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Discussion

Leave-one-drug-out cross validation
Let 𝑁𝑁 be the number of drugs in the dataset (𝑁𝑁 = 28 in both datasets) and 𝐽𝐽
be the number of observations per drug (𝐽𝐽 = 15 in the stem cell dataset; 𝐽𝐽 =
4 in the wedge dataset). Denote 𝑓𝑓−𝑘𝑘 as the predictive model trained on the
dataset without the observations of drug 𝑘𝑘 . Let (𝑥𝑥𝑗𝑗𝑘𝑘 , 𝑦𝑦𝑗𝑗𝑘𝑘) be the 𝑗𝑗 th
observation of drug 𝑘𝑘, where 𝑥𝑥 and 𝑦𝑦 refer to the predictor vector and risk
category, respectively. Then the three-category prediction accuracy under
LODO-CV, 𝑎𝑎𝑎𝑎𝑎𝑎𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿−𝐶𝐶𝐶𝐶, is calculated as
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where 𝐼𝐼(𝑥𝑥) is the indicator function (Figure 1). 

Methods 𝑝𝑝𝑥𝑥 𝐻𝐻 = 𝑓𝑓2(𝑥𝑥),
𝑝𝑝𝑥𝑥 𝐿𝐿𝐿𝐿 = 1 − 𝑝𝑝𝑥𝑥 𝐻𝐻 .

Then the probability of intermediate risk 𝑝𝑝𝑥𝑥(𝑀𝑀) was calculated as
𝑝𝑝𝑥𝑥 𝑀𝑀 = 𝑝𝑝𝑥𝑥 𝑀𝑀𝑀𝑀 − 𝑝𝑝𝑥𝑥(𝐻𝐻).

Finally, the risk of observation 𝑥𝑥, �𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥 , was predicted as
�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟{𝑝𝑝𝑥𝑥 𝑟𝑟 }

where 𝑟𝑟 ∊ {𝐿𝐿,𝑀𝑀,𝐻𝐻}. 

Ordinal logistic regression model
Formally, for any observation 𝑥𝑥, the two binary classifiers 𝑓𝑓1 and 𝑓𝑓2 in the
ordinal framework are defined as:

𝑓𝑓1: 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑥𝑥 𝐿𝐿
1−𝑝𝑝𝑥𝑥 𝐿𝐿

= 𝑋𝑋𝛽̂𝛽1

𝑓𝑓2: 𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝𝑥𝑥 𝐻𝐻
1−𝑝𝑝𝑥𝑥 𝐻𝐻

= 𝑋𝑋𝛽̂𝛽2

where 𝑋𝑋 is the predictor vector of observation 𝑥𝑥 and 𝛽̂𝛽1 and 𝛽̂𝛽2 are two
model parameter vectors (including interceptions). 𝑋𝑋𝛽̂𝛽1 and 𝑋𝑋𝛽̂𝛽2 are inner
products between predictor vectors and parameter vectors. We estimated 𝑓𝑓1
and 𝑓𝑓2 by maximum likelihood estimation. After obtaining 𝑓𝑓1 and 𝑓𝑓2, the
prediction of risk categories for each observation and drug were calculated
as described in the previous section.

Ordinal random forest model
Random forest is the ensemble of multiple decision trees and can capture
the nonlinear relationship in the dataset. A decision tree T is a predictive
model that assigns each observation to a certain category based on split
rules defined on the predictor space. Formally, suppose that there are 𝑃𝑃
predictors 𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑃𝑃 in the dataset, and we split the predictor space into
two regions, 𝑅𝑅1 and 𝑅𝑅2, according to predictor 𝑋𝑋𝑡𝑡 and threshold 𝑠𝑠:

𝑅𝑅1 𝑥𝑥, 𝑡𝑡, 𝑠𝑠 = {𝑥𝑥|𝑋𝑋𝑡𝑡 ≤ 𝑠𝑠}
𝑅𝑅2 𝑥𝑥, 𝑡𝑡, 𝑠𝑠 = {𝑥𝑥|𝑋𝑋𝑡𝑡 > 𝑠𝑠}

where 𝑥𝑥 denotes observation. Then for any region 𝑅𝑅𝑚𝑚 with 𝑁𝑁𝑚𝑚 observations,
let 𝑝̂𝑝𝑚𝑚𝑚𝑚 be the proportion of category 𝑟𝑟 in region 𝑅𝑅𝑚𝑚:

𝑝̂𝑝𝑚𝑚𝑚𝑚 =
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where 𝑥𝑥𝑖𝑖 and 𝑦𝑦𝑖𝑖 are the predictor vector and risk category of observation 𝑖𝑖,
respectively. 𝐼𝐼(𝑥𝑥) is the indicator function. The risk of any observation 𝑥𝑥 in
region 𝑅𝑅𝑚𝑚 is predicted as:

�𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑥𝑥 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑟𝑟𝑝̂𝑝𝑚𝑚𝑚𝑚,
where 𝑟𝑟 ∊ {𝐿𝐿,𝑀𝑀,𝐻𝐻}. In each split generating regions 𝑅𝑅1 and 𝑅𝑅2, we seek the 
predictor 𝑋𝑋𝑡𝑡 and threshold 𝑠𝑠 by minimizing the misclassification error, Gini 
index, or cross-entropy. 

Torsades de pointes (TdP) is a rare but potentially fatal ventricular
arrhythmia largely caused by electrolyte imbalance and cardiomyopathies
after drug treatment. The identification of TdP is a crucial step in the
assessment of safety before a drug reaches the market. The regulatory
agency, pharmaceutical industry, and academia proposed serval new
paradigms to better predict the drug-induced TdP risk in preclinical
studies. The Comprehensive In Vitro Proarrhythmia Assay (CiPA), initiated
by the US Food and Drug Administration (FDA), is an essential public-
private collaboration among these attempts. Additionally, the rabbit
ventricular wedge assay (RVWA), an established in vitro paradigm for
detecting drug-induced QT prolongation and arrhythmia, has been adapted
for the assessment of drug-induced TdP risk.

In this study, we proposed two statistical learning models, ordinal logistic
regression and ordinal random forest, to accurately predict drug-induced
TdP risk on datasets generated under CiPA and RVWA paradigms. Our
predictive models utilized the ordinal information in low-, intermediate-,
and high-risk levels instead of treating them as independent categories. The
unbiased model performance on new drugs was estimated by leave-one-
drug-out cross-validation (LODO-CV). The uncertainty of model
performance was further quantified by stratified bootstrap. We identified
the potential outlier drugs using the asymptotic prediction accuracy
obtained from stratified bootstrap. Sensitivity analysis was then conducted
to investigate the impact of potential outlier drugs on the model
performance. To further validate and improve model prediction, we
conducted control analysis, a common practice in in vitro studies, by
selecting one control drug with mechanistically understood TdP risk.
Finally, we examined the model interpretability through the analysis of
normalized permutation predictor importance.

In summary, our work is the first attempt to construct multivariate
statistical learning models that can accurately predict the drug-induced
TdP risk from in vitro data. It satisfies the principles of statistical learning,
highlighted by its comprehensive uncertainty measurements and strong
interpretability. The proposed modeling and evaluation process can be
extended easily to new datasets generated by other experimental protocols.
The result of model prediction will serve as supplemental evidence in the
drug safety assessment.

Introduction

Figure 1. Leave-one-drug-out cross-validation. In each iteration, we trained the
predictive model on 27 training drugs and predicted one left-out drug. The same
process was repeated until each drug was predicted.

Figure 2. The empirical distributions of model performance under stratified
bootstrap. .

Utilization of ordinal information
First, we trained a binary classifier 𝑓𝑓1 which differentiated observations
between low risk and intermediate-or-high risk. Similarly, we trained
another binary classifier 𝑓𝑓2 which differentiated observations between high
risk and low-or-intermediate risk. Second, for any observation 𝑥𝑥 in the test
set (i.e., the left-out drug), we predicted its probability of low risk 𝑝𝑝𝑥𝑥(𝐿𝐿),
intermediate-or-high risk 𝑝𝑝𝑥𝑥(𝑀𝑀𝑀𝑀) , high risk 𝑝𝑝𝑥𝑥(𝐻𝐻) , and low-or-
intermediate risk 𝑝𝑝𝑥𝑥(𝐿𝐿𝐿𝐿) as:

𝑝𝑝𝑥𝑥 𝐿𝐿 = 𝑓𝑓1(𝑥𝑥),
𝑝𝑝𝑥𝑥 𝑀𝑀𝑀𝑀 = 1 − 𝑝𝑝𝑥𝑥 𝐿𝐿 ,

Figure 3. The correct rate of drug prediction calculated by stratified bootstrap. For
each drug, we connect the correct rates of two models. In each risk category, drugs are
sorted from high to low based on their average correct rates across two models.

Results
Overall model performance
Figure 2 compares the model uncertainty of ordinal logistic regression and
ordinal random forest calculated by stratified bootstrap. The ordinal
logistic regression and ordinal random forest exhibit similar prediction
performance on the stem cell dataset. Ordinal random forest consistently
outperforms ordinal logistic regression on the wedge dataset.

Drug prediction analysis
We calculated the proportion of correct predictions (correct rate) for each
drug in the 1000 stratified bootstrap predictions. Figure 3 shows the
correct rate of predicting each drug across different model-dataset
combinations. In the stem cell dataset, there are eight drugs on which both
models resulted in less than 25% correct rates. In the wedge dataset,
however, only two drugs of intermediate risk are difficult for both models to
predict. Many of the drugs with close-to-zero correct rates have been
reported to have abnormal observations in their original experiments.

The prediction accuracy of two models on the wedge dataset is consistently
higher than the stem cell dataset. Such discrepancy is largely due to the
different experimental designs of the two datasets. Observations in the stem
cell dataset were generated at 10 experimental sites, using two hiPSC-CM
lines and five EP platforms. All observations in the wedge dataset were
generated at one laboratory using the same type of biological sample and
EP platform. Although the multisite experiments were supposed to follow
the same protocols, the batch effects caused by site-to-site variability
introduced a higher degree of noise in the stem cell dataset. The signal-
noise ratio in the stem cell dataset is thus lower than the wedge dataset,
resulting in lower prediction accuracy. One potential solution for this issue
is to estimate the effects of site, cell line, and EP platform and include these
factors into the modeling process. The accurate estimation of such effects
requires special experimental designs with enough power to describe and
explain the variations from those factors.
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