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Instructors Introduction
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• Dr. Andy Liaw: Sr. Principal Scientist, Biometrics Research, Merck andy_liaw@merck.com
• Dr. Junshui Ma: Director, Translational Oncology Statistics, Merck junshui_ma@merck.com



Outline
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• What is Machine Learning ? (Junshui Ma) ~ 45 minutes
• Supervised Learning Workflow (Andy Liaw) ~ 30 minutes
• Break (Special Q&A) ~ 10 minutes
• Supervised Learning Methods  (Andy Liaw) ~ 60 minutes
• Break (Special Q&A) ~ 10 minutes
• Model Interpretation, including Feature Selection and Other Topics (Junshui Ma) ~ 45 minutes



Job Announcement
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- An opening at Early and Translational Oncology Statistics Department, Merck
- A unique opportunity to work on both oncology clinical studies and biomarker research
- Flexible position level : 

• Fresh Ph.D. (Sr. Scientist) ,
• 3+ years of related post-Ph.D. experience (Associate Principal Scientist), or
• 7+ years of related post-Ph.D. experience (Principal Scientist).

- Requirements:
• Excellent communication skills
• In-depth understanding in statistical principles and methods
• Programming capability
• A self-motivated team player

- Contact Email:    junshui_ma@merck.com



Machine Learning for Statisticians, Part I:
What is Machine Learning?
− Machine Learning vs. Statistics
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Junshui Ma and Andy Liaw



Outline
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• Goals of This Course
• What is Machine Learning (ML)?
• ML vs. Statistics: Similarities and Dissimilarities
• Different areas of ML

“RELEASE OF LIABILITY” statements: 
• Lowering expectation: I understand that machine learning experts were not made in 3.5 hours.
• Resolving disagreement professionally: I agree to hold the presenters harmless from any damages to my pride 

as a statistician.



Why Do You Want to Learn ML?



Goals of This Course

• To understand similarities and differences between ML and Statistics
• To learn general ML concepts and methods
• To be an innovator capable of identifying ML tasks in your daily work
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Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL)

10https://www.linkedin.com/pulse/ai-machine-learning-evolution-differences-connections-kapil-tandon

The broader concept of 
machines being able to 
carry out tasks in a way 
that we would consider 
“smart”.

A specific AI technology 
based on the idea that we 
can just give machines 
access to data and let 
them learn for themselves

A powerful modern ML 
method transformed the 
landscape of many data-
driven scientific fields

In the media, 

AI ~= Machine Learning
or
AI ~= Deep Learning



What is Machine Learning (ML) ?

Two items on Wikipedia: 
• “Machine Learning”: a field that that gives computers the ability to learn

without being explicitly programmed. (coined by an IBM Engineer, Arthur 
Samuel, in 1959) 

• “Portal: Machine Learning”: a scientific discipline that explores the 
construction and study of algorithms that can learn from data.
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Regarding algorithms for computers to automatically learn from data



Machine Learning (ML) vs. Statistics
A Spectrum of Viewpoints

ML==Stat

ML

Statistics

ML

Statistics

"Machine Learning is glorified 
Statistics.” -- Robert Tibshirani

ML
Statistics

ML

Statistics

Our Viewpoints

(many others’, e.g. Targeted Learning by Mark van der Laan et al. )



Machine Learning (ML) vs. Statistics       (Cont.)
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Statistics is the science
• of learning from data, and 
• of measuring, controlling, and communicating uncertainty. 

* Davidian, M. and Louis, T.A. (2012), “Why Statistics?”, Science, 336(12). (like a statement from ASA)



Machine Learning (ML) vs. Statistics : Similarities
• The sciences and technologies of learning from data
• Shared underlying math and computing machinery 
− general principles: sampling, overfitting, regularization, etc.
− probability and stochastic theories
− optimization theories and algorithms
− computing languages and platforms

• Shared researchers and practitioners
Many machine-learning methods were proposed by statisticians

• Fruitful marriage of two fields 
e.g. Hilbert Schmidt Independence Criterion, Targeted Learning

14



Machine Learning (ML) vs. Statistics: Dissimilarities
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Fundamentally, different schools of thinking *
• Machine Learning

“Algorithms” : Engineers’ heuristic and practical approach to find solutions
• Statistics

“Models” : Mathematicians’ principled approach to figure out why.  

* Leo Breiman (2001), “Statistical Modeling: The Two Cultures”, Statistical Science, 16(3).

Assuming the model 
represents the 

system,  I can figure 
how the system 

works! 

How can I hack the 
system to get the 

job done?       
Truth? Who knows!



Machine Learning (ML) vs. Statistics: Dissimilarities (cont.)
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• Derived Differences:
– Answering different questions

ML: How does DrugA work on John vs. Placebo do? ⇔ Stat: Is DrugA better than Placebo? 
– Formulating the problem differently

ML: An objective to optimize ⇔ Stat: A model to fit
– Emphasizing uncertainty differently

ML: Good to have     ⇔ Stat: Inherent to have, and hardly acceptable not to have 
– Evaluating model and performance differently

ML: separate datasets (e.g. cross-validation, etc). ⇔ Stat: same dataset (e.g. R2, residual 
analysis, AIC, etc.)   

– Resultant models used differently
ML: model prediction ⇔ Stat: inference based on model parameters



Two Different Approaches on Linear Regression : y =𝑋𝑋𝑋𝑋
Machine Learners:

Given training data 𝑋𝑋𝑖𝑖, 𝑦𝑦𝑦𝑦 𝑖𝑖=1..𝐿𝐿 , and test data 𝑋𝑋′𝑖𝑖 𝑖𝑖=1..𝑀𝑀 ,
try to predict 𝑦𝑦′𝑖𝑖 𝑖𝑖=1..𝑀𝑀

- Predictive Model Learning/Training

Define an objective: minimizing 𝐿𝐿 𝑓𝑓 = 1
𝑛𝑛
∑{𝑓𝑓(𝑋𝑋𝑖𝑖) − 𝑦𝑦𝑖𝑖}2

Choose 𝑓𝑓(𝑋𝑋;𝛽𝛽) = 𝑋𝑋𝑋𝑋 (i.e. a linear function)
Use an optimization procedure to find �𝛽𝛽 to minimize 𝐿𝐿(𝑓𝑓)
- Model Evaluation
Evaluate trained predictive model 𝑓𝑓(𝑋𝑋; �𝛽𝛽) by 𝐿𝐿 𝑓𝑓 on a 
held-out set.
- Model Utilization 
Use trained model to predict y′ of 𝑿𝑿′.
(Don’t care much about the parameters themselves.)
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Statisticians:

Given data 𝑋𝑋𝑖𝑖, 𝑦𝑦𝑦𝑦 𝑖𝑖=1..𝑁𝑁, try to fit a linear line (or 
plane) over the data
- Model Fitting
Assume 𝑌𝑌~𝑁𝑁 𝑿𝑿𝛽𝛽, 𝜎𝜎2𝐼𝐼

Therefore: �𝛽𝛽 = (𝑿𝑿𝑡𝑡𝑿𝑿)−1𝑿𝑿𝑡𝑡𝑌𝑌,
and �𝛽𝛽~Norm(𝛽𝛽, 𝜎𝜎2 𝑿𝑿𝑡𝑡𝑿𝑿 −1).

- Model Evaluation
Evaluate model fitting using goodness-of-fit, residual 
check, and/or AIC etc. 
- Model Utilization (or Inference)
Use fitted model to estimate and draw inference 
about 𝛽𝛽 (e.g. Hypothesis Testing (HT), Conf. Int. (CI)).



Two Different Paradigms
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Statistics Machine Learning
Specify a model that describes distribution of data (how the 
data were generated from a distribution)

Specify an objective and a functional class to related 
features X with outcome Y (no distribution specified)

Propose a principled way to fit the model (e.g. maximum 
likelihood)

Find a computational process (e.g. optimization) to find 
the functional parameters to optimize the objective

Emphasize population characteristics (CI, HT, etc.) Emphasize prediction of individual subject
Assessment of uncertainty enabled by assumptions Usually don’t have uncertainty assessment
Model evaluation is usually based on AIC, BIC, etc. Evaluate algorithmic performance on hold-out data
Assuming the model (at least close) to be true No notion of a “true model”

Heavy focus on the model Heavy focus on the computational algorithm



Statistics and Machine Learning

19https://mllib.wordpress.com/2017/10/10/machine-learning-vs-statistics-he-texas-death-match-of-data-science-2/

“Neither Statistics nor Machine Learning is a subset of the other, and neither lays exclusive 
claim to a technique. They are like two pairs of old men sitting in a park playing two different 
board games. Both games use the same type of board and the same set of pieces, but each 
plays by different rules and has a different goal because the games are fundamentally different. 
Each pair looks at the other’s board with bemusement and thinks they’re not very good at the 
game.”



Areas of Machine Learning
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• Supervised Learning
Training Data = { X, y } ⇒ Predictive model for y

− Semi-supervised Learning 
Training Data = { X, some y } ⇒ Predictive model for y 

• Feature Ranking, Selection, Engineering (Extraction)
X =  {x1[age], x2[sex], x3[region], x4[ECOG], x5[cancer stage], ……} 
Training Data = { X, y } ⇒ Feature ranking, or a feature subset, or a derived new feature set

• Unsupervised Learning
Data = { X } ⇒ Representation model for X

• Reinforce Learning
• Other (e.g. Kernel Learning, Deep Learning, etc.)



Supervised Learning: Training Data = { X, y } ⇒ Predictive model for y
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• Classification 
y: a categorical variable 
e.g. {response, no-response}, 

{cured, improved, unchanged, worse}
• Regression  

y: a numeric variable
e.g. HIV virus load,

Total sleep time

y

x1

x2

y = A

y = B

y = 23.2

x1

Semi-supervised Learning is just an extension of supervised learning



Will John have delayed response to Treatment M?

Historical Data of Many People Treated by Treatment M  ⇒ Training Dataset

X (features, predictor, covariate, or independent variable)y (response, 
dependent variable)

Supervised Machine Learning Method

Trained 
Predictive Model

John’s X
Predicted John’s y

Question for Statistics: Does Treatment M have more delayed responders than Standard Care does?

No p-Value / Confidence Interval

Regression

Classification



Feature Ranking, Selection, Engineering: Data { X, y } ⇒ Ranking, Subset, New
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Example Questions: 
• How can I rank the importance of the risk 

factors for predicting a person to have 
breast cancer in 5 years? (ranking)

• Which genes are useful for differentiating 
responders from non-responders for 
Treatment M? (selection)

• Can I extract novel information from 
cancer tumor images to better predict a 
patient’s survival? (engineering)

Feature Ranking, 
Selection, or
Engineering

Feature 
Ranking

x4
x1
x5
:
:

X={x1, x2, x3, x4, x5, …}, y

Selected 
Feature 
Subset

{x4, x1 ,x5}

or or
Derived 

new 
Features
{f1, f2,…,fk}



Unsupervised Learning: Data = { X } ⇒ Representation model of X
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• Clustering

• Dimension Reduction

• Association Rule

• ……

⇒

Example Questions: 
• Can we group tumor size changes 

under Treatment M into some 
patterns?

• Can I somehow visualize all patient 
safety information in a plot? 



Reinforce Learning (Policy Learning)
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Example Questions: 
1. What is the best strategy to play 

this computer game and win? 
2. How should the new antibiotic be 

promoted and used?

Policy : Pr(Action | Observation) for Max. Reward



Other (e.g. Kernel Learning, Deep Learning, etc.)

• A different way to categorize machine learning areas: not by problem to solve, but by 
technology to use.

• These learning technologies can be used at all the areas we mentioned before. 
• Deep Learning is the reason we are talking about artificial intelligence and machine 

learning today.  



Machine Learning for Statisticians, Part II:
Supervised Learning Workflow
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Andy Liaw



Supervised Learning

• From a collection of input-output pairs, learn to predict what output should be given input
• Premise of supervised learning: data with similar input should have similar output

o If we know what “similar” should mean for the task at hand; e.g., what variables are key 
in assessing similarity, the problem is easier

o If we don’t know what “similar” should mean, we have to rely on the algorithm to discover 
that

28

Input (X)
Features

Independent Var.
Model

Output (Y)
Labels

Dependent Var.

Input for 
New Data

Prediction of Output 
for New Data

1.D. E. Patterson,, R. D. Cramer,, A. M. Ferguson,, R. D. Clark, and, L. E. Weinberger. Neighborhood 
Behavior:  A Useful Concept for Validation of “Molecular Diversity” Descriptors. Journal of Medicinal 
Chemistry 1996, 39 (16) , 3049-3059. https://doi.org/10.1021/jm960290n

https://doi.org/10.1021/jm960290n


Data Splitting
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Recall one of the differences between Stats and ML: 
• In Statistics data are assumed to be generated from a probability model.  Everything stems from estimation of 

that probability model.
• In ML no probability models are assumed or even implied.
Consequence:
• In Statistics model performance is evaluated based on statistical principles.  Typical method papers argue their 

superiority from theoretical grounds, and show performance on data only as example.
• In ML model evaluation is done empirically on independent data not used in model building.  Typical method 

papers show no theoretical results that applies generally, but show performance on a battery of benchmark 
data sets.



Overall Schematic Data
Preprocessing: Transformation, recoding, 
scaling, removing redundant variables, etc.

Preprocess X without using Y

Training
Data

Validation
(Dev.) Data

Test Data
Feature Selection /

Feature Engineering (opt.)

M
od

el
 1 Parameter Set 1

Parameter Set 2
…

M
od

el
 2 Parameter Set 1

Parameter Set 2
…

Optimal Model

Cross-validation/
bootstrap if needed

Cross-validation/
bootstrap if needed

AutoML: Automating various 
parts of this workflow



Workflow can Vary Depending on Goal
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• If prediction of future data is the only utility of the model, feature selection may not be 
needed at all

• If the relationship between important predictor variables and the response is required, then 
one may need to pay closer attention to feature selection and perhaps also choice of 
methods

• Try to orient every part of the process toward the final objective, instead of optimizing each 
part with a different objective function

• Tradeoff between interpretability and performance: Generally highly flexible methods have 
capability for higher accuracy, but less interpretability, and vice versa

• If goal is interpretability, can still use flexible methods as performance benchmark



Data-Splitting is of Critical Importance
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• The three stages of the workflow (train / dev / test) require separate subsets of data.  The split should be done before any 
other data processing.

• Any fitting, selection, etc. can be seen as optimization, but only to the data operated on.  Thus must be tested on separate 
data set. (Similar reason that data cannot be used for both hypotheses generation and confirmation.)

• Common pitfall: select features using all data, then split into training / dev / test sets; yielding overly optimistic result.
• If sample size is not sufficiently large, can split data randomly multiple times (cross-validation or bootstrap)

Training Validation / Dev Testing

Feature Selection
Model fitting

Use Majority of Data

Parameter Tuning
Model Selection

Up to 20% of Data

Performance Evaluation

Up to 20% of Data



Training: Under- and Over-fitting

• ML is about finding repeatable patterns--- patterns 
seen in the training data that will repeat in the 
future

• Under-fitting is not picking up enough patterns 
(usually insufficient model complexity)

• Over-fitting is picking up patterns in the training 
data that will not occur in the future (usually 
excessive model complexity)

• Thus fitness is usually gauged as a function of 
model complexity

33

Er
ro

r

Model Complexity

Training Data

Test Data



Bias-Variance Trade-off

Analogous to linear regression:
• Overly simple models (omitting variables with non-

zero coefs) leads to biased prediction
• Including extraneous variables (those with 0 coefs) 

does not affect bias, but leads to increased 
variance

Optimal model finds the best compromise between the 
two

34

Model Complexity

Under-fit
(high bias)

Over-fit
(high variance)



Regularization: Controlling Over-fitting
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• One way to allow increased model complexity but still keep over-fitting in check is through 
regularization (a la ridge regression)

• Several strategies for regularization:
 Add penalty to cost function (L1, L2, or combination of both)
 Randomize certain aspect of optimization to control greediness (e.g., random feature 

selection, dropout)



Model Fitting and Parameter Tuning

36

• “Hyper-parameters” of an algorithm (modeling method) are user-selected parameters; e.g., shrinkage 
parameter in ridge regression

• Once hyper-parameters are set, an algorithm is executed to produce a model; usually by minimizing a loss 
function or maximizing a fitness function (e.g., likelihood)

• Hyper-parameters usually control the model complexity
• In ML, optimal model complexity is usually unknown and thus to be determined from data
• Lowest complexity: predict everything as mean of response; highest complexity: something like nearest 

neighbor, or interpolation of training data
• How well a hyper-parameter setting works need to be evaluated on data not used in model fitting
• Model / algorithm selection should be considered as part of the model optimization



Example: Logistic Regression

For logistic regression (with parameters 𝑤𝑤):
𝑓𝑓 𝑥𝑥;𝑤𝑤 = 1 + exp −𝑤𝑤𝑡𝑡𝑥𝑥 −1,

Define the loss function 
𝐿𝐿 𝑓𝑓 𝑥𝑥;𝑤𝑤 , 𝑦𝑦 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦 𝑥𝑥;𝑤𝑤 + 1 − 𝑦𝑦 log(1 − 𝑓𝑓 𝑥𝑥;𝑤𝑤 )

(This particular loss function is called cross entropy.)

Find 𝑤𝑤 that minimizes average loss on the training data

Predict Y = 0 if f < 0.5; Y = 1 otherwise

37

Given data like this
:
Y   AgeN SexM RaceBlack
0  -0.91    0         0
0  -0.21    0         0
1   1.59    0         0
0   1.46    1         0
0  -1.55    0         0
0  -0.72    0         0 

“learn” a function 𝑓𝑓() that can predict Y from 
AgeN, SexM, RaceBlack, …



Minimizing the Loss with Gradient Descent

Loss: 1
𝑛𝑛
∑{𝑦𝑦𝑖𝑖 log 𝑓𝑓 𝑥𝑥𝑖𝑖;𝑤𝑤 + 1 − 𝑦𝑦𝑖𝑖 log(1 − 𝑓𝑓 𝑓𝑓 𝑥𝑥𝑖𝑖;𝑤𝑤 }

Gradient: 𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤

= ∑ 𝑓𝑓 𝑥𝑥𝑖𝑖;𝑤𝑤 − 𝑦𝑦𝑖𝑖 𝑥𝑥𝑖𝑖

Initialize w (usually with random numbers)
Set a learning rate 𝛼𝛼

Iterate: 𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖 − 𝛼𝛼 𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑤𝑤=𝑤𝑤𝑖𝑖

Stop when |𝑤𝑤𝑖𝑖+1 − 𝑤𝑤𝑖𝑖| < tol

38

𝐿𝐿(
𝑤𝑤

)

𝑤𝑤
𝑤𝑤𝑖𝑖𝑤𝑤𝑖𝑖+1

𝑤𝑤𝑖𝑖+1 = 𝑤𝑤𝑖𝑖 − 𝛼𝛼
𝜕𝜕𝐿𝐿
𝜕𝜕𝑤𝑤𝑤𝑤=𝑤𝑤𝑖𝑖



Regularized (or Penalized) Regression

39

For regularization, we add a term to the loss function that penalize solution with large values of 𝒘𝒘

L2 penality (ridge): shrink 𝒘𝒘 toward 0

min
𝒘𝒘

𝐶𝐶 �
𝑖𝑖=1

𝑛𝑛

𝐿𝐿 𝑓𝑓 𝑋𝑋𝑖𝑖;𝒘𝒘 , 𝑌𝑌𝑖𝑖 + �
𝑗𝑗=1

𝑝𝑝

𝑤𝑤𝑗𝑗2

L1 penalty (LASSO): some 𝒘𝒘 may be shrunken to 0

min
𝒘𝒘

𝐶𝐶 �
𝑖𝑖=1

𝑛𝑛

𝐿𝐿 𝑓𝑓 𝑋𝑋𝑖𝑖;𝒘𝒘 , 𝑌𝑌𝑖𝑖 + �
𝑗𝑗=1

𝑝𝑝

|𝑤𝑤𝑗𝑗 |

C is the tuning parameter.  For L1 (LASSO) it actually controls model complexity (due to selection).



Hyper-parameter Tuning

This is usually done by grid search: use a grid on each 
parameter and form all possible combinations
Range of each parameter may need to be chosen 
carefully (as some methods can be very sensitive) 
Parallel/distributed computing would be very handy for 
this step
Less brute force method than grid search may be 
possible (e.g., Bayesian optimization)
This step usually requires more trial-and-error and 
intuition than theory; i.e., it’s more art than science
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http://blog.revolutionanalytics.com/2016/06/bayesian-optimization-of-machine-learning-models.html


Metrics for Classifier Performance

41

True 0 True 1

Predict 0 NTN NFN

Predict 1 NFP NTP

Accuracy: (NTN + NTP) / N

Error Rate: (NFP + NFN) / N

Sensitivity (Recall, TPR): NTP / (NFN + NTP)

Specificity: NTN / (NTN + NFP)

PPV (Precision): NTP / (NFP + NTP)

NPV: NTN / (NTN + NFN)

Youden’s J: Sensitivity + Specificity – 1

AUROC (Area Under ROC) = transformed Mann-Whitney 

statistic

Confusion Matrix



Last Steps
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• Test data should be used only for performance assessment, not comparison/selection
• If the goal is to obtain a model with best prediction performance, then we are done
• In drug discovery and development, that is rarely the case
• Further insights on relationship between predictor variables and response; e.g., variable 

importance, partial dependence, etc.
• If simpler models are needed either because of interpretation or feature selection:
 Can build a more flexible, “black box” model possibly with better performance
 The performance of the black box model can be the benchmark for the simpler model
 Find simpler model that gets performance as close to the black box model as possible



Take Home
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 Data splitting is crucial in preventing over-estimating model performance
 Feature selection should be considered part of the model training step
 Under-fitting (too much bias) vs. over-fitting (too much variance)
 Regularization provide more model flexibility while controlling over-fitting
 Performance estimates used for model / hyper-parameter selection are usually too optimistic
 Ultimate test of performance is on a completely independent test set, not random subset of 

available data
 Goal of model: prediction vs. interpretation



Machine Learning for Statisticians, Part III:
Supervised Learning Methods

44

Andy Liaw



Outline

45

• Supervised Learning – classification and regression
• Classification and Regression Trees
• Ensemble Methods: Bagging, Random Forests, Boosting
• Support Vector Machines and Kernel Methods
• Artificial Neural Networks
• No Free Lunch!



Supervised Learning: Classification and Regression
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Given training data {𝑋𝑋, 𝑌𝑌}, “learn” a function 𝑓𝑓(𝑋𝑋) that predicts 𝑌𝑌
If 𝑌𝑌 is categorical (e.g., 0/1) then it’s classification, and 𝑓𝑓(𝑋𝑋) can output either the label or probability
If 𝑌𝑌 is numeric (continuous) then it’s regression
The form 𝑓𝑓(𝑋𝑋) takes on depends on the method
How 𝑓𝑓(𝑋𝑋) is fitted also depends on method, but typically involves minimizing a loss function
Loss (or cost) function 𝐿𝐿(𝑓𝑓 𝑥𝑥 , 𝑦𝑦) reflects the cost incurred by predicting 𝑦𝑦 with 𝑓𝑓 𝑥𝑥
Typically, for classification, 𝐿𝐿 𝑓𝑓 𝑥𝑥 , 𝑦𝑦 = −∑{𝑦𝑦log𝑓𝑓 𝑥𝑥 + 1 − 𝑦𝑦 log 1 − 𝑓𝑓(𝑥𝑥) }
For regression, 𝐿𝐿 𝑓𝑓 = ∑ 𝑦𝑦 − 𝑓𝑓 𝑥𝑥 2 (MSE)
Irreducible error (loss of the optimal 𝑓𝑓): For classification, the Bayes rate.  For regression, the residual variance.

As if to confuse statisticians, some machine 
learners call this “hypothesis”!



Classification And Regression Tree

47



Classification And Regression Trees - Tuning
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• Size of trees: too small can result in under-fitting; too large can lead to overfitting
• Minimum size of terminal nodes
• Node-splitting criterion
• Minimum improvement in splitting



Ensemble Methods: General Idea

49

Every model need to be at least 
better than random guessing

Try to have different model make 
mistakes on different data

Stacking / Super Learner: More 
adaptive ensembles

Y Model1 Model2 Model3 Model4 Model5 Aggregate

0 0 1 0 0 1 0

1 0 1 1 1 1 1

1 1 1 0 1 1 1

0 1 0 0 1 0 0

0 0 0 1 0 1 0

1 1 1 1 0 0 1

67% 83% 67% 67% 50% 100%



Boosting / Random ForestCART



Gradient Boosting
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Original motivation: Incremental improvement
1. Initialize: 𝐹𝐹0 𝑥𝑥 = 𝑛𝑛−1∑𝑦𝑦𝑖𝑖
2. Iterate 𝑘𝑘 = 1, … ,𝐾𝐾:  𝑟𝑟𝑖𝑖 = 𝑦𝑦𝑖𝑖 − 𝐹𝐹𝑘𝑘−1 𝑥𝑥𝑖𝑖 . Fit a small tree model 𝑇𝑇𝑘𝑘(𝑥𝑥) to 𝑟𝑟𝑖𝑖s and update 𝐹𝐹𝑘𝑘 𝑥𝑥 =

𝐹𝐹𝑘𝑘−1 𝑥𝑥 + 𝑇𝑇𝑘𝑘(𝑥𝑥)

Final model is 𝐹𝐹𝐾𝐾 𝑥𝑥 = ∑1𝐾𝐾 𝑇𝑇𝑘𝑘(𝑥𝑥)
Insight: residuals are gradients of the loss function, so the algorithm is basically doing gradient descent in the 
function space
Cannot “boost forever”; shrinkage helps
Base model should underfit the data; the sequence reduces bias while maintaining low variance
“Stochastic” gradient boosting: use random sample at each iteration



Stochastic Gradient Boosting - Tuning

• Number of iterations (too large can lead to overfitting)
• Shrinkage (multiplier for each base model before added to ensemble): small values can lead 

to better fit, but may need more iterations
• Bagging fraction: number of randomly chosen data points to use in each iteration; increase 

diversity of trees
• Size of trees: Controls model complexity; either one of:
o Number of terminal nodes
o Max depths of trees
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B(ootstrap) AG(gregating)
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Bagging is a very simple yet effective way 
of creating ensembles; can be applied to 
any algorithm
Draw B random samples from training 
data
For each sample, fit a model (e.g., tree)
Prediction: average (or plural vote) from 
all models
The base models should overfit the data 
(low bias, high variance), then averaging 
reduces variance while maintaining low 
bias

Model 1

Model 2

Model 3

Model B



Random Forests
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Out-of-Bag (OOB) Data
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Each data point has probability (1 − 1
𝑛𝑛

)𝑛𝑛

(approximately 𝑒𝑒−1 or about 37%) of being excluded 
in a bootstrap sample
These “out-of-bag” (OOB) data can be use as 
legitimate test data for the tree grown on the bootstrap 
data
Aggregating these OOB prediction, we can get very 
good out-of-sample prediction error estimates without 
external validation such as CV
They can be further manipulated to assess variable 
importance

Ob
se

rv
at

io
ns

30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

1 2 3 4 5 6 7 8 9 10

Different Bootstrap Samples



Nearest Neighbor Classifier

Terminal nodes in a decision tree represent 
groups of similar data, with sizes of 
neighborhoods decided from training data 
(hyper-rectangular regions)

RF averages terminal nodes from many 
trees, so neighborhoods are varied --
“smooth out” the crude neighborhoods of a 
single tree

CART

RF



What Controls RF’s Model Complexity?

● Viewed as adaptive weighted NN, increasing number of trees makes weights “smoother”

● Sizes of neighborhoods can also be an indicator of model complexity

● Given the same data, smaller trees ⇔ larger neighborhoods

● Implication on tuning RF:

○ Use mtry to balance correlation and strength

○ A larger nodesize forces the algorithm to produce smaller trees, thus larger neighborhoods

○ A smaller sampsize also induces smaller trees, also make trees more diverse (but should be used 
with larger number of trees)



RF vs. Boosting

RF

● Trees are independently grown
● Use randomness to get diverse 

trees
● Usually grow large trees
● Number of trees is not a tuning 

parameter
● Model size can be huge due to large 

trees

Boosting

● Trees are grown sequentially
● Each tree tries to correct previous 

mistake
● Keep each tree relatively small
● Number of trees should be tuned
● Model size is usually small



Tree-Based Methods: Summary

Single tree are intuitive and easy to interpret, but usually suffers in prediction accuracy
Ensemble methods can greatly improve prediction accuracy, but give up interpretability
Bagging and Random Forests combine independently generated models, reducing variance of low bias models
Boosting iteratively makes improvements, combining a sequence of models with low variance and reduce bias
RF is generally more robust (no worry of overfitting)
Boosting can be more efficient for very large data
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Support Vector Machine: Maximum Margin Classifier
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Given linearly separable data, there are ∞ solutions
𝑓𝑓 𝒙𝒙 = sign(𝒘𝒘𝑡𝑡𝒙𝒙 + 𝑏𝑏)

Margin is the distance around the decision plane to 
the nearest data points (the larger the better)
Purely mathematical formulation. Solution is the 
Support Vector Machine (SVM):

𝑓𝑓 𝒙𝒙 = sign(�
𝑖𝑖=1

𝑛𝑛

𝛼𝛼𝑖𝑖𝑦𝑦𝑖𝑖𝒙𝒙𝑖𝑖𝑡𝑡𝒙𝒙 + 𝑏𝑏)

The nearest data points to the decision plane have 
non-zero 𝛼𝛼𝑖𝑖 and are called the support vectors
For non-linearly separable data, allow small fraction of 
data to be within the margin (soft margin classifier)



Nonlinear SVM: Kernel Trick
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One strategy to cope with nonlinear structures in data: 
do nonlinear transformations and apply linear method 
on the transformed data
Linear SVM: 𝑓𝑓 𝑥𝑥 = sign(𝑤𝑤𝑡𝑡𝑥𝑥 + 𝑏𝑏)
If 𝜙𝜙(𝑥𝑥) is a nonlinear function, a kernel is a function 
such that 𝐾𝐾 𝑤𝑤, 𝑥𝑥 = 𝜙𝜙 𝑤𝑤 ,𝜙𝜙(𝑥𝑥)
Nonlinear SVM: 𝑓𝑓 𝑥𝑥 = sign 𝜙𝜙 𝑤𝑤 ,𝜙𝜙 𝑥𝑥 + 𝑏𝑏

= sign 𝐾𝐾 𝑤𝑤, 𝑥𝑥 + 𝑏𝑏
The “trick”: we just need to know 𝐾𝐾(𝑤𝑤, 𝑥𝑥), not 𝜙𝜙 𝑥𝑥
RBF kernel: 𝐾𝐾 𝑤𝑤, 𝑥𝑥 = exp(−𝛾𝛾 𝑤𝑤 − 𝑥𝑥 2)



Kernel Methods: Beyond SVM
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The kernel trick is not tied to SVM--- it can be applied 
to basically any linear method
Re-express the objective function in terms of inner 
product, then “kernelize” by replacing them with kernel
Ex.: Ridge Regression:

�𝛽𝛽 = 𝑋𝑋𝑡𝑡𝑋𝑋 + 𝜆𝜆𝜆𝜆 −1𝑋𝑋𝑡𝑡𝑦𝑦 = 𝑋𝑋𝑡𝑡 𝑋𝑋𝑋𝑋𝑡𝑡 + 𝜆𝜆𝜆𝜆 −1𝑦𝑦

For new data 𝑥𝑥, �𝑦𝑦 = �𝛽𝛽𝑡𝑡𝑥𝑥 = 𝑦𝑦𝑡𝑡 𝑋𝑋𝑋𝑋𝑡𝑡 + 𝜆𝜆𝜆𝜆 −1𝑋𝑋𝑡𝑡𝑥𝑥

Let 𝐾𝐾 = 𝜙𝜙 𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑗𝑗 𝑛𝑛×𝑛𝑛
and 𝜅𝜅 = 𝜙𝜙 𝑥𝑥𝑖𝑖 , 𝑥𝑥 𝑛𝑛×1

where 𝜙𝜙 𝑢𝑢, 𝑣𝑣 = 𝑢𝑢𝑡𝑡𝑣𝑣, then �𝑦𝑦 = 𝑦𝑦𝑡𝑡 𝐾𝐾 + 𝜆𝜆𝜆𝜆 −1𝜅𝜅
Applying the kernel trick and we get Kernel Ridge 
Regression
Same can be done with many other linear methods 



Artificial Neural Networks
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Model 𝑌𝑌 as nonlinear function of compositions of 
nonlinear functions of linear combinations of 𝑋𝑋
Connection from the predictor variables (inputs) to 
each hidden node is basically a logistic regression
From all nodes in the first hidden layer to each node in 
the next layer is again logistic regression
The logistic function is called the activation function 
(there are other functions commonly used)
Hornik (1991) proved that ANN with single hidden 
layer can approximate any continuous function 
arbitrarily well, given enough data and hidden nodes
(Logistic regression is a network with no hidden layer)
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Training ANN: Back-Propagation
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BP == chain rule for 
computing the derivative 
in composite function

Gradient descent with BP is done for a pre-
determined number of iterations (“epochs”)
“Convergence” is not a well-defined concept in 
this context.  If more iterations are needed, the 
process can be re-started from where it left off.



“Modern” Neural Networks

So called “Deep Learning”, for the most part, is just a 
collection of tricks that improve on the old ANN:
Minibatch (Stochastic Gradient Descent): feed only a small 
subset of data at each update
Dropout: randomly give 0 updates for some parameters at 
each step (regularization)
ReLU activation: alleviate vanishing gradient
Batch normalization: allow faster learning
Momentum: give weights to gradient from previous step
Many variations on gradient descent
Deep Learning (ANN with >1 hidden layer): made 
possible/easier with the “tricks” above
These toy examples can be instructive
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http://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle&regDataset=reg-plane&learningRate=0.03&regularizationRate=0&noise=0&networkShape=4,2&seed=0.75986&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false


Tuning Neural Networks
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• Number of hidden layers
• Number of nodes in each layer
• Choice of activation function
• Regularization (Weight Decay)
• Dropout / batch normalization
• Minibatch size
• Number of epochs
• Optimization algorithm and its parameters (e.g., 

learning rate, momentum, etc.)

ANNs are highly flexible models with too many tuning 
parameters to make grid search and cross-validation 
practical or even feasible.
Due to the flexibility (especially with more hidden 
layers), they have large appetite for data.  They are 
unlikely to perform better than other methods with less 
than enormous amount of data.
Early stopping (monitor performance of validation set 
as training is underway and stop when it starts to 
degrade) is a good alternative.



Transfer Learning: Update a Well-Trained Model with New Data
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How to Choose Methods

How much time do you have?
“Small” datasets are unlikely to be amenable to highly flexible methods
Flexible methods may require significant computational resource on “large” datasets
The need to cross-validate can exacerbate the problem
More knowledge of the data and some understanding of the methods can help guide the choice
For large data, experiment on smaller subset of the training set to narrow down choice of methods

No Free Lunch (NFL) Theorem (Wolpert, 1996): No method (algorithm) is best for all possible data sets
Corollary: For every method (algorithm) there exists a dataset for which the method is the best
Lessons Learned from Running Hundreds of Kaggle Competitions
https://mlconf.com/sessions/lessons-learned-from-running-hundreds-of-kaggle-co/
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https://mlconf.com/sessions/lessons-learned-from-running-hundreds-of-kaggle-co/


Translation of Terms

Machine Learning Statistics
Train an algorithm Fit a model
Input, features Independent (predictor) variables
Output Response, outcome
Weights Model parameters
Bias Intercept
Epochs 1 epoch = # of Iterations to use all training data for update
Inference Prediction
Sigmoid function Logistic function
Cross entropy loss Negative log likelihood
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Software

Framework: scikit-learn 
Boosting: xgboost, lightgbm, …
Deep learning: Tensorflow/keras, PyTorch, CNTK, 
Mxnet
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MachineLearning CRAN Task View
Framework: caret, parsnip, mlr, mlr3, rattle, h2o
Deep learning: keras/tensorflow (call Python)



Machine Learning for Statisticians, Part IV:
Model Inference and Interpretation
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Junshui Ma 



Outline
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• What is Machine Learning ? (Junshui Ma) ~ 45 minutes
• Supervised Learning Workflow (Andy Liaw) ~ 30 minutes
• Break ~ 10 minutes
• Supervised Learning Methods  (Andy Liaw) ~ 60 minutes
• Break ~ 10 minutes
• Model Interpretation, including Feature Selection and Other Topics (Junshui Ma) ~ 45 minutes



Outline
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• Model Multiplicity

• Use of Trained Models (“Inference”)
 To predict the outcome Y of new samples
 To better understand the relationship between X (predictors) and Y (outcome)
− Feature ranking or selection
− Partial dependence between y (outcome) and xi (one of the predictors) 

• Interpretability

Notes: 
− Models in this section are by default models obtained via supervised learning. 
− {“Learning”, “Training”, “Fitting”}, {“Feature” , “Variable”, “Predictor”} are interchangeable in this section.



Model Multiplicity

• The concept of “Model Multiplicity” 
− Based on goodness-of-fit test and/or residual check, 

etc., Model 1, 2, and 3 can fit the data equally good. 
− However, Model 1, 2, and 3 produce very different 

interpretations of the relationship between X and Y.
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Model 1: Y= x1+x2+x3x4+x5

Model 2: Y= x1+x2x3+x4+x5

Model 3: Y= x1x2+x3+x4+x5

X Y

− Models are generally complex with (very) large 
number of parameters

− The joint effect of all parameters matters, instead the 
value of each parameter, because ML does not 
assume that a “true model” exists.

− The models that best predicts Ys of new Xs are the 
best models to use.

⇒ Opinion Leaders

⇒ Competition Winners

• How ML community handles this issue? 



Use of Trained Models (“Inference”)

• To predict the outcome Y of new Xs

• To better understand the relationship between X (predictors) and Y (outcome)
− Feature ranking or selection
− Partial dependence between y (outcome) and xi (one predictor) 
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Prediction with Trained Models

Notes to statisticians:
• Individual model parameter is not used directly
• It is “personal” 

– Both Xnew and ynew are about a case/patient/sample/...
– It is possible to calculate group effect from personal results numerically. 

• Uncertainty
– No distribution assumption ⇒ No inherent parametric uncertainty measurements (e.g. p-value, 95% CI)
– It is possible to get uncertainty measure using some non-parametric procedures
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Training Data {𝑋𝑋𝑖𝑖 , 𝑦𝑦𝑖𝑖}𝑖𝑖=1…𝑛𝑛

Trained 
Predictive ModelNew Data Xnew Predicted ynew

Data {𝑋𝑋𝑖𝑖 , 𝑦𝑦𝑖𝑖}𝑖𝑖=1…𝑛𝑛

Y = f(β1x1+…+βnxn)

Machine Learning: Prediction Statistics : Model Inference

From β1, effect of x1 is … with a p-value of … 

non-negligible 
assumptions



Feature Ranking/Selection Overview
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• Why feature ranking/selection ? 
− Improving the prediction performance 

e.g. Improving the generalization by de-selecting noisy/non-informative features before training
− Producing faster and more cost-effective prediction capability
− Better understanding of the underlying natural process

e.g. Understanding a treatment’s Mechanism of Action
− Finding biomarkers

• An area claimed by both Machine Learning and Statistics
− Both communities contributed ideas and methods
− The same method can be implemented differently between these two communities



Feature Ranking/Selection Methods
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• Filter Methods: Ranking features by their individual measures/scores

• Wrapper Methods: Formulating feature selection as an optimal feature subset search
• Embedded Methods: Ranking or selecting features while a multiple (generalized) linear model is built

• Add-on Methods: Ranking feature based on the specific properties of predictive models

Note: 
Filter Method is listed here for completeness and the convenience of teaching. They are generally done before the target 
predictive models were trained. 



Feature Ranking and Selection: Filter Methods
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F1

f(y, F1)

F1

F2

f(y, F2)

F3

f(y, F3)

Fn

f(y, Fn)

Fn

Full Feature Set

Selected Feature Subset

• Each feature can be evaluated by a measure/score, 
𝑓𝑓 𝑦𝑦,𝐹𝐹𝑖𝑖 , which can be 
− correlation coefficient, 
− odd ratio, 
− information gain (IG)*, 
− Hilbert-Schmidt Independent Criterion (HSIC) **, 

etc. 
• Ranking features by 𝑓𝑓 𝑦𝑦,𝐹𝐹𝑖𝑖 or selecting features 

by thresholding 𝑓𝑓 𝑦𝑦,𝐹𝐹𝑖𝑖 .
• No model or only univariate model needed. 
• Should be done in the training dataset. 

* IG(y, Fi) = 𝐻𝐻 𝑦𝑦 − ∑𝐹𝐹𝑖𝑖 𝐻𝐻 𝑦𝑦 𝐹𝐹𝑖𝑖 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝐻𝐻 𝑦𝑦 = −∑𝑦𝑦 𝑝𝑝 𝑦𝑦 log(𝑝𝑝 𝑦𝑦 )
** HSIC(F) : a measure using kernel trick to quantify independence of 2 random variables

Threshold



Feature Search 
Strategy

Feature Selection: Wrapper Methods
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A Model         
(Learning Algorithm)

Selected Feature Subset

Full Feature Set

A Feat. Subset Evaluation

Exhaustive Search for the Best Subset:
n Features ⇒ 2n possible Subsets (e.g. 230 = 1,073,741,824)

Forward-Stepwise Greedy Search:

• Formulating feature selection as an optimal 
search, and “wrap” the selection around a model 
for evaluating different sets of features.

• Example: Best-subset Selection, Forward-
stepwise Selection, etc. 



Feature Selection: Forward-stepwise Selection
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• Both ML and Statistics communities claim this method with a similar process
– Input: 
 A set of candidate features (covariates) S={F1, F2, …, Fn}, and 
 Data : X=[F1, F2, …, Fn] and y, 
 A model f({Fi1, Fi2, …, Fik}): X’ → y, where X’=[Fi1, Fi2, …, Fik]

– Procedure: 
1. Start with an empty model f({}), and a candidate feature set S with all features.
2. For each feature Fj in the candidate feature set S, 

a) Add that feature to the existing model f({Fi1,…, Fim}) to train a new model of f({Fi1,…, Fim, Fj})
b) Evaluate the new model performance using a pre-specified model evaluation criterion 

3. Record the feature Fs, which produces a model f({Fi1,…, Fim, Fs}) with the best performance
4. If model f({Fi1,…, Fim, Fs}) is better than existing model f({Fi1,…, Fim}), 

Update existing model to f({Fi1,…, Fim, Fs}), and remove feature Fs from candidate feature set S, 
Repeat from Step 2.

else 
Quit.



Feature Selection: Forward-stepwise Selection (Cont.)
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• ML and Statistics are different in two related aspects
– Model evaluation criteria 

ML: prediction on new data (e.g. cross-validation) ⇔ Stat: AIC, BIC, Adjusted R2, etc.

– How to Use Dataset
Machine Learning Statistics

Training Data
Inner Training Data Calibration Data

A Trained Model

Model Evaluation 
(i.e. Prediction on Calibration Data)

All Available Data

A Fitted Model

Model Evaluation (e.g. AIC, BIC, etc.)



Fitting/training a multiple 
(Generalized) Linear Model

Feature Selection: Embedded Methods

Feature Ranking or 
Selected Feature Subset

Full Feature Set

𝑦𝑦 = 𝑓𝑓(𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2 +…𝑤𝑤𝑁𝑁𝑥𝑥𝑛𝑛 +b)

According to 
normalized |𝑤𝑤𝑖𝑖|

• Ranking or selecting features while a multiple 
(generalized) linear model is built.

• Example models: (Generalized) Linear Regression, 
LASSO, Relaxed LASSO, Group LASSO, Elastic 
Net, Ridge Regression, linear Support Vector 
Machine, etc.

• This category of methods has more statistical flavor. 



Embedded Methods : Regarding Feature Selection Using “p-values”
• General practice: 

For 𝐄𝐄 𝑦𝑦 = 𝑓𝑓(𝑤𝑤1𝑥𝑥1 + ⋯ ) , select factor 𝑥𝑥1 if the p-value of coefficient 𝑤𝑤1 < 0.05. 

• What is p-value? (Am. Stat. Assoc. 6 Statements on p-values (2016))
#1: “indicates how incompatible the data are with a specified statistical model”
#6: “does not provide a good measure of evidence regarding a model or hypothesis”

• Argument: p-value is just as a statistic of a normalized |𝑤𝑤1| (e.g. ~|𝑤𝑤1|/SE(𝑤𝑤1))
• Counter-argument: Why don’t directly using the underlying statistics (e.g. t-

statistic, z-score)?
– Forcing a careful selection of threshold (not automatically 0.05!)
– Advocating a proper use of the p-value concept



Wrapper Methods vs. Embedded Methods
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• Forward-stepwise Selection ≈ best-subset selection
• LASSO = a convex relaxation of best-subset problem

• Embedded method ≈ LASSO-like w/ different regularization

LASSO:

Best-subset:

Wrapper Methods + Embedded Methods  Multiple Methods 



Feature Selection: Add-on Methods

• Ranking feature based on some specific forms/properties of the predictive models (i.e. 
model-dependent)

• Examples: Random Forest variable importance, Tree-based feature ranking, etc. 

• This category of methods demonstrate more ML spirit.



Feature Ranking: Variable/Feature Importance Ranking with Random Forest

• Out-of-Bag (OOB) samples of each tree in Random Forest

• Idea: If feature Fi is important, “messing-up” with it degrades 
prediction.

• Variable/Feature Importance defined by Permutation Test: 
Importance(Fi) = Performance({F1,…,Fi

(p),…,Fn},y)-Performance({F1,…,Fi,…,Fn},y) 
where Fi

(p) is a permutation of Fi

• Performance({F1,…,Fi
(p),…,Fn},y)

Given a trained Random Forest, 
1) For each tree, calculate the prediction error of this tree on the OOB samples 

with the permuted feature Fi
(p), 

2) Average the prediction errors of all trees as the performance of Random 
Forest({F1,…,Fi

(p),…,Fn},y).

* This approach, i.e. Mean Decrease in Accuracy (MDA), is one of several methods to rank features in Random Forest. 

2 9 6 12 7

2 12 7 72

original data
bootstrap sample

9 6 OOB



Error on i-th Permuted 
Hold-out Data, Eik

Error on i-th Permuted 
Hold-out Data, Eik

Feature Ranking: Variable Importance Ranking (Cont.)

Hold-out 
Data

Shuffle the kth

feature n times

Trained Predictive Model

Error on original 
hold-out data, E

Error on data (ith shuffle 
of kth feature), Eik

For the kth feature at the ith shuffle:
𝑑𝑑𝑖𝑖𝑖𝑖 = 𝐸𝐸𝑖𝑖𝑖𝑖 − 𝐸𝐸,

VarIm(𝐹𝐹𝑘𝑘) = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑑𝑑𝑖𝑖𝑖𝑖)
𝑆𝑆𝑆𝑆 𝑑𝑑𝑖𝑖𝑖𝑖

The Variable Importance (VarIm) idea is a generic one, and applicable to other predictive models



Feature Ranking: Variable Importance Ranking with Random Forest (Example)
Importance Ranking of 10 Baseline Variables using a Random Forest Trained with Study 1 & Study 2 OS Data



Other Feature Ranking Methods by Tree-based Methods
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• Tree-based Methods: Ensemble models with 
trees as the building blocks. e.g.
− Random Forest :  big and deep trees
− Gradient Boosting Trees : small and shallow trees

• Different Approaches:
− Minimal Depth (Random Forest):

Features used at top layers of the trees are more 
important, because they are 
(1) selected early, and 
(2) influence more samples. 

− Feature Importance Measurements (Gradient 
Boosting Trees): 
 Gain: relative % of local improvement in accuracy 

after splitting on feature X
 Cover: relative % of samples influenced by feature X
 Frequency: relative % of number of times feature X 

used

X2>t11

X4>t12 X1>t13

X1>t21

X3>t14 X2>t15

X3>t22 X1>t23

X4>t24

Remember: Check your models’ 
prediction capability first (better than 
random guess?) 



Partial Dependence: y (outcome) vs. xi (one of the predictors)
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• Every predictive model represents a function with multiple variables y = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝)

• The marginal relation between y and a particular variable/predictor 𝑥𝑥𝑖𝑖 can be examined 
using Partial Dependence (proposed by Friedman 1999).

Example: 
Assuming a model with 2 predicators, y = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2),
The partial dependence on 𝑥𝑥1∶ 𝒑𝒑 𝒙𝒙𝟏𝟏 = ∫ 𝑓𝑓 𝑥𝑥1, 𝑥𝑥2 𝑑𝑑𝑥𝑥2

i.e., all remaining variables are integrated out



Computing Partial Dependence
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With actual data, the integral is approximated by averaging predictions
When calculating the partial dependence of variable 𝑥𝑥1 for model y = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑝𝑝)

x1 x2 x3 …

…
…

f(x)

f1

f2

f3

f4

f5

f6

…

Original data

x1 x2 x3 …

1.2

1.2

1.2

1.2

1.2

1.2

1.2

…
…

Replace the 
original values of 
𝑥𝑥1 with some 
constant, such as 
1.2

Predict 
outcome 
using 
modified 
data

Modified data

Compute the average 
prediction, 

Repeat the process with 
different 𝑥𝑥1 values to obtain the 
partial dependence function 

Note: A R package “pdp” for this

𝑝𝑝(𝑥𝑥1)

𝑝𝑝(𝑥𝑥1 = 1.2)



Partial Dependence: Example – Age vs. Response
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A trained Random Forest represents the relationship between many baseline variables, 
including age, vs. probability of  having a treatment response

Pr(𝑅𝑅𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒) = 𝑓𝑓(𝑥𝑥1, … ,𝑎𝑎𝑎𝑎𝑎𝑎, … 𝑥𝑥𝑝𝑝)

The partial dependence of age vs. Response, Pr(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) = ps(age) , is shown below



Interpretability : regarding “ML Models are hard to interpret”  
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• Is it about data (observational vs. experimental), instead of 
models? 

• Is it about model complexity, instead of the areas of the models 
(statistics vs. ML) used?

• Many complex models are somewhat interpretable, if you know 
how to. 

 Interpretability of complex models is a research area–
Interpretable ML  



Session Review

• Model multiplicity
• Using trained ML models to predict the outcomes of new cases
• Feature ranking and selection 
− 4 categories of methods
− Jointly owned by ML and Statistics 

• Partial dependence 
• Interpretability of ML models

95



Finally
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• What we learned
− Machine Learning vs. Statistics
− Machine Learning concepts and methods:
 General workflow
 Supervised learning (RF, Boosting, SVM, Neural Network…)
 How to use learned models (prediction, features, partial dependent function, …)

• How to make a difference tomorrow
− Innovator = the person capable of looking at old things from a new perspective
− Question: Can this be done with a Machine Learning approach?
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