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ABSTRACT
Patient accrual projection is a topic gaining attention in the
statistics literature in recent years. A number of methods have
been proposed in this area. Some approaches are sophisticated
but complicated to implement. We aim to implement a simple and
robust empiric Bayes model that is suitable for practical use. We
assume the underlying enrollment rate constant over time, which
is site-specific and comes from a common Gamma distribution.
Choice of prior parameters can be data driven. We tested the
model in a number of internal oncology trials with various
enrollment patterns, which yields satisfactory results. Compared
to a flexible nonparametric model (Zhang and Long, 2010), the
new model was associated with narrower credible intervals as a
result of parametric assumptions. With the caveat that the model
prediction can be off when the model assumption was
substantially violated. R codes were available upon request.

RESULTS
Real Example 1
700 patients were randomized from 197 centers between 28Apr2016
and 09Jun2019. An enrollment projection made when enrollment is 
100 patients shy of the target of 70% enrollment (achieved on Day 
797) would be on Day 679 (Figure 1a). 

Figure 2 shows enrollment projection made at various points when 
enrollment is 20, 60, 100, and 140 patients shy of the target using 
both NHPP (broken black line) and the proposed (broken green line) 
methods. The 90% confidence bands of the proposed method covers 
true observed enrollment beyond the projection date well (solid red 
line). As expected, the uncertainty in prediction reduces when 
prediction is made when more patients were enrolled as the 90% CI 
assumes a funnel shape. In all scenarios, the 90% CI of the 
proposed method covers the observed enrollment well, whereas the 
NHPP method slightly missed when the projection was made early 
(i.e., 140 patients shy of the target).

Further numerical comparisons of the two methods show the 
proposed method with narrower 90% CIs, smaller rMSEs and higher 
coverage probabilities than the NHPP method (Table 1). 

Real Example 2
886 patients randomized from 156 centers between 23Mar2016 and
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CONCLUSIONS
In this poster, we presented a simple and robust empiric Bayes
model for enrollment modeling. The proposed method properly
models random fluctuation as well as site variability in enrollment
and generally performs better than the more complicated NHPP
method. We obtain narrower credible intervals with the proposed
method as a result of parametric assumptions. However, if the model
assumptions are off, prediction could be off on a streak. R function is
available upon request.

Figure 1. Observed Enrollment in Two Real Oncology Trials
(a) 1L UC study (b) 1L RCC study

Figure 3. Projection When 20/60/100/140 Patients Shy of Target – Real Example 2Figure 2. Projection When 20/60/100/140 Patients Shy of Target – Real Example 1

METHODS
Review of Nonhomogeneous Poisson Process Model (NHPP)
Consider a discrete-time Poisson process following Zhang and Long
(2010). Let N𝑡 denote the number of enrollment on Day 𝑡. A
regression spline is used to model the overall underlying enrollment
𝜆𝑡 with prior distribution for the spline parameters, 𝑏~𝑀𝑉𝑁(𝜇,Σ).
When 𝜆𝑡=𝜆, the above reduces to a homogeneous Poisson process
over time, i.e., constant underlying enrollment rate overall. This non-
parametric model is flexible yet complicated.

A Simple and Robust Model
In plain English, the assumptions of the proposed model are:
- Sites initialize at different times during a trial.
- Once initialized, enrollment rate is stable at a particular site with

random fluctuations.
In mathematical terms, we assume 𝜆𝑗>0 as the underlying enrollment
rate at Site 𝑗 once accrual starts at that site at time 𝑆𝑗. It follows that
the number of patients enrolled on Day 𝑡 at Site 𝑗, 𝑛𝑡𝑗~Poisson(𝜆𝑗 ), or
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N
H
P
P

20 25/20.4 18.8 7.6 19%

60 63/63.5 44.3 14.0 46%

100 118/87.6 47.5 34.1 3%

140 159/108.7 59.9 53.6 1%

N
E
W

20 25/21.7 16.2 6.0 24%

60 63/63.1 30.7 9.2 48%

100 118/118.4 47.5 14.4 49%

140 159/159.7 58.2 17.6 50%
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20 13/7.5 6.0 5.8 5%

60 28/26.1 12.3 4.2 30%

100 43/43.8 16.6 5.1 55%

140 62/66.1 22.6 8.0 71%
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Table 2. Comparison of the New Method with NHPP Method – Real Example 2Table 1. Comparison of the New Method and the NHPP Method – Real Example 1

13Dec2017. An enrollment projection made when enrollment target
of 70% enrollment (achieved on Day 512) is 100 patients shy would
be on Day 469 (Figure 1b).
Similar conclusions can be drawn as in Real Example 1 (Figure 3 
and Table 2).


