropriate posterior bounds

·Make conditional independence assumptions on the random
effects and outcomes such as S(1) ⊥ b0|b1⇒ ρT = ρ10

ρ11
and incorporate

baseline covariates to make these more plausible

·Cross-over design where those in the z = 0 placebo arm
eventually receive the gene therapy permits identifiabilty in some
cases. Changes in model assumptions can be made to accommodate
such a study design

Surrogacy Validation Metric

·The validation metrics are based on the distribution of S(1), T (0),
T (1) as a function of model parameters at a certain time and
integrated over random effects

·Consider the CEP evaluated at different time points where γ0 = 0 and
γ1 6= 0 may always hold or may only be true at certain times

· γ1 will depend on time if
there are non-zero and
non-equal covariances
between S(1) and the
random slopes b11, b12

· γ0 will depend on time if
there are non-zero and
non-equal main effects of
time for T (0) and T (1)
outcomes

·We can look at the CEP curve as a function of time where the validity
of the surrogate may increase or decrease over the trial duration

· If we want a marginal value to validate the surrogate overall, we
could average these values across multiple time points

Data Example and Discussion

·Our data mimic a clinical trial of the ambulatory function of muscular
dystrophy patients evaluated with an assessment scale that is
repeatedly measured, and the surrogate is micro-dystophin expression

·Modeling age and time are important due to both natural disease
progression and growth with age. Subgroups may also exist based on
age and baseline ability measurements
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