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INTRODUCTION
(1) Shortcomings of RCTs are pronounced (e.g., long-term follow-up,
costly, and narrowly defined populations) in urgent health crises,
when rapid identification of effective treatments is critical.

(2) The use of valid surrogate markers to infer treatment effects
on long term outcomes has the potential to reduce trial cost and
study duration. The explosion in recent years of RWD highlights an
untapped opportunity to identify and validate surrogate markers.

(3) Existing methods about the proportion of treatment effect
(PTE) explained by a surrogate are derived for data from RCTs and
are not valid for RWD such as observational data or cross-trial data.

NOTATION AND CAUSAL INFERENCE SETUP
Let Y be the primary outcome and S be the surrogate marker, both
of which may be discrete or continuous. We denote {Y (a), S(a)} as
the respective potential primary outcome and surrogate marker under
treatment A = a, where A = 1 and A = 0 denote the treatment and
the control group, respectively. For identifiability, we assume:

πa(X) ≡ P (A = a|X = X) ∈ (0, 1) (1)(
Y (1), Y (0), S(1), S(0)

)
⊥ A | X (2)

(1) states that within all covariate levels, patients may receive either
treatment. (2) implies that X includes all confounders that can affect
the primary outcome and treatment simultaneously, or the surrogate
and treatment simultaneously. We assume that the RWD for analysis
consist of n IID random variables {Di = (Yi, Si, Ai, X

T
i )T , i = 1, ..., n}.

TARGET PARAMETER
The average treatment effect on Y is defined as:

∆ = µ1 − µ0, where µa = E(Y (a)) =

∫
E(Y | A = a,X)dF (X).
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OPTIMAL TRANSFORMATION
To approximate ∆ based on the treatment effect on S, we identify a trans-
formation function gopt(·) such that the treatment effect on the transformed
surrogate, ∆gopt = E[gopt(S

(1)) − gopt(S(0))], can optimally predict ∆. The
optimality of gopt is with respect to minimizing the MSE:

Loracle(gopt) = E
[(
Y (1) − Y (0)

)
−
{
gopt

(
S(1)

)
− gopt

(
S(0)

)}]2
(3)

under the working assumption of (Y (1), S(1)) ⊥ (Y (0), S(0)). The optimal trans-
formation gopt takes the form

gopt(s) = m(s) + λP0(s) with m(s) = m1(s)P1(s) +m0(s)P0(s),

where ma(s) = E(Y (a)|S(a) = s),

Pa(s) =
fa(s)

f0(s) + f1(s)
, fa(s) =

dFa(s)

ds
, λ =

∫
{m0(s)−m1(s)}P1(s)dF0(s)∫

P0(s)dF0(s)

and Fa(s) = P (S(a) ≤ s). Defining the PTE of S as PTEg =
∆g

∆
, we prove

that even if the working independence assumption does not hold, PTEg ∈
[0, 1] provided weak conditions to ensure that the PTE is between 0 and 1 and
hence to avoid the surrogate paradox (VanderWeele, 2013). Our goal is to
construct doubly robust estimators for gopt and PTEg using RWD.

NOVEL DOUBLY ROBUST ESTIMATORS

Denote ω̂ai = I(Ai = a)/πa(Xi, α̂), Kh(·) = h−1K(·/h), K(·) is a symmet-
ric density function and h = O(n−ν) with ν ∈ (1/4, 1/2). We propose the
following DR estimators for ma(s) and fa(s) respectively,

m̂a,DR(s) =
M̂a,DR(s)

f̂a,DR(s)
, (4a)

M̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)Yiω̂ai − (ω̂ai − 1)ψ̂a,m(s;xi)ψ̂a,f (s;xi)

}
,

(4b)

f̂a,DR(s) = n−1
n∑
i=1

{
Kh(Si − s)ω̂ai − (ω̂ai − 1)ψ̂a,f (s;xi)

}
, (4c)

where ψ̂a,m(x) and ψ̂a,f (s;x) are the respective estimators for

ψa,m(s;x) = E(Y
(a)
i | S(a)

i = s, xi = x) = E(Yi | Ai = a, Si = s, xi = x) and

ψa,f (s;x) =
∂P (S

(a)
i ≤ s | xi = x)

∂s
.

DR estimators for the optimal transformation and PTE measure can be ob-
tained through plug-in estimators.

SIMULATION RESULTS

Figure 1: Bias, empirical standard error (ESE) versus average of the estimated
standard error (ASE), and coverage probabilities of the 95% CIs for ĝ(s) when
(A) treatment model is misspecified, (B) outcome model is misspecified.

REAL-WORLD APPLICATION
We examine the surrogacy of the partial Mayo score at week 6 on the full Mayo
score at week 54 among 361 patients with severe ulcerative colitis.

Figure 2: Estimated g(s) based on IPW (red) and DR (black) and pointwise
95% CIs in a cross-trial comparison of infliximab and golimumab

The DR estimator is estimated as ∆̂ = 2.33 (SE = 0.26) in favor of goli-
mumab and the corresponding treatment effect on the predicted outcome ∆g

is ∆̂g,DR = 2.04 (SE = 0.29), resulting in a PTE estimate of 0.88, 95% CI of
(0.79, 0.97), suggesting a strong surrogate.

TAKEAWAYS
• Proposed novel DR estimators for PTE in RWD settings that are efficient and consistent when at least one of the PS and OR models is correctly specified.

• Validated a cheap, non-invasive surrogate in a cross-trial study, which can inform future cross-trial designs for biologic therapies.

• Provided flexible semi-non-parametric models for Y (a) | S(a), x and S(a) | x to minimize assumptions on the dependency structure between S and Y .

• Estimated the variability and constructed CIs using perturbation-resampling.


