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ABSTRACT

Patient accrual projection is a topic gaining attention in the
statistics literature in recent years. A number of methods have
been proposed in this area. Some approaches are sophisticated
but complicated to implement. We aim to implement a simple and
robust empiric Bayes model that is suitable for practical use. We
assume the underlying enroliment rate constant over time, which
is site-specific and comes from a common Gamma distribution.
Choice of prior parameters can be data driven. We tested the
model in a number of internal oncology trials with various
enroliment patterns, which yields satisfactory results. Compared
to a flexible nonparametric model (Zhang and Long, 2010), the
new model was associated with narrower credible intervals as a
result of parametric assumptions. With the caveat that the model
prediction can be off when the model assumption was
substantially violated. R codes were available upon request.

enrollment using a counting process, a few dimensions of the model
can be considered:

- Overall or center-specific enroliment

-P tric or non-p tric models

- Constant or variable enrollment rate over time

In the literature, a number of authors propesed various parametric
approaches for enrollment modeling. Tang et al. (2012) assumed
three phases of underlying overall enrollment. Lan, Tang, and Heitjan
(2019), Urbas, Sherlock, and Metcalfe (2020) assumed declining
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which means waiting time between two consecutive patients at Site j
follows an exponential distribution, Exp(4).
Letus assume a Gamma prior, I'(a, b), on the underlying enroliment
rate at each site, i.e.,
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As aresult, closed form of posterior distribution exists due to
conjugate prior, i.e., 4; follows I'(a + ZLSJ ny,b+T —5; +1), where
S; is the start of enroliment at Site ;.

In the event a site has not started enroliment at the time of
enrollment projection, we can simply assume the underlying
enroliment rate as a random variable following I'(a, b).

In an empirical Bayes paradigm, the values of @ and b are data

RESULTS

Real Example 1

700 patients were randomized from 197 centers between 28Apr2016
and 09Jun2019. An enrollment projection made when enroliment is
100 patients shy of the target of 70% enrollment (achieved on Day
797) would be on Day 679 (Figure 1a).

Figure 2 shows enroliment projection made at various points when
enrollment is 20, 60, 100, and 140 patients shy of the target using

Figure 2. Projection When 20/60/100/140 Patients Shy of Target — Real Example 1
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Table 1. Comparison of the New Method and the NHPP Method - Real Example 1
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Figure 3. Projection When 20/60/100/140 Patients Shy of Target - Real Example 2

Projection when 20 Patients Shy of Target Projection when 60 Patients Shy of Target

L
600 620
L

540
L

Total Number of Patients Enrolled
560
L

520
L

585 500 595 600 605 610 615 620
L

500

T T T T T T
460 470 480 4% 500 510

485 490 495 500 505 510

Days Since Study Start
Projection when 100 Patients Shy of Target

Days Since Study Start
Projection when 140 Patients Shy of Target

= Observed, Past

T
440 460 480 400 420 440 460 480 500

Days Since Study Start

Table 2. Comparison of the New Method with NHPP Method - Real Example 2
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parametric model is flexible yet complicated.

A Simple and Robust Model

In plain English, the assumptions of the proposed model are:

- Sites initialize at different times during a trial.

- Once initialized, enrollment rate is stable at a particular site with
random fluctuations.

In mathematical terms, we assume 4,>0 as the underlying enrollment

rate at Site j once accrual starts at that site at time . It follows that

the number of patients enrolled on Day t at Site j, n,~Poisson(4; ), or
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In this poster, we presented a simple and robust empiric Bayes
model for enrollment modeling. The proposed method properly
models random fluctuation as well as site variability in enrollment
and generally performs better than the more complicated NHPP
method. We obtain narrower credible intervals with the proposed
method as a result of parametric assumptions. However, if the model
assumptions are off, prediction could be off on a streak. R function is
available upon request.
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