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Outline
• What are Adaptive Designs?

• Why Bayes?

• What are ‘Complex’ trials? 

• What are Simulations?

• Examples

– Phase 1 Pediatric & Adults
– Trulicity
– ICECAP
– DAWN
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• Credited with designing the first 
randomized clinical trial in humans

• Medical Research Council. 
Streptomycin treatment of 
pulmonary tuberculosis. BMJ. 1948; 
2:769-782.

Austin Bradford Hill
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Randomized Clinical Trials
•Incredible innovation in health care and science
•Pre-1948 relied on anecdote and observational studies
•For 50 years the ‘science of the clinical trial’ barely 
changed 

•Trials are “long boxes” designed to answer a single 
question
•“Not sustainable” —Janet Woodcock, FDA

• Trial design science is being innovated
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• What is an adaptive design?
– A design that has pre-specified 

dynamic aspects that are 
determined by the accruing 
information

– Adaptive … “By Design”

Adaptive Designs
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JAMA 2006; 296:1955-1957
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• During the course of the trial things are learned that –
had you known before the trial started – you would have 
adapt the design.
– Learned:  It is important that the trial learn about the 

important aspects, and efficiently.
• Dose-response models, Longitudinal models, prediction, imputation, 

biomarkers,…
– Adapt: The dynamically moving aspects of the trial: 

prospective changes

Adaptive Promise
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Typical Adaptive Design

Analyze
Available Data

Accrual

Burn-In Accrual

Revise Allocation
Rules

per Adaptive Algorithm

Stop

Adaptive Decision Rules
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What Phase/Stage of CT?
• Phase I:

• Sample size 
• Dose escalation
• Combination of arms
• Seamless phase I-II

• Phase II/Pilot:
• Sample size
• Dose allocation
• Introduce/Drop arms
• Enrichment
• Prediction of Phase III
• Seamless phase II-III
• Platform Trials

• Phase III/Confirmatory:
• Sample size 
• Multiple Arms
• Accrual Interim Analyses
• Futility Analyses
• Timing of Conclusions
• Enrichment
• Platform Trials

• Phase IV:
• Sample size
• Timing of Conclusions
• Indications
• Platform Trails
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Therapeutic Areas/Diseases
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• Oncology
• Migraine
• Lupus
• Sepsis
• Diabetes
• Obesity
• Stroke
• Tinnitus
• MS
• CHD
• Smoking Cessation
• Gastroparesis
• Alzheimers
• Atrial Fibrillation
• Cancer diagnostic
• Disc Disease
• Contraceptives

• Valves/stents
• Asthma
• Emphysema
• PFO
• RA
• Sleep Apnea
• Chronic Cough
• Osteoparesis
• Parkinsons
• Pain
• Hydrocephalus
• HIV
• Schizophrenia
• Crohns
• Spinal Cord Injury
• Hep C
• Preterm Labor

• Constipation
• Micturition
• Drooling
• PO Ileus
• DVT
• Sexual health
• Emesis
• Statins
• Infections
• OAB
• TB
• Head Trauma
• Cardiac Arrest
• ALS
• Alcohol Abuse
• Drug Abuse
• CHF

• Influenza
• Epilepsy
• BPS
• Crohns
• Drug Resistant Path.
• Many Diagnostics
• Hypertension
• Insomnia
• CMV
• Amyloidosis
• Sickle Cell Disease
• COPD
• GNE Myopathy
• SMA
• RSV
• Prater-Willi
• EBOLA
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Statistical Limits?

• What statistical aspects of a problem may 
provide limitations for adaptation?
–Time to Information
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Simple Group Sequential

• Think of a trial with a single analysis after a sample size of N
• We can use a critical value of the test-statistic, such that the 

type I error is the needed level (say one-sided 0.025): 1.96

12
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Fixed Trial
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Fixed Trial
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Fixed Trial

16

N

1.96

Test-Statistic

Su
cc

es
s

16



9/30/20

5

Fixed Trial
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Fixed Trial
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N/2

0.0415

Null

0.025
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Fixed Trial

19

N

1.96

Test-Statistic

N/2
Null

2.18
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cc

es
s

Su
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0.0250.015

“Pocock-type Boundaries”

-- the same CV at each look
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Fixed Trial

20

N

1.96

Test-Statistic

N/2
Null

2.18

Su
cc

es
s
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s

0.0250.015

The difference from 1.96 to 2.18 has 

become labeled as the penalty of the 

Interim analysis

20
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Fixed Trial

21

N

1.96

Test-Statistic

N/2
Null

1.98

Su
cc

es
sSu

cc
es

s

0.0250.0026

Could use more conservative at N/2 

and pay less penalty…

OBF = CV/sqrt(n/N)

2.80

21

Group Sequential
• You can be very aggressive (1.96 at N/2) … to very 

conservative… but you need to adjust the CV to win the trial 
depending on these looks
– We can do the math to find these values

• Cautionary Note:
– You do NOT pay a penalty for looking at the data you pay a penalty 

for an ACTION that could result in an increase in the probability of 

success

• Futility, safety, adjust randomization, bigger N,…
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Actions/Data
Action

At Interim Decrease N Increase N
Data is Positive Increase T1E

Success Stopping
Decrease T1E

RAR
Promising Zone

Data is Negative Decrease T1E
Futility Stopping

Increase T1E
Promising Zone

Goldilocks
23
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COVID Vaccine Trial 

24

VE for the first primary objective will be evaluated . 
Overwhelming efficacy will be declared if the first 
primary study objective is met. The criteria for success at 
an interim analysis are based on the posterior 
probability (ie, P[VE >30%|data]) at the current number 
of cases. Overwhelming efficacy will be declared if the 
posterior probability is higher than the success 
threshold. 

The success threshold for each interim analysis will be 
calibrated to protect overall type I error at 2.5%. 
Additional details about the success threshold or 
boundary calculation at each interim analysis will be 
provided in the SAP. 

24
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COVID Vaccine Trial 
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The study will stop for lack of benefit (futility) if the 
predicted probability of success at the final analysis or 
study success is <5%. The posterior predictive POS will 
be calculated using a beta-binomial model. The futility 
assessment will be performed for the first primary 
endpoint and the futility boundary may be subject to 
change to reflect subsequent program-related decisions 
by the sponsor. 

25

Adaptive Design

26

26

COVID Vaccine Trial 

27

A minimally informative beta prior, beta (0.700102, 1), is 
proposed for θ = (1-VE)/(2-VE). The prior is centered at θ = 
0.4118 (VE=30%) which can be considered pessimistic. The 
prior allows considerable uncertainty; the 95% interval for θ is 
(0.005, 0.964) and the corresponding 95% interval for VE is (-
26.2, 0.995) 

27

Prior for Theta

28

> ve = (2*theta - 1)/(theta - 1)

> length(ve[ve>.30])/length(ve)
[1] 0.53689

28
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Operating Characteristics
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Kert Viele Tweetorial…
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Criticism

41
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Criticism
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Criticism
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Bayesian Statistics

• Reverend Thomas Bayes (1702-

1761)

• Essay towards solving a 
problem in the doctrine of 
chances (1764)

1

• This paper, on inverse probability, led to the 
name  Bayesian Statistics

1

Bayes Theorem

2

2

Compare P-Values/Posteriors

• Inspired by Steve Ruberg Example

• You have a bag of coins, mixed fair coins and a single 2-headed 
coin
– Assume a null (H0) of “fair coin”

– Alternative (H1) of “2-headed coin”

• Flip the coin independently n times…

3

3

Data/P-Values

4

DATA P-Value

1/1 0.50

2/2 0.25

3/3 0.125

4/4 0.0625

5/5 0.0312

6/6 0.0156

7/7 0.00781

8/8 0.00391

9/9 0.00195

10/10 0.000977

11/11 0.000488

12/12 0.000244

4
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Bayesian Analysis

• What about a Bayesian analysis?

• Can’t do a Bayesian analysis unless there is a prior probability 
the coin is fair/2-headed
– What if there are 50% of the coins in the bag as fair and 2-headed

– What if there is 1 in 1000 coins being 2-headed

5

5

Data/P-Values

6

DATA P-Value
Pr(Fair Coin)

50% each 0.001 2-headed

1/1 0.50 0.333 0.998

2/2 0.25 0.200 0.996

3/3 0.125 0.111 0.992

4/4 0.0625 0.0588 0.984

5/5 0.0312 0.0303 0.968

6/6 0.0156 0.0154 0.940

7/7 0.00781 0.00775 0.886

8/8 0.00391 0.00389 0.796

9/9 0.00195 0.00194 0.661

10/10 0.000977 0.000976 0.493

11/11 0.000488 0.000488 0.327

12/12 0.000244 0.000244 0.196

16/16 0.000015 0.000015 0.015

6

Bayesian Calculations

• Data: 13 S's and 4 F's

• Parameter = p = P(S)

• For ANY design with these results, the 
likelihood function is

• Posterior probabilities…
– Lets assume a Beta(1,1)….

7

7

Bayesian 
Analyses of

All…

Or
Updated 

sequentially

8

8
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Likelihood function of p

9
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Posterior density of p
for uniform prior: Beta(14,5)

10

10

Pr[p > 0.5 ]

11
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PREDICTIVE PROBABILITIES

• Distribution of future data?

• P(next is an A) = ?

• Critical component of experimental 
design

• In monitoring trials

12
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Predictive Distribution

• The posterior distribution of a future 
observation of Xi…

• The distributions support is on the values of X, 
not the parameters space

• Convolution of X with respect to the variability 
in the parameter space

13
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Suppose 17 more observations

P(A wins x of next 17 | data)
= EP(A wins x | data, p)

14

Beta-Binomial Distribution

= " #$
% &! # − & "#$!|)*+*, &

14

Possible Calculation

• Simulate a p from the beta(14,5)
• Simulate an x from binomial(17, p)
• Distribution of x’s is beta-binomial--the 

predictive distribution

15

15

Predictive distribution

Predictive 

distribution 

of # of 

successes 

in next 

17 tries:

16

Has more variability than any binomial Þ

88% probability
of statistical
significance

16



9/30/20

5

Best fitting binomial vs. predictive 
probabilities

17

Binomial, p=14/19

Predictive, p ~ beta(14,5)
88% probability

of statistical
significance

96% probability
of statistical
significance

17

Posterior and Predictive…same?

• Clinical Trial, 100 subjects.  HA: p > 
0.25?  FDA will approve if # success ≥ 
33 [post > 0.95, beta(1,1)]
• See 99 subjects, 32 successes
• Pr[ p > 0.25 | data ] = 0.955
• Predictive prob trial success = 0.327

18

18

Example of Predictive Prob

• Same Trial, 33+ out of 100 is a SUCCESS
• Look at data at n=10
• Predict remainder of 90 subjects
• Predictive Prob accounts for 

uncertainty and “only” 10% of data 
observed

19

19

20

Predictive

MLE

20
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Predictive, Posterior, MLE Project

21

S@10 Post Prob 
>0.25

Pred 
Prob 33+

MLE Proj 
Prob 33+

0 .042 .0096 0
1 .197 .070 6.6x10–11

2 .455 .234 .00097
3 .713 .487 .279
4 .885 .737 .948
5 .966 .900 .99991
6 .992 .973 1
7 .9988 .995 1

21

Interpretation

• Predictive is VERY different than posterior 
probability

• If you were using frequentist MLE to project 
you need to have constraints on # subjects 
before method “kinda works”

• If there is a constraint, it should be on # for 
MLE not on % of the subjects

• Predictive distribution handles both of 
these and does not need “constraints”

22
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The Likelihood Principle
The likelihood function

LX(p) = f( X | p)

contains all the information in an experiment relevant for 

inferences about p

23
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Consequence of Bayes rule:
The Likelihood Principle

The likelihood function

LX(p) = f( X | p)

contains all the information in an experiment relevant for 

inferences about p

Assume:

24

24
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Example

• Data: 13 A's and 4 B’s
• Parameter = p = P(A wins)
• Likelihood

• Frequentist conclusion? Depends on 
design

25

25

Frequentist hypothesis testing

• P-value = Probability of observing data as or more 
extreme than results, assuming H0. 

• P-V = P(tail of dist. | H0)
• Four designs:

(1)  Observe 17 results
(2)  Stop trial once both 4 A's and 4 B's

(3)  Interim analysis at 17, stop if 0 - 4  or
13 - 17 A's, else continue to n = 44 

(4)  Stop when "enough information"
26

26

Design (1): 17 results

27

Binomial distribution
with n = 17, p = 0.5;
P-value = 0.049

4 13

27

Design (2): Stop when 
both 4 A’s and 4 B’s

28

Two-sided negative
binomial with r = 4, p = 0.5;

P-value = 0.021

28
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Design (3): Interim analysis 
at n=17, possible total is 44

29

P(both) = 0.013;
net = 2(0.049) – 0.013

= 0.085

Analyses at 
n = 17 & 44; 
stop @ 17 
if 0-4 or 13-17;
P = 0.085 Both shaded regions = 0.049

29

Design (4): Scientist’s stopping 
rule: Stop when 

you know the answer

• Cannot calculate P-value
• Strictly speaking, frequentist 

inferences are impossible

30

30

Bayesian Stopping Rule

• The Bayesian answer is the same in all these trials (assuming 
independent, identically distributed observations)

• The design – what didn’t happen – affects the frequentist
based approaches (and bias, and type I error, etc)
– Violation of the likelihood principle

31

Critically important for adaptive designs

! "|$ is incredibly restrictive in the space of x!

31

Bayes and COVID-19

• Everyone is Bayesian… Why?

• The trial design is unknown!  Our REMAP-CAP trial might be 200 if 

might be 10,000

• Interims are being done monthly, not based on sample size

• Alpha-spending very challenging (impossible)

• Multiple trials have multiple arms, disconnected in time – need 

modeling

• May need historical controls

• Uncertain trial design…

32

32
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“For the purposes of this guidance, CID 
includes trial designs that have rarely or 
never been used to date to provide 
substantial evidence of effectiveness in 
new drug applications or biologics license 
applications. A common feature of many 
CIDs is the need for simulations rather 
than mathematical formulae to estimate 
trial operating characteristics (Section III 
of this guidance).” 

Complex Innovative Designs

P ag e  1

1

“For the purposes of this guidance, CID 
includes trial designs that have rarely or 
never been used to date to provide 
substantial evidence of effectiveness in 
new drug applications or biologics license 
applications. A common feature of many 
CIDs is the need for simulations rather 
than mathematical formulae to estimate 
trial operating characteristics (Section III 
of this guidance).” 

Complex Innovative Designs

P ag e  2

2

Lots of example of complex designs to come…

P ag e  3

3

DIAN-TU

P ag e  4

Randy Bateman, PI

Dominantly Inherited Alzheimer Network (DIAN) is an 
international research partnership of leading scientists 
determined to understand a rare form of Alzheimer’s 
disease (ADAD) that is caused by a gene mutation.
Autosomal Dominant Alzheimer’s Disease (ADAD) is caused 
by rare inherited gene mutations in the APP, PSEN1, or 
PSEN2 genes which lead to early-onset AD (<60 years old)
• 40-80% of 41.2/100,000 (AD < 60 y.o)

4
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DIAN-TU: Design

P ag e  5

Two drugs 3:1; approx. 60 vs 20
A single analysis takes place when the last enrolled reaches 4 
years; fixed sample size; simple design
Each arm is compared to placebo (well combined ~ 60 vs 40)
Analysis is posterior probability of superiority…  

5

DIAN-TU: Analysis

P ag e  6

H assenstab J , L im  Y Y , F agan  A M , M a S , X iong C , B a tem an R J, M orris  JC , and  the  D om inan tly  
Inherited  A lzhe im er N e tw ork . (2015).  C S F  B iom arkers  and  C ogn itive  D ec line  in  A u tosom a l D om inan t 

A lzhe im er D isease . P resen ta tion  a t the  2015  A lzhe im er’s  A ssoc ia tion  In te rna tiona l C on fe rence , 
W ash ing ton , D C , U S A .

6

DIAN-TU: Bayesian Analysis

P ag e  7

Let Yij be the jth cognitive observation for 
subject i=1,…,k, with ni observations
Let Eij be the EYO value for (i,j)

7

DIAN-TU: Bayesian Analysis

P ag e  8

Treatment 
Effect

Treatment Effects Across EYO

T is time of intervention (on EYO 
scale)

8
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DIAN-TU: Bayesian Analysis

P ag e  9

Test

If the posterior probability of exp(q) < 1 is greater 
than 0.985* then claim superiority

9

DIAN-TU: Bayesian Analysis

P ag e  1 0

10

ROAR Trial

P ag e  1 1

11

ROAR Trial: Basket Trial

P ag e  1 2

12
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ROAR Trial: Analysis Methods

P ag e  1 3

Statistical Analysis 
To address the small sample size per histologic cohort, we used an 
adaptive design with a Bayesian hierarchical model (Data Supplement) 
that increases the power to detect clinically meaningful differences in 
overall response rate by borrowing information across histologic cohorts 
while controlling the type 1 error rate. This design allowed for multiple 
interim evaluations of the accumulating data to determine if at least one 
histologic cohort should discontinue enrollment early because of either 
success or futility. 

13

ROAR Trial: Bayesian Model

P ag e  1 4

!! = log &!
1 − &!

− log )!
1 − )!

.

Typical BHM

!+~# $, &,

!, #"~ℎ&'() − ')+,)

Cluster BHM

!-~#$% &
“Dirichlet Process Mixture”

Within Each group: Typical BHM

14

ROAR Trial: ATC Results

P ag e  1 5

“For the 15 patients with ATC in the primary analysis cohort, 
the Bayesian estimate of the primary end point—confirmed 
overall response rate on the basis of investigator assessment—
was 69% (95% credible interval, 46.9% to 86.9%). “

11/15 = 0.733

“The posterior probability was 100% that the overall response rate of 
69% exceeded the historical control response rate of 15% (Data Sup-
plement), thereby meeting the protocol-specified rules for early 
stopping for efficacy. ”

15

What are Simulations?

We are inundated with “simulations” being used as predictions

16

16
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Role of Simulations

• This is common for PK/PD scientists – predict what will 
happen in humans
• This is not how simulations are used in creating in 

silico designs
• The “simulation evaluation” is nothing more than 

numerical integration 
• Calculating operating characteristics exactly

17

17

Design Process

18

Create 
Skeleton 
Designs

Simulations

Review Sims

New 
Designs

Final 
Design

18

Final Design Presentation

19

Final 
Design

Simulations

Validated Code

Validate 
Code

Final Sim Results

Adaptive Design 
Report

Verify

Protocol

To Regulatory

19

Adaptive Design Report

• A report that presents the full details of the design; 
adaptations, modeling, and simulations
–Allow completely reproducible results

• We have focused on the design and not why the design

20

20
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1. Background (Design)
1. Treatment Arms
2. Primary Endpoint

21

22

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

22
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1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
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24

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model

24
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25

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

25

26

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities

26
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1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities
4. Adaptive Randomization

27

28

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities
4. Adaptive Randomization

3. Example Trials

28
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29

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities
4. Adaptive Randomization

3. Example Trials
4. Operating Characteristics

1. Null Scenarios

29

30

1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities
4. Adaptive Randomization

3. Example Trials
4. Operating Characteristics

1. Null Scenarios
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1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities
4. Adaptive Randomization

3. Example Trials
4. Operating Characteristics

1. Null Scenarios
2. Alternative Scenarios

31
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1. Background (Design)
1. Treatment Arms
2. Primary Endpoint
3. Primary Analysis
4. Analysis Population

5. Randomization
6. Stopping Rules

2. Modeling
1. Duration Model
2. Longitudinal Model

3. Bayesian Quantities
4. Adaptive Randomization

3. Example Trials
4. Operating Characteristics

1. Null Scenarios
2. Alternative Scenarios

5. Simulating Virtual Subjects

32
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Questions?

33
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Simulations

•Would be very cool –
emergency simulation 
for clinical trials!
• Surely would have 

FACTS on board

1

Leadership Talk

2

Leadership Talk

3

Leadership Talk

4
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Leadership Talk

5

Leadership Talk

6

Leadership Talk

7

Leadership Talk

8
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Leadership

•What is my point?

Simulation allows us to speak the language of the 
clinician, the trialist, the sponsor, etc, not just the 

statistical language

Without simulation our tools have been limited, and 
hence our role has been limited.  With simulation our 

answers are better and our role is expanded

9

Examples
• Dose-Finding Trials; Select the right dose? 
• Does RAR improve the chance we pick the right dose?
•What is the risk that our Bayesian borrowing for the control 

arm gets the wrong answer?
•What go/no-go decision optimizes our drug development?
•What are the average number of subjects we treat above the 

MTD using this CRM?
• In a basket trial does borrowing help or hurt our estimation?
• Does this design affect the speed to market of an effective 

drug?

10

Warning #1

Clinical Trial Simulation means different things to 
different people and everyone will be skeptical of it.

11

We are inundated with “simulations” being used as predictions

12

12
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Role of Simulations

•This is common for PK/PD scientists – predict what will 
happen in humans
•This is not how simulations are used in creating in silico

designs
•The “simulation evaluation” is nothing more than 

numerical integration 
•Calculating operating characteristics exactly

13

13

Warning #2

Less useful as a final task

14

Warning #3

This is not meta-analysis: preplanning what you are 
going to simulate is limiting and defeats the purpose

15

Design Process

16

Create 
Skeleton 
Designs

Simulations

Review Sims

New 
Designs

Final 
Design

16
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Final Design Presentation

17

Final 
Design

Simulations

Validated Code

Validate 
Code

Final Sim Results

Adaptive Design 
Report

Verify

Protocol

To Regulatory

17

FACTS

• Interesting time point in “history” of FACTS… 
• ~2006 we were all in a room deciding…

Is the best software tool a collection of named designs 
(aircraft carrier) or a collection of choices to be crossed 
and explored?

18

Example This Month

Progressed to 5-look design, effect of 2:1 on timing, 
Change randomization during?, 

19

Example This Month
• A phase III trail, Two active arms vs. PBO; 1:1:1
• Slow enrollment ~50 per arm
• 4-week endpoint
• Should we explore arm-dropping?  Futility Stopping?  

Flexible sample size?
• “No, the trial is 80% powered so we cant make good decisions 

before that time point.”
• These types of decisions are being made non quantitatively by 

non-quantitative people…
• Simulations can provide invaluable uses, very quickly…

20
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33

33

34

34

Warnings of Simulations in 
Consulting

• Simulations are distrusted until the team sees how 
you use them – and then they’re loved
•The presentation of the results are very important … 
•Example trials are critically important
•Algorithms, predictive probabilities, etc are black 

boxes…
• Show real data -> Conclusions; 

35
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Example: Diabetes II/III seamless
• 7 dose + PBO + Active Control
• Interims every 2 weeks

• RAR based on 4 endpoints

• HbA1c, Weight Loss, DBP, HR with utility function
• 200-400 make decision:

• Go to Phase III (pick 1 or 2 doses); open more phase III
• Stop futility

• Phase III part powered by phase II

• Entirely prospectively planned

• Algorithms, Rules, Decisions, Analyses

1

2

200 400

RARBurn-In Fixed Randomization

Adaptive N
Constraints

• Futility
• Go Part 2
• Forced @ 400

2

3

200 400

RARBurn-In Fixed Randomization

N

Final Analysis:
Compares 
Active vs. 
Control(s)

Both stages

3

• Bayesian repeated measures & dose-response models 
for four endpoints
• Single utility function connecting 4 endpoints on one 

scale
• Predictive probability of statistical success

4

4
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Utility of Drug?

5

5

Development
• Built “exact” trial in software (in silico)
• Accrual Rate

• Missing Data (function of outcome)

• Same primary analysis, models, utility functions, dose 

selection, cut-offs, data delay,…

• Wide range of “truth scenarios”

• Maximized design through simulations
• Over 300 scenarios in the null

• Interesting was that the LOCF ANCOVA had inflated type I 

errors – as large as 6-8% (aim 2.5%)

6

6

Diabetes II/III seamless
• Trial ran (for 3,467,321st time!)
• Shifted at 200 -- very successful!  
• Ran exactly as planned, spawned other phase III

7 8
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“Projecting $1.3 billion in 2020”
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ICECAP Example
• Part of the ADAPT-IT (U01-NS073476) grant
• Funded by NIH & FDA
– Get interaction with FDA on designs

• Bring adaptive exploration to 5 trials (NETT Trials)
• Study the barriers to adoption
–Mixed methods assessment of the process and barriers

–We are being studied

1

1

ICECAP
• ICECAP – Hypothermia after post cardiac arrest coma

– Background
• Two small surface cooling trials demonstrated efficacy (different durations and 

endovascular cooling more frequently used) 
• Medically accepted that this works
• No FDA approval

– Goals 
• To identify optimum cooling duration
• Gain additional insight into efficacy (functional form of duration response model)
• What types of strokes vs. duration

– Fixed Design:
• 300? On 12, 24, 48 hours cooling

2

2

Example Outcome of Fixed

3

• Idealized 
Outcome?

• Answer All 
your 
questions?

• Do 
anything 
differently?

3

Initial skeleton
• Start with 12, 24, 48-hour durations (say 50/arm)

• Then analyze data and randomize to the best 

duration

– Allow randomization to a much wider grid:

– 6, 12, 18, 24, 30, 36, 42, 48, 60, 72, 84, 96

• Continue updating, say every 50 patients

• Continue to end of trial

– Early stopping?

– Endpoint 0,1,2 on mRs

4

4
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The Adaptive Algorithm

Analyze
Available Data

Accrue 50 more

Allocate 50 to 12, 24, 48 hr durations

Stop when 
reach 1200

Find Target Dose
&

Determine if 
Cooling works

Revise Allocation
Rules

per Adaptive Algorithm

No     Yes

5

5

6

6

7

7

8

Example Trial:
Observed Data
Model Fit
+/–2 SD

8
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9

Next Blocked
Randomization:

Arm R:Block

6 2

12 0

18 7

24 1

30 9

36 3

42 0

48 0

60 1

72 --

84 --

96 --

9

10

10

11

11

12

12
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13

13

Issues?

14

Unrealistic DR-curve

14

Issues?

15

Unrealistic DR-curve
Escalates too quickly

15

Issues?

16

Unrealistic DR-curve
Escalates too quickly

De-escalates too easily

16
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The Adaptive Design

Analyze
Available Data

Accrue 50 more

Allocate 50 to 12, 24, 48 hr durations

Stop when 
reach 1200

Find Target Dose
&

Determine if 
Cooling works

Revise Allocation
Rules

per Adaptive Algorithm

No     Yes

17

17

Statistical Modeling

18

18

Weighted Analysis

• Assign a weight to each outcome

• Evaluate the “Average Weight” as the quantity of interest for a 
treatment

19

19

Weight Selection
Approach 0 1 2 3 4 5 6
Dichotomous 1 1 1 0 0 0 0
Equal 6 5 4 3 2 1 0

ICECAP 10 9 8 6 0 0 0

1
1

2
6

20

20
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21

Pr(Target)

Model 
Estimated 

Weight

Currently 
observed 

rates

Prob. Better than 
smaller duration

21

22

22

23

23

24
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37Winning Duration

Better than
smaller 

durations

37
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39
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41

41

Role Simulations
• Incredible Learning Tool

– Team, Regulators, Funders, DSMB, Operations

• Changed Models

• Changed measures of success

• Endpoint (dichotomous) wasn’t correct

– Weighted one

• Needed both rhythm types (shockable and non-
shockable)

– Possibly different duration, relative efficacy

• All recognized through flight simulator

– Single example trials critical
42

42

Updated

43

43

Updated

44

44
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Operating Characteristics

45

45

Operating Characteristics

46

46

Operating Characteristics

47

47

Operating Characteristics

48

48
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DAWN

• Endovascular Thrombectomy for ischemic stroke (approved ≤ 8 
hours)

• New trial enrolling 6-24 hours since last seen well
• “Clinical Mismatch”

1

1

DAWN

2

Size of Infarcted Area (mL)

NI
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Potential Enrichment

2

Endpoint
• 90-day mRs
• Primary Analysis:
–Weighted utility score:

• Trial a success if Pr(WD > WC) > 0.986*
–My be adjusted if enrichment occurs*

3

mRs 0 1 2 3 4 5 6

Weight 10 9.1 7.6 6.5 3.3 0 0

3

Design

• Interims at 150, 200, 250, 300, 350, 400, … max of 500
• At 150, …, 400 can “enrich” to smaller entry criterion 
– Infarct size of 0-30; 0-35; 0-40; 0-45

• Could Stop for Expected Success (at 200+ interims)
• Could Stop for Futility

4

4
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Enrich?

• If predictive probability of success by enriching increases by 
10%+ then we enrich 
– Can be multiple steps

• If the posterior probability of benefit in ‘last 5 tail’ is less then 
40% then drop the last 5 (enrich)

• If enrich we restrict the population for the final analysis as well

5

5

Adaptive Design Model

JSM 2014

30 35 40 45 50

Experimental
Arm

6

6

Final Analysis Model

JSM 2014

30 35 40 45 50

Experimental
Arm

7

7

Modeling: Example Trial; n=300

8

Bayesian Models for outcomes as a function of infarct size, 
• NDLM Model for mean Control results
• NDLM for difference from control for device intervention

8
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“Stopping”

• Futility: Stop the trial for futility if the predictive probability of 
success by the cap is < 0.10 (including for any enrichment)

• Expected Success: If the predictive probability for the currently 
enrolled patients is > 0.99 then stop enrollment and follow all 
through primary endpoint
–Must enroll at least +100 beyond enrichment

9

9

Critical Value Adjustment

• The critical value of 0.986 is used unless there is 
enrichment

• If we enrich, restrict the primary on only 
remaining group (discard some randomized)

• Boost CV:

• E.g. Ndrop=50; Nkeep=300; Nnew=100;  cv= 0.9906

10

10

Simulation Constructed

• Trial fully and extensively simulated
• Modeling decisions, robustness, and cut-off optimization
• Control of type I error by simulation
– Early stopping 
– Enrichment adjustment

11

11

DAWN Actual Result

• At the 150-interim there was no enrichment
– no futility
– No expected success possible

• At 200-interim PP > 0.9999; no enrichment; stop for expected 
success!

• Followed for 90 days; success at full data primary analysis

12

12
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13

13

14

DAWN

14

15

15

Summary

• Complex enrichment design – results was very 
strong and no enrichment occurred 
– Did the right thing!

• Could have run trial in only smaller group and 
left ‘uncertainty’ in where effect

• Sample size flexibility allowed success at 40% 
of maximum

• Designed and optimized by simulation

16

16


