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Learning Objective

This course is for statistical researchers or students; personnel in the
pharmaceutical industry, academic institutions, or regulatory agencies.

Upon completing this course, participants will

Have better understanding of how to design and analyze time to event
trial in presence of non-proportional hazard
Have familiarity with the R packages simtrial, gsDesign2, gsdmvn
Be able to interact and communicate efficiently with relevant
stakeholders



Course Material

Slides
lectures
practical
references
solutions

R Packages: simtrial (K. M. Anderson (2020a)), gsDesign2 (K. M.
Anderson (2020b)), gsdmvn K. M. Anderson (2020c)
Detailed documentation: Design for the MaxCombo Test Under
Non-Proportional Hazards



1. Introduction: Motivation and
Framework



Non-Proportional Hazards (NPH): What Does It
Mean?

Most popular methods in randomized clinical trial:
Kaplan-Meier (KM): describe chance of survival over time
log-rank test (LR test): detect difference in treatment effect (rejects
“Null”)
Cox regression: summarize the treatment effect

Log-rank p-value, hazard ratio (HR), and naive median are the
standard metrics of reporting
Are they good summary measures when the treatment effect is not
constant over time? NPH problem

For example, recent immunotherapy development shows evidence of a
delayed effect

How to cope with NPH problem at design and analysis stages?



Recent Examples from Oncology Trials



Important Aspects of Design and Analysis with
Potential NPH

Analysis
Best method in presence of NPH
Analysis timing
Communication with broader audience and regulators

Treatment effect quantifier
Underlying estimand
Relevance of HR
other options

Trial design
Size and power of study
Interim analyses



2. Basics of Time to Event Analysis in
Clinical Trial



Time to Event Analysis

Time to event (TTE) or Survival Analysis: methods to analyze time
to event data
Statistical inference about the magnitude or severity of a random
event
Terminology and emphases might differ in areas of application

TTE or Survival analysis: medicine, biology, public health (time to
death)
Reliability analysis: engineering (time to a failure of some electronic
component)
Duration analysis: economics (time looking for employment)
Severity analysis: finance (time to default)
Event history analysis: social sciences (time for doing some social and
political task)



Goals of TTE Analysis

Estimate TTE for a group of individuals: effect of treatment on risk
of death
Compare TTE between two or more groups: comparison between two
treatments on risk of death (Focus of this course)
Assess the relationship of covariates to TTE: relation between death
and disease characteristics
Relationship between multiple TTE variables: relationship between
two endpoints (e.g., death and progression)



Notations and Terminology

A typical TTE data set contain patient level information for the following
variables

n1 and n0: number of subjects treated with experimental drug and
control respectively; n = n1 + n0
δ = Status for event of interest (e.g., death);

∑n
j=1 δi = D

δ = 1 => event observed; X = time to event of interest
δ = 0 => right censored; U = time to right censoring or last known
time to be event free

T = min(X ,U): Observed time
Z = covariates of interest: fixed or time-dependent

Right censoring is often seen in clinical studies as each patient is followed
for pre-defined time period or cut-off time. Other censoring types (e.g.,
interval censoring) are also possible.



Survival and Hazard Function

Survival function: S(t) = P(T > t)
Event free probability at time t
S is non-increasing with S(0) = 1 and S(+∞) = 0

Hazard function:

h(t) = lim
∆t−>0

P(T ≤ t + ∆t|T > t)
∆t

Instantaneous risk of the event happening at t given that it has not
occurred before t
h(t) > 0 but it is not a probability



Cumulative Hazard Function

Cumulative Hazard function:

H(t) =
∫ ∞
0

h(w)dw

Higher the value of H(t), the greater the risk of failure by time t
Like the hazard function, the cumulative hazard function is not a
probability
H(t) = − log S(t) : referred to as negative log survival



Summary Measures

Milestone survival at time t0: S(t0) = P(T > t0)

Mean survival time: µ = E (T ) =
∫∞
0 S(t)dt

Restricted Mean survival time (RMST) to time L:
µL = E (min(T , L)) =

∫ L
0 S(t)dt

µL is more practical as µ may be large due to heavy tail

Percentile: for 0 < q < 1 the 100× q-th percentile is

tq = inf{t > 0 : S(t) ≤ 1− q)}

Median survival time (50-th percentile): m = inf{t > 0 : S(t) ≤ 0.5)}



Nonparametric Methods

Nonparametric estimation of S(t)
Kaplan-Meier (Product-limit) estimator
Breslow estimator

No assumptions on the functional form of S(t)



Kaplan-Meier Estimator

Idea is simple: based on discrete time and hazard
Depends on count only: number at risk and number of events
Number of events up to time t: N(t) = I(Ti ≤t, δi =1)
Number at risk at time t: Y (t) =

∑n
i=1 I(Ti>t); n= number of

patients
Kaplan-Meier (KM) Estimator= ŜKM(t) =

∏
u≤t(1− ∆N(u)

Y (u) )
Step function with jumps at event times
Inference about S(t) is based on asymptotic normality of ŜKM(t)
(Klein et al. (2007))
All asymptotic properties are valid under independent or
non-informative censoring



Estimation of Summary Measures

Estimated Mean survival time: µ̂ =
∫∞
0 ŜKM(t)dt

Estimated Restricted Mean survival time (RMST) to time L:
µ̂L =

∫ L
0 ŜKM(t)dt

Estimated Percentile: t̂q = inf{t > 0 : ŜKM(t) ≤ 1− q)}
Estimated Median survival time: m̂ = inf{t > 0 : ŜKM(t) ≤ 0.5)}



Comparing Two Survival Curves at a Fixed Time
Point

Simplistic approach for comparing two survival curves

Appealing for it’s simplistic clinical interpretation

Two groups are compared at a pre-defined time point t0
(H0 : S0(t0) = S1(t0))using ŜKM(t) and variance using Greenwood’s
formula (Klein et al. (2007))

Substantial improvement of the properties of the test was obtained
using proper transformations of the survival functions (e.g., c log log)

Multiplicity adjustment is required if multiple time points are specified

Depends heavily on the choice of t0



Log-rank (LR) Test

Popular test to test the null hypothesis of no difference in survival
between two or more groups
Adopted from stratified test for 2× 2 contingency table
Comparison based on the hazard functions not survival function
The test can be written as

LR =
∑D

j=1(Oj − Ej)√∑D
j=0 Vj

= U
se(U)

Oj = Observed number of events and Ej= expected number of events at
time tj . Vj= variance of the observed number of events. Also U can be
written as,

U =
∫ T

0

(
dN1(t)− Y1(t)dN(t)

Y (t)

)



Properties of Log-rank Test

Rank based test

LR is nonparametric in nature => no assumptions related to shape of
survival function or treatment effect

The power of LR depends on the number of observed events rather
than the sample sizes

Logrank test is most powerful for detecting the alternatives with
constant treatment effect

H1 : S1(t) = S0(t)expβ <=> h1(t) = h0(t)eβ



Regression Models for TTE

Exploring association between covariates and survival time
Main approaches include

Proportional hazards model: Most commonly used method in the
analysis of TTE data

h1(t|z) = h0(t) exp(βz); h0(t):unspecified baseline hazard
Accelerated failure time (AFT) model: Parametric model assumes
accelerate or decelerate by covariate

log T = zβ + σε ε:fully specified distribution
Other methods: Scale parameter model, frailty model, discreate time
model etc.



Proportional Hazard (PH) Model

Semiparametric: introduced by D.R. Cox 1972 (Cox (1972))
Investigates the relationship of predictors and TTE through the
hazard function
Does not require assumption about underlying survival distribution
Associated with log-rank test
The effect of a covariate is described by hazard ratio (HR) = eβ :
estimated using partial likelihood

Compares risk of event for the treatment group with control
Summary measures: point estimate of HR and 95% confidence
interval (CI)

Proportional hazard or constancy of treatment effect is the
key assumption



Example Analysis of TTE (Moore et al. (2007))

Curves are compared using
log-rank test p-value

Summary measures include:
milestone survival rates,
median, HR & 95% CI,



Assessing PH Assumptions

Important to examine the proportional hazards assumption
Using statistical test and graphical diagnostics based on the scaled
Schoenfeld residuals
Grambsch-Therneau (GT) test (Grambsch and Therneau (1994)):
correlation between scaled Schoenfeld residuals and ranks of TTE
Recommend producing graphical diagnostics

Schoenfeld residuals plot: non-random pattern against time confirms
PH assumption
Cumulative hazard/log–log survival plots: plot of Nelson-Aalen
estimates; PH assumption is reasonable if two plots are approximately
parallel

Can be performed using the R package survival
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GT Test Using R

library(survival)
library(survminer)
library(simtrial)

res.cox.1 <- coxph(Surv(stop,event)~rx, data = bladder)
test.ph.1 <- cox.zph(res.cox.1)

res.cox.2 <- coxph(Surv(month,evntd)~trt,
data = Ex2delayedEffect)

test.ph.2 <- cox.zph(res.cox.2)



Schoenfeld Residuals Plot
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Cumulative Hazard Plot vs Time
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3. Alternative Analysis Methods



Example 2 Revisited

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Example 2

Months

S
ur

vi
va

l

p−value (1−sided)=0.001

HR=0.66 (0.51,0.87)

Control
Experimental

Median
2.8 (2.2,3.5)
3.4 (2.1,5.1)



Example 2: Treatment Effect Emerges Late in the
Trial



Different Types of Non-proportional Hazard (NPH)

0 5 10 15 20

0.
0

0.
4

0.
8

Delayed Effect

Months

S
ur

vi
va

l

Control
Experimental

0 5 10 15 20 25

0.
0

0.
4

0.
8

Crossing Survival

Months

S
ur

vi
va

l Control
Experimental

0 5 10 15 20

0.
0

0.
4

0.
8

Diminishing effect

Months

S
ur

vi
va

l

Control
Experimental

0 5 10 15 20 25

0.
0

0.
4

0.
8

Increasing effect effect

Months

S
ur

vi
va

l Control
Experimental



Key Challenges of Design and Analysis

NPH has been discussed extensively in the statistical literature
Different methods for hypothesis testing and estimation are proposed
Methods are sensitive to the types of NPH

~98% trials use log-rank test and Cox PH model for design primary
analysis (source: NEJM 2000-2017)

Regulatory acceptable standard test and treatment effect summary
Main Challenges: Uncertainty of NPH type at the design stage
when PH assumption

The nature of treatment effect is unknown at the time of study design
A suitable design and analysis method must be handle multiple NPH
types
Efficiently communicate the results to non-statisticians



Overview of Available Methods

Focused on the methods generally used in drug development
Methodologies can be broadly categorized as

Rank based
Weighted LR test, modestly weighted LR test, piecewise LR test

Kaplan-Meier based
Kaplan-Meier test (WKM), restricted mean survival time

Time dependent Cox regression (CoxTD)
Combination Test



Weighted Log-rank Test (WLR)

LR test assumes that every point in time has the same relevance

This assumption is questionable when treatment effect is not constant

WLR attach a weight wj with each points

WLR =
∑D

j=1 wj(Oj − Ej)√∑D
j=1 w2

j Vj

= U(w)
se(U(w))

U(w) =
∫ T

0
w(t)

(
dN1(t)− Y1(t)dN(t)

Y (t)

)
LR test: wj = 1
Wilcoxon (Gehan) test: wj = Y (tj)
Tarone-Ware test:wj =

√
Y (tj)

Several others . . .



Flemming-Harrington WLR

Fleming and Harrington proposed a class of weighted log-rank test
(FH) based on the Gρ,γ family

Covers wide variety of treatment effect scenarios with appropriate
choice of ρ and γ

The weights are provided using the formula

w(t) = (Ŝ(t−))ρ(1− Ŝ(t−))γ (ρ ≥ 0, γ ≥ 0)

Ŝ(t−) is the estimated survival function immediately prior to time t
Values of ρ and γ can handle different treatment effect types:

ρ > 0, γ = 0 : early difference
ρ = 0, γ > 0 : late difference
ρ > 0, γ > 0 : mid difference
ρ = 0, γ = 0 : log-rank test (“equal weighting”)



Weighted Hazard Ratio (WHR)

Cox hazard ratio can be interpreted as an average over the observed
event times (Grambsch and Therneau (1994))
A dual estimate of treatment effect quantifier for the WLR test is the
weighted hazard ratio (WHR)

Time averaged hazard ratio using the weights are same as the
associated WLR test

Estimated using weighted partial likelihood of Cox model (Schemper,
Wakounig, and Heinze (2009))

D∑
j=1

w(tj)
∂lj
∂β

= 0

lj : the log partial likelihood of Cox model and w(tj) weight for WLR
Confidence interval can be calculated using asymptotic properties



Challenges with WLR and WHR

The choice of ρ and γ requires knowledge of the shape of survival
curves and plays an important role to the performance of WLR test
and WHR

Mis-specification of the weight function may result in loss of power

WHR often lacks intuitive interpretation

The associated estimad is complex
Often lacks causal interpretation
Hard to explain to the non-statisticans



Modestly Weighted LR Test (mWLRT)

Another version of the WLR test introduced by Magirr and Burman
(2019)
Based on the score test representation of WLR
Maggir and Burman 2019 proposed a test with nonincreasing scores
but increasing weights

The scores set to 1 for all t ≤ t∗ (clinically meaningful timepoint, e.g.,
12 months) and nonincreasing thereafter (similar to LR)
This is equivalent to setting w(t) = 1/max(Ŝ(t), Ŝ(t∗)); Ŝ(t)
denotes the Kaplan-Meier estimate of the pooled data at time t

Simulation studies showed mWLRT
Protects the type-I error under strong null (HStrong

0 : S1(t) ≤ S0(t))
Higher statistical power than LR under delayed treatment effect
scenario
Comparable power with LR under PH scenario

The corresponding WHR will be difficult to interpret for practical
purposes



Piecewise LR Test (pWLRT)

Xu et al. (2017), Xu et al. (2018) propose pWLRT for two intervals;

pWLRT =
∑

j∈D1
w1(Oj − Ej) +

∑
l∈D2

w2(Ol − El )√∑
j∈D1

w2
1Vj +

∑
l∈D2

w2
2Vl

D1 and D2: indices of patients who had event before and after t∗

Power/Type-I error can be calculated analytically or using simulation

Most powerful under delayed treatment effect when w1 = 0: “ignores
early events”

Depends heavily on the specification of t∗

A piecewise HR captures the time dependence nature of treatment
effect



Weighted Kaplan-Meier Test (WKM)

Class of distance tests introduced by Pepe and Fleming (1989)
Based on the weighted KM statistic of two groups, and integrating
over the restricted range after a specified cut-off

WKM =
∫ τ

0

√
n1n0
n ŵ(t)[Ŝ1KM(t)− Ŝ0KM(t)]dt

ŵ(t) is geometric average of the two censoring survivor function
estimators and τ is the largest follow-up time
Asymptotic properties are derived by Pepe and Fleming (1989)
Corresponding treatment effect does not have intuitive interpretation
except ŵ(t) = 1
Dependent of the choice of τ



Restricted Mean Survival Time (RMST)

Area under the KM plot prior to specific time-point τ (ŵ(t) = 1)
Treatment effect estimator: difference or ratio of RMST: can be easily
interpreted as “life expectancy” (Royston and Parmar (2011), Uno et
al. (2014))
Performance of RMST depends on censoring pattern and choice of τ

Data-dependent: unknown at the design state



Cox Regression with Time Dependent Coefficient
(CoxTD)

A natural extension of Cox PH model is including a time varying
coefficient for treatment (Putter et al. (2005))

h(t) = h0(t) exp(ZβF + Zf (t)βT )

log(t + 1) as a “reasonable” choice for f (t) to diminish the influence
of very early events
Likelihood ratio test for H0 : S1(t) = S0(t)
Simulation shows that CoxTD model does not perform well in terms
of power under delayed treatment effect (Callegaro and Spiessens
(2017))
Reporting the HR as a continuous function is hard to interpret by
non-statisticians



Combination Test

Handle a broad class of alternative hypothesis: Lee (2007), Karrison
and others (2016), Breslow, Edler, and Berger (1984)
Considers multiple test statistics: choose best test statistics based on
data

Breslow, Edler, and Berger (1984): combination of LR test and test of
acceleration
Logan, Klein, and Zhang (2008): combination of LR test and
milestone survial
Lee (2007): Average and maximum of LR test (FH(0, 0)) and
FH(0, 1)

Requires appropriate multiplicity control due to the correlation of test
statistics
Often provides robust power under wide class of alternative
hypotheses
Communication of treatment effect is often difficult due to complex
nature



Other Methods

Net benefit or the net chance of a longer event-free (Buyse (2010),
Perón et al. (2016))

Generalized pairwise difference: probability that a random patient in
the treatment group is event-free by at least a pre-specified difference
as compared to a random patient in the control group minus the
probability of the reverse situation
Under PH, Net benefit = [1-HR]/[1+HR]

AFT model
Change-point model



Choice of Primary Analysis

Regarding primary analysis ICH E9 states

For each clinical trial contributing to a marketing application, all important
details of its design and conduct and the principal features of its proposed
statistical analysis should be clearly specified in a protocol written before
the trial begins. The extent to which the procedures in the protocol are
followed and the primary analysis is planned a priori will contribute to the
degree of confidence in the final results and conclusions of the trial.

Specifying primary analysis when NPH is expected: need robust
statistical method to handle

Possibility of different types of NPH
Possibility of different specifications (e.g. lag time for treatment effect)



A Qualitative Evaluation

A primary analysis involves both testing and estimation of treatment
effect
We perform a qualitative evaluation of the available methods based
on 4 important metrics

Type-I error: Controlling type-I error at a specific level of significance
(e.g., 2.5%) under the null hypothesis H0: S1(t) = S0(t) for all t.
Robust power: Showing resilience in terms of statistical power when
the PH assumption is violated. Often a statistical test suffers a power
loss when the nature of the underlying treatment effect is not
anticipated
Treatment effect Interpretation: Interpretable treatment effect
summary under various types of PH and NPH
Non-statistical Communication: Easy to understand by
non-statisticians



Qualitative Review Under NPH



Potential Candidates for Confirmatory Trial

Under NPH, no single efficacy measure is sufficient

Milestone survival, RMST, CoxTD, and combination tests are
potential candidates

However, WKM, CoxTD, milestone survival, and RMST fail to show
robust power under a wide class of alternatives ( Lin et al. (2020),
Callegaro and Spiessens (2017))

An improvement over the available tests and provides robust power

If NPH is not expected, we recommend the use of traditional LR test
and HR for the primary analysis



Robust MaxCombo Test

Proposed by Cross-Industry NPH working group (Roychoudhury et al.
(2020), Lin et al. (2020))
Motivated from the work from Yang and Prentice (2010) and Lee
(2007)
Based on multiple FH-WLR test statistics and chooses the best one
adaptively depending on the underlying data
We consider two possible combination tests

MaxCombo: FH(0,0),FH(0,1), FH(1,1), FH(1,0)
Modified MaxCombo:

FH(0,0),FH(0,0.5), FH(0.5,0.5), FH(0.5,0)
FH(0,0),FH(0,0.5), FH(0.5,0.5)

Able to handle PH, delayed effectect, crossing survival,
early-separation, and mixture of more than one NPH type scenarios as
alternative



Null Distribution of MaxCombo Test

The proposed combination test

Zmax = max{FH(ρi , γj) : (ρi , γj) = (0, 0), (0, 1), (1, 0), (1, 1)}

The type-I error and power calculation require the joint distribution of
four FH-WLR test statistics

Karrison and others (2016) proved that the joint distribution is
asymptotically normal

(FH(0, 0),FH(0, 1),FH(1, 0),FH(1, 1)) ∼ N4(0, Γ) underH0



Calculation of p-Value

With correlation matrix Γ =((ηij)) is of the following form;

ηij = Cov(FH(ρi , γi ),FH(ρj , γj)√
V (FH(ρi , γi ))V (FH(ρj , γj))

=
V (FH(ρi +ρj

2 ,
γi +γj

2 ))√
V (FH(ρi , γi ))V (FH(ρj , γj))

for i 6= j

One-sided p-value calculation uses multivariate normal calculation:

p − value = P(Zmax > zmax |H0)

= 1−
∫ zmax

−∞

∫ zmax

−∞

∫ zmax

−∞

∫ zmax

−∞
φ4(ω, 0,Γ)dω

Calculation can be done using efficient integration routine in R and
SAS (Genz (1992))



Simulation Study (Lin et al. (2020))



Wide Number of NPH Scenarios Considered



Simulation Results: Type-I Error

Two additional scenarios with delayed effect with converging tails
20,000 trial datasets are simulated for each scenario
Type-I error is well protected with MaxCombo test with null
H0 : S1(t) = S0(t) for all scenarios



Simulation Results: Power

Robust power across different NPH scenarios
3-4% power loss under PH scenario



Advantage Over Existing Combination Test

MaxCombo test has improved power over Lee test under delayed
effect with converging tails scenarios



Further Criticism of MaxCombo Test

Additional simulations are performed to address further criticism
about FH(0, 1) and MaxCombo test (Freidlin and Korn (2019),
Magirr and Burman (2019))

There are some concerns regarding the performance of the MaxCombo
test under the strong null and severe late crossing scenarios

Possibility of high probability of rejecting null hypothesis when the
experimental drug is actually harmful

We have considered the following three scenarios

Strong Null 1 : Magirr and Burman (2019)
Strong Null 2 : Freidlin and Korn (2019)
severe late crossing : Treatment shows a late and marginal survival
benefit

The overall treatment effect clinically questionable

Should not be mixed with formal type-I error assessment



MaxCombo Under Extreme Scenarios
(Roychoudhury et al. (2020))



Results: Strong Null 1 and Severe Crossing

The final cut-off date for each simulation is the calendar time of 5
years

All patients alive at that point are censored at the cut-off date
Probability of rejecting null hypothesis is low with MaxCombo test
under strong null 1 and severe crossing scenarios

Recruitment uniformly over 12 months: 2.1% (strong null 1); 5.0%
(severe crossing)
Recruitment uniformly over 6 months: 2.3% (strong null 1); 5.8%
(severe crossing)



Results: Strong Null 2

Probability of rejecting null hypothesis is high for scenario 2 (48.9 %)
Can be handled using alternative weighting scheme: Modified
MaxCombo test reduced this probability to 1.8%
Modified MaxCombo test also handles the severe crossing scenario
well (2.6%)
Such scenarios are unrealistic in real-life: will be stopped early by a
data monitoring committee (DMC) due to the safety concerns

MaxCombo and Modified MaxCombo tests showed better
power than LR and mWLRT under delayed effect and crossing
survival Roychoudhury et al. (2020)



Estimation of Treatment Effect

The dual WHR of MaxCombo test is calculated based on the best
weight chosen

Estimated using weighted Cox regression

95% CI calculation requires the joint distribution of FH-WLR test
statistics

100× (1− α)% simultaneous confidence interval corresponding for
WHR related to MaxCombo can be calculated as

ĤR
MaxCombo

± C∗ × SE (ĤR
MaxCombo

)

C∗ is calculated using the asymptotic multivariate normal distribution
of WHR (Karrison and others (2016)})

However, the WHR has limited interpretation to non-statisticians



Primary Analysis for Confirmatory Trials

Under NPH, no single efficacy measure is sufficient
A p-value from any single statistical test or a single summary statistic
fails to capture treatment benefit
A robust testing procedure like MaxCombo or modified MaxCombo
test is required to handle uncertainties associated with NPH type
Additional pre-specified measures beyond HR and median needed to
describe benefit over entire follow-up period; e.g., milestone survival,
RMST
Important to ensure adequate follow-up to evaluate time-dependent
treatment effect



Specification of Primary Analysis in Protocol

A stepwise approach for primary analysis in trials where NPH is
expected

Step 1: Perform a statistical test to reject “Null” hypothesis (no
treatment effect) using MaxCombo or modified MaxCombo test
Step 2: Evaluate PH assumption using standard methods
Step 3: Select treatment effect summary based on step 2 findings

if PH is reasonable: use traditional measures like HR and median
if PH is not reasonable: also provide additional measures such as
milestone survival rate, RMST, and piecewise HR at pre-specified time
points

This approach provides a complete summary of any treatment effect
Appropriately pre-specification is possible to meet ICH E9



Example 1: Overall Survival IM211 Trial IC1/2/3
Cohort (Digitized)
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GT test p−value = 0.009



Example 2: Overall Survival PA3 Trial (Digitized)
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GT test p−value = 0.77



Traditional Analysis



Use of Stepwise Approach



Piecewise HR



4. Implementation using R- Part I



Packages Used

survival package
Kaplan-Meier survival estimates
Cox model
logrank testing
Limited use for weighted logrank

simtrial
Example datasets
Counting process data model
Weighted logrank tests
Combination tests (MaxCombo)

dplyr
tidy data manipulation



Installing Packages

devtools::install_github("keaven/simtrial")
devtools::install_github("keaven/gsDesign2")
devtools::install_github("keaven/gsdmvn")



Delayed Effect Dataset - Introduction

head(Ex2delayedEffect, n= 3) %>% kable(digits=3)

id month evntd trt
1 0.152 1 1
2 0.152 1 1
3 0.355 1 1

with(Ex2delayedEffect, table(evntd, trt))

## trt
## evntd 0 1
## 0 14 30
## 1 123 105



Delayed Effect Dataset - Plotting

plot(survfit(Surv(month,evntd)~trt, data = Ex2delayedEffect),
col=1:2, ylab = "Survival", xlab = "Months",
main = "Delayed benefit example",
cex.main = 2, cex.lab = 1.5, cex.axis = 1.5)

legend(x = 12, y = .8, legend = c("Control", "Experimental"),
col=1:2, lty=1, cex = 2)
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Delayed Effect Dataset - Cox Model

exp(coef) is hazard ratio (HR) for this binary model
p-value is 2-sided (Chi-square version of logrank)

fit <- coxph(Surv(month,evntd)~trt,
data = Ex2delayedEffect)

fit

## Call:
## coxph(formula = Surv(month, evntd) ~ trt, data = Ex2delayedEffect)
##
## coef exp(coef) se(coef) z p
## trt -0.4093 0.6641 0.1354 -3.024 0.0025
##
## Likelihood ratio test=9.19 on 1 df, p=0.002435
## n= 272, number of events= 228



Delayed Effect Dataset - Test for NPH

In this case, Grambsch-Therneau test {shows? suggests?} a difference
Generally, this (any) test for NPH is underpowered

cox.zph(fit)

## rho chisq p
## trt -0.14 4.61 0.0318



Delayed Effect Dataset - Exponential Failure?

Plot survival on log scale
Slope is hazard rate; constant? piecewise linear?

plot(survfit(Surv(month,evntd)~trt, data = Ex2delayedEffect),
col=1:2, ylab = "log(Survival)", xlab = "Months", log = "y",
cex.lab = 1.5, cex.axis = 1.5)

abline(v=2.1)
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Piecewise Cox Model - Delayed Effect Example

First 2.1 months
coxph(Surv(month,evntd)~trt,

data = Ex2delayedEffect %>%
mutate(le21 = (month <= 2.1) * 1, evntd = le21 * evntd))

## Call:
## coxph(formula = Surv(month, evntd) ~ trt, data = Ex2delayedEffect %>%
## mutate(le21 = (month <= 2.1) * 1, evntd = le21 * evntd))
##
## coef exp(coef) se(coef) z p
## trt -0.06921 0.93313 0.19084 -0.363 0.717
##
## Likelihood ratio test=0.13 on 1 df, p=0.7168
## n= 272, number of events= 110



Piecewise Cox Model - Delayed Effect Example

After 2.1 months
coxph(Surv(month,evntd)~trt,

data = Ex2delayedEffect %>%
filter(month > 2.1))

## Call:
## coxph(formula = Surv(month, evntd) ~ trt, data = Ex2delayedEffect %>%
## filter(month > 2.1))
##
## coef exp(coef) se(coef) z p
## trt -0.7361 0.4790 0.1895 -3.884 0.000103
##
## Likelihood ratio test=15.2 on 1 df, p=9.66e-05
## n= 157, number of events= 118



Failure Rates by Period - Delayed Effect Example

Controls; constant rate over time?
with(Ex2delayedEffect %>% filter(trt == 0),

pwexpfit(Surv(month, evntd),intervals=2.1)) %>%
kable(digits=3) %>% kable_styling()

intervals TTOT events rate m2ll
2.1 246.938 57 0.231 281.134
Inf 301.523 66 0.219 332.533

Experimental: no effect early, HR ~ 0.5 late
with(Ex2delayedEffect %>% filter(trt == 1),

pwexpfit(Surv(month, evntd),intervals=2.1)) %>%
kable(digits=3) %>% kable_styling()

intervals TTOT events rate m2ll
2.1 245.690 53 0.216 268.580
Inf 594.488 52 0.087 357.392



Testing with Logrank

Approximately the same as Wald test from earlier Cox model
survdiff(Surv(month, evntd) ~ trt, data = Ex2delayedEffect)

## Call:
## survdiff(formula = Surv(month, evntd) ~ trt, data = Ex2delayedEffect)
##
## N Observed Expected (O-E)^2/E (O-E)^2/V
## trt=0 137 123 101 4.82 9.25
## trt=1 135 105 127 3.83 9.25
##
## Chisq= 9.3 on 1 degrees of freedom, p= 0.002

If stratifying by, say, sex:
survdiff(Surv(month, evntd) ~ trt + strata(sex),

data = Ex2delayedEffect)



Testing with simtrial

Targets logrank, weighted logrank, MaxCombo tests
Requires fixed variable names in survival data (ugh!)

No model statement
Sets up counting process interim dataset
Pre-set or user-defined weighting for weighted logrank



Changing Variable Names

ex2 <- Ex2delayedEffect %>%
transmute(Stratum = "All",

Treatment = trt,
tte = month,
event = evntd)

head(ex2, n=5) %>% kable(digits=3) %>% kable_styling()

Stratum Treatment tte event
All 1 0.152 1
All 1 0.152 1
All 1 0.355 1
All 1 0.355 1
All 1 0.355 1



Translate to Counting Process Dataset

sorted by tte (time-to-event)
only records for times with events

# txval is indicator of experimental treatment
ex2counting <- ex2 %>% tensurv(txval = 1)
head(ex2counting, n = 5) %>% kable(digits=2) %>%

kable_styling(font_size = 8)

Stratum events txevents tte atrisk txatrisk S OminusE Var
All 2 2 0.15 272 135 1.00 1.01 0.50
All 7 3 0.36 270 133 0.99 -0.45 1.71
All 2 2 0.51 263 130 0.97 1.01 0.50
All 8 2 0.61 260 127 0.96 -1.91 1.94
All 2 2 0.71 252 125 0.93 1.01 0.50



What are the Counting Process Variables?

Stratum - stratum (discrete values)
tte - time at which event(s) occurred
events - number of events at time tte
txevents - number of events in experimental group
atrisk - number at risk just before time tte
txatrisk - number at risk in experimental group just before tte
S - Kaplan-Meier survival (left-continuous!) at time tte; overall
population
OminusE - Observed events minus expected for experimental if no
treatment effect
Var - variance of OminusE (hypergeometric)



Defining a Weight

Weight first 2.1 months is 0
This is a one-sided test

ex2counting <- ex2counting %>% mutate(w= (tte > 2.1) * 1)
ex2counting %>% ungroup() %>%

summarize(numerator = sum(OminusE * w),
denominator = sqrt(sum(w^2 * Var)),
Z = numerator / denominator,
p = pnorm(Z)) %>% kable() %>% kable_styling()

numerator denominator Z p
-20.24563 5.137288 -3.940918 4.06e-05



Using tenFH() for Logrank

Z-test
rho=0, gamma=0 indicate logrank
p-value is 2-sided, as before

ex2counting %>% tenFH(rg = tibble(rho=0, gamma=0)) %>%
mutate(pnorm(Z) * 2) %>% kable(digits=3) %>% kable_styling()

rho gamma Z pnorm(Z) * 2
0 0 -3.042 0.002



Some Fleming-Harrington Tests

One-sided weights
(rho = 0, gamma = 0.5) and (rho = 0.5, gamma = 0.5) often good
options!

not too much down-weighting

rg <- tibble(rho = c(0, 0, 0, .5, 1),
gamma = c(0, .5, 1, .5, 1))

ex2counting %>% tenFH(rg = rg) %>%
mutate(p = 2 * pnorm(Z),
test=c("logrank", "down-weight early", "down-weight early",

"up-weight middle", "up-weight middle")) %>%
kable(digits=c(1,1,3,5,0)) %>% kable_styling()

rho gamma Z p test
0.0 0.0 -3.042 0.00235 logrank
0.0 0.5 -3.671 0.00024 down-weight early
0.0 1.0 -3.792 0.00015 down-weight early
0.5 0.5 -3.408 0.00065 up-weight middle
1.0 1.0 -3.488 0.00049 up-weight middle



MaxCombo Test

# use logrank, (rho = 0, gamma= .5), (rho = .5, gamma = .5)
rg = tibble(rho = c(0, 0, .5), gamma = c(0, .5, .5))
Z <- ex2counting %>% tenFHcorr(rg = rg)
Z %>% kable(digits=3)

rho gamma Z V1 V2 V3
0.0 0.0 -3.042 1.000 0.933 0.967
0.0 0.5 -3.671 0.933 1.000 0.972
0.5 0.5 -3.408 0.967 0.972 1.000

# NOTE: one-sided
pMaxCombo(Z)

## [1] 0.0001207498



Modestly Weighted LR Test (mWLRT) (Magirr and
Burman (2019))

# Down-weight for 4 months
MBcounting <- ex2counting %>% wMB(delay = 4)
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Modestly Weighted LR Test (mWLRT)

Similar to logrank in this case
Can be a nice alternative to logrank, Fleming-Harrington or
MaxCombo
Control of type-I error under strong null hypothesis

MBcounting %>% summarize(S = sum(OminusE*wMB),
V = sum(Var*wMB^2),
Z = S / sqrt(V),
p = 2 * pnorm(Z)) %>%

kable(digits=c(1,2,2,6))

S V Z p
-48.3 170.76 -3.69 0.00022



5. Design Concepts for Time to Event
Clinical Trial



Basics of Design with TTE

Event driven: timing of the analysis depends on targeted number of
events

Sample size is traditionally calculated using LR test (Schoenfeld
(1981))

Required number of events D for is calculated as:

D = (r + 1)2
r

(z1−α/2 + z1−β)2

θ2

r : randomization ratio; α: level of significance; 1− β: required power;
and θ: log of alternative hypothesis

Calculate number of patients and follow-up time needed to observe D
events



Example of Traditional Fixed Design

Design set up: Treatment A vs SOC
Progression Free Survival (PFS) as primary endpoint
Median SOC: 5 months
Alternative HR (Treatment A vs SOC): 0.67
Enrollment period: 37.1 months
Type-I error 2.5%, power 90%

Requires:
300 (150 per arm) patients
263 events to target : analysis timing ~ 44 months
Minimum HR for statistical significance: 0.785



Interim Analysis

Important aspect of design: allows early stopping for efficacy and
futility

Interim analysis are event driven: similar to primary

Very similar methodology as for non-TTE endpoints

Group sequential design is the gold standard

α-spending and β- spendings are widely used
Other methods are available

Efficacy and futility boundaries are “non-binding”



Design Challenges with Potential NPH

Potential of NPH brings more uncertainties in design assumption
Treatment differences under NPH constitute a broad class of
alternative hypotheses

Degree of effect
Delayed timing of effect: Delayed separation of survival curves
Different effects in unanticipated subpopulations: Can result in
crossing hazards
Diminishing effect over time

How do we design a trial to be powerful across many alternatives?



Impact of NPH on Traditional Design

Consider the alternative of delay in treatment effect: 2 months

HR = 1 t ≤ 2months
= 0.67 t > 2months

With 263 events and 300 patients
Power = 63% ↓

Need 520 events and 600 patients for power= ∼ 90%
Significant increase in resources: Sample size doubled

Standard log-rank test failed to show robust power under different
alternatives



Design Under NPH: General Considerations

Trial duration or total follow up time plays an important role
Event based only analysis may produce a design that finishes too early:
cause power loss
May fail to describe time dependent treatment effect

Carefully elicitation of the possible treatment effect scenario
Power trial for multiple scenarios
Find worst-case scenario
Minimum effect size of interest (PH)
Delayed effect
Early crossing hazards



Interim Analysis Under NPH: General Considerations

Need careful consideration
Especially, for late emerging treatment effect scenarios
An early interim analysis will have smaller probability of stopping for
efficacy and higher probability of crossing any futility bound

Balance between the risks of stopping too soon before late benefit
emerges and the appropriately monitoring of the trial for futility
Futility analysis: is it really necessary?

Safety bound or conditional power based approaches can be useful
MaxCombo requires set timing based on events AND follow-up to
ensure power



6. Practical Designs in Presence of
Non-proportional Hazard



Introducting the Piecewise Model

Simple model to approximate arbitrary patterns of
Enrollment: piecewise constant enrollment rates
Failure rates: piecewise exponential
Dropout rates: piecewise exponential

Combined tools for designing and evaluating designs
Asymptotic approach using average hazard ratio (AHR)
Simulation tools to confirm asymptotic approximations
No requirement for proportional hazards
Stick with logrank for today



Piecewise Constant Enrollment

Piecewise exponential interarrival times

 can approximate any enrollment pattern
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Simple NPH Example

HR = 1 for 4 months

HR = 0.6 after 4 months

Exponential, median = 15
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Average Hazard Ratio (AHR)

Geometric mean hazard ratio (Mukhopadhyay et al. (2020))
Exponentiate: average log(HR) weighted by expected events per
interval

Interval HR -ln(HR) Expected Events
0-4 1.0 0.00 d1
>4 0.6 0.51 d2

AHR = exp
(
d1 log(1) + d2 log(0.6)

d1 + d2

)



AHR Over Time

Constant enrollment rate, 12 month targeted enrollment
Exponential dropout, 0.001 per month
Control: exponential, median = 15 months
HR: 1 in months 0-4, 0.6 thereafter

Steep drop after 4 months
 leveling after about 24 months
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Power by AHR

Assume 332 events

Steep power decrease

 with increasing AHR

Ensure follow−up sufficient

 to capture meaningful AHR
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AHR as Estimand

Some argue this is a bad idea
e.g., hazards of hazard ratios (Hernán (2010))

Pro’s
Estimated by Cox regression
AHR concept makes more clear what this is
Logrank is widely-accepted corresponding test
Stable target if follow-up sufficient
Both asymptotic approximations and simulation supported (today!)

This includes group sequential design
Easy to approximate arbitrary enrollment, failure and dropout patterns

Cautions
No single estimand sufficently describes NPH differences
Early interim analysis (futility, efficacy) should anticipate possible
reduced effect



Expected Accrual of Endpoints

Need 35−40 months until

 65%−70% have events

0

10

20

30

40

50

60

70

0 6 12 18 24 30 36 42
Month

E
ve

nt
s

Expected Events per 100 Enrolled



Piecewise Exponential Approximation of
Log-Logistic

Large # of points would approximate more exactly
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Piecewise Exponential Approximation of
Log-Logistic

Approximate any survival distribution

log−logistic distribution vs.
 5 point piecewise approximation
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Asymptotic Approximation

Use of Tsiatis (1982) (also extends to weighted logrank; not discussed
today)
Statistical information proportional to expected event counts as in
Schoenfeld (1981)
Natural parameter: log(AHR)
Statistical information and test correlation still ~proportional to
number of events
Extension of Jennison and Turnbull (2000) calculations to
non-constant effect size over time
Subject of forthcoming paper



Asymptotic Distribution Simplified

Statistical information at analysis 1 ≤ k =≤ K : Ik

Proportion of final information at analysis k: tk = Ik/IK

Zk ∼ Normal(
√
Ikθ(tk), 1)

Multivariate normal with correlations for 1 ≤ j ≤ k ≤ K :

Corr(Zj ,Zk) =
√
tj/tk



Asymptotic Boundary Crossing Probabilities

Note dependence on time-varying θ(tk), 1 ≤ k ≤ K
θ notation below does not explicitly clarify changing values with time
Bounds −∞ ≤ ak < bk ≤ ∞ for 1 ≤ k < K , −∞ ≤ aK ≤ bK <∞
Upper boundary crossing probabilities

αk(θ) = Pθ({Zk ≥ bk} ∩i−1
j=1 {aj ≤ Zj < bj})

Lower boundary crossing probabilities

βk(θ) = Pθ((Zk < ak} ∩k−1
j=1 {aj ≤ Zj < bj}).

Boundary crossing probabilities computed with simple extension of
Jennison and Turnbull (2000) algorithm

For now, you can cite gsdmvn R package at GitHub



Spending bounds

Spending bounds also computed with simple extension of Jennison
and Turnbull (2000) algorithms
For lower bound, lesser early treatment effect is accounted for!



7. Implementation using R- Part II



Simulation Tools: simtrial Package

Low-level tools to demonstrate model
Higher-level tools to enable trial simulations

Fixed designs
Group sequential designs



simtrial: lower-level routines

We will not go into these today

fixedBlockRand() - fixed block randomization
rpwenroll() - random inter-arrival times with piecewise constant
enrollment rates
rpwexp() - piecewise exponential failure rate generation
cutData() - cut data for analysis at a specified calendar time
cutDataAtCount() - cut data for analysis at a specified event count,
including ties on the cutoff date
getCutDateForCount() - find date at which an event count is
reached
tensurv() - pre-process survival data into a counting process format



Generating a trial

Stratification and blocking (used for simulation; not needed for design)
# 2 strata
strata <- tibble(Stratum=c("All"))

# Block size of 4, equal randomization; VECTOR ARGUMENT
block <- c(rep("Control",2),rep("Experimental",2))

Enrollment rates
# 1 year enrollment, increasing rates
enrollRates <-

tibble(Stratum = "All", duration = 12, rate = 476 / 12)



Generating a trial

Failure rates
# Control: exponential with 15 month median
# HR: 1 for 4 months, 0.6 thereafter
failRates <- tribble(

~Stratum, ~duration, ~failRate, ~hr, ~dropoutRate,
"All", 4, log(2) / 15, 1, .001,
"All", 100, log(2) / 15, 0.6, .001)



Generate a Trial

Simple simulation; fixed design
sim <-
simtrial::simfix(nsim=50, sampleSize=476, targetEvents=332,

strata, enrollRates, failRates, totalDuration=36, block,
timingType=1:5) %>% mutate(AHR = exp(lnhr))

head(sim, n=5) %>% kable(digits=2) %>%
kable_styling(font_size=8)

Events lnhr Z cut Duration Sim AHR
321 -0.35 -3.09 Planned duration 36.00 1 0.71
332 -0.33 -3.04 Targeted events 37.80 1 0.72
322 -0.34 -3.05 Minimum follow-up 36.55 1 0.71
332 -0.33 -3.04 Max(planned duration, event cut) 37.80 1 0.72
332 -0.33 -3.04 Max(min follow-up, event cut) 37.80 1 0.72



Trial Simulation: MaxCombo

MaxCombo test set up
# Set up tests to be used
rg <- tibble(rho=c(0,0,.5), gamma=c(0,.5,.5))
rg %>% kable()

rho gamma
0.0 0.0
0.0 0.5
0.5 0.5



Simulating Multiple Tests for MaxCombo

sim <-
simtrial::simfix(nsim=50, sampleSize=476, targetEvents=332,

strata, enrollRates, failRates, totalDuration=36, block,
timingType=2, rg = rg) %>%
select(c(Sim, Events, Duration, rho, gamma, Z, V1, V2, V3))



Simulation Output

sim %>%
head(sim, n=6) %>%

kable(digits=c(0,2,1,1,2,2,2,2,2)) %>%
kable_styling(font_size=8)

Sim Events Duration rho gamma Z V1 V2 V3
1 332 41.3 0.0 0.0 -2.90 1.00 0.94 0.97
1 332 41.3 0.0 0.5 -3.31 0.94 1.00 0.99
1 332 41.3 0.5 0.5 -3.23 0.97 0.99 1.00
2 332 41.9 0.0 0.0 -3.62 1.00 0.94 0.97
2 332 41.9 0.0 0.5 -4.16 0.94 1.00 0.99
2 332 41.9 0.5 0.5 -4.02 0.97 0.99 1.00



Generate a Trial: Power Estimates

Summarize simulations by weighting scheme
sim %>% group_by(rho,gamma) %>%

summarize(Power=mean(Z<=qnorm(.025)),
Duration=mean(Duration),
Simulations = n()) %>%

kable(digits=3) %>% kable_styling(font_size=8)

rho gamma Power Duration Simulations
0.0 0.0 0.90 38.935 50
0.0 0.5 0.96 38.935 50
0.5 0.5 0.96 38.935 50

Note weighted logrank improvements over logrank



Summarize MaxCombo

Power estimated using pMaxCombo() function for each simulation
# subset to targeted events cutoff tests
p <- unlist(sim %>% group_by(Sim) %>% group_map(pMaxCombo))
mean(p<.025)

## [1] 0.96

MaxCombo also has higher power than logrank



Generate a Trial: Group Sequential

Generating a trial step-by-step allows more flexibility
a <- simfix2simPWSurv(failRates)
x <- simPWSurv(n = 400, # Sample size

strata = strata,
block = block,
enrollRates = enrollRates,
failRates = a$failRates,
dropoutRates = a$dropoutRates)



Generate a Trial

Resulting format

Stratum enrollTime Treatment failTime dropoutTime cte fail
All 0.044 Control 39.184 57.173 39.228 1
All 0.073 Experimental 14.561 2905.279 14.634 1
All 0.077 Control 26.369 560.024 26.446 1
All 0.147 Experimental 40.538 1386.317 40.685 1
All 0.164 Control 27.242 817.336 27.405 1
All 0.168 Experimental 17.691 188.886 17.858 1



Simulate Repeatedly

Repeated simulations analyzed after 150 and 250 events
y <- NULL
for(sim in 1:3){
x <- simPWSurv(n = 400, # Sample size

strata = strata,
block = block,
enrollRates = enrollRates,
failRates = a$failRates,
dropoutRates = a$dropoutRates)

for(Events in c(150,250)){
y <- rbind(y, x %>% cutDataAtCount(Events) %>%

tensurv(txval="Experimental")%>%
tenFH(rg=tibble(rho=0,gamma=0)) %>%
mutate(sim=sim, Events=Events))

}}



Simulate Repeatedly

rho gamma Z sim Events
0 0 -2.287 1 150
0 0 -3.990 1 250
0 0 -1.563 2 150
0 0 -2.390 2 250
0 0 -2.565 3 150
0 0 -3.971 3 250



AHR Tools: gsDesign2 package

Main functions of interest today under piecewise model:

s2pwe(): approximate arbitrary survival distribution with piecewise
exponential
eEvents_df(): expected event accrual over time
AHR(): average hazard ratio over time



Approximating Using Piecewise Model

Approximating log-logistic distribution plotted above using piecewise model
dloglogis <- function(x, alpha = 1, beta = 4){

1 / (1 + (x/alpha)^beta)
}
times10 <- c(seq(1/3,1,1/3),2,3)
# Use s2pwe() to generate piecewise approximation
s2pwe(times10,dloglogis(times10,alpha=.5,beta=4)) %>%

kable(digits=3)

duration rate
0.333 0.541
0.333 3.736
0.333 4.223
1.000 2.716
1.000 1.619



Approximating Event Accumulation Over Time

This basic calculation is driving much of what we do today!
gsDesign2::eEvents_df(enrollRates,

failRates=tibble(duration=c(3,100),
failRate = c(.1,.05),
dropoutRate = .001),

totalDuration = 23)

## [1] 296.4448



Approximating AHR Over Time

This basic calculation is driving much of what we do today!
gsDesign2::AHR(enrollRates, failRates,

totalDuration = seq(12,36,12)) %>%
kable(digits=c(0,2,0,1,1))

Time AHR Events info info0
12 0.84 102 25.1 25.6
24 0.71 234 57.2 58.6
36 0.68 315 77.5 78.8



Group Sequential Design Tools: gsdmvn package

Main functions of interest today:

gs_design_ahr(): design under non-proportional hazards
gs_power_ahr(): power under non-propotional hazards
gs_spending_bound(): spending bound specification
gs_b(): Fixed boundary generation



Fixed design

Set up libraries and rate assumptions
library(tibble)
library(gsdmvn)
library(dplyr)
library(knitr)
enrollRates <- tibble(Stratum="All", duration = 12, rate = 1)
failRates <- tibble(Stratum="All",

duration=c(4, 100),
failRate = log(2)/ 15,
hr = c(1, .6),
dropoutRate = 0.001)



Fixed design

# Single analysis
x <-
gs_design_ahr(enrollRates,

failRates,
analysisTimes = 36, # Single analysis
upper=gs_b, upar = qnorm(.975), # Z for p=.025
lower=gs_b, lpar = -Inf) # No lower bound

x$bounds %>% filter(Bound == "Upper") %>%
select(-c(Analysis,Bound)) %>%
kable(digits=c(0,0,0,2,2,2,2,2,2)) %>%
kable_styling(font_size = 8)

Time N Events Z Probability AHR theta info info0
36 440 292 1.96 0.9 0.68 0.38 71.63 72.9

Round up sample size and events (not done here!)



Group Sequential Design

Spending function for upper bound
# upper is a function to compute bound
upper <- gs_spending_bound
# upar is a parameter passed to upper
upar <- list(sf = gsDesign::sfLDOF,

total_spend = 0.025,
param = NULL)

sf: spending function from gsDesign package
total_spend: for upper bound, this is α-spending
param: parameter to pass to spending function, if needed



Group Sequential Design

Spending function for lower bound
# lower is a function to compute bound
lower <- gs_spending_bound
# lpar is a parameter passed to upper
lpar <- list(sf = gsDesign::sfHSD,

total_spend = 0.1,
param = -2)

sf: in this case, Hwang-Shih-DeCani spending function
total_spend: in this case, Type-II or β-spending (90% power
= 100(1− β))
param: in this case, param=2 is passed to sfHSD() to realize γ = −2
Lan-DeMets spending function to approximate Hwang-Shih-DeCani
bound



Group Sequential Spending Function Design

x <- gs_design_ahr(enrollRates, failRates,
alpha=0.025, beta=.1,
# information fraction at analyses
IF = c(.67, .85, 1),
# total planned trial duration
analysisTimes = 36,
# Spending bounds as before
upper=upper, upar=upar,
lower=lower, lpar=lpar)

names(x)

## [1] "enrollRates" "failRates" "bounds"



Enrollment Rates Required

# Enrollment rates for design
x$enrollRates %>% kable(digits=2)

Stratum duration rate
All 12 41.62



Design Bounds

x$bounds %>% select(-c(theta, info, info0)) %>%
# Round up sample size and event count
mutate(N=ceiling(N/2) * 2,

Events = ceiling(Events)) %>%
kable(digits=c(0,0,1,0,0,2,2,2)) %>%
kable_styling(font_size = 8)

Analysis Bound Time N Events Z Probability AHR
1 Upper 21.4 500 222 2.50 0.43 0.73
2 Upper 28.3 500 282 2.22 0.77 0.70
3 Upper 36.0 500 331 2.05 0.90 0.68
1 Lower 21.4 500 222 0.62 0.04 0.73
2 Lower 28.3 500 282 1.38 0.07 0.70
3 Lower 36.0 500 331 2.05 0.10 0.68



Simulation to Confirm Design Properties

Easiest way to confirm that asymptotic approximation works
We will demonstrate the steps required for this
Final simulation will look both at logrank and MaxCombo test

MaxCombo will improve power and control type-I error
Will not go through full detail on deriving final MaxCombo bound

Will use relatively detailed code here as there are lots of options
You may wish to write a function to simplify



Trial Generation and Analysis

We demonstrate a single trial simulation
fr <- simfix2simPWSurv(failRates)
N <- ceiling(max(x$bound$N))
# Generate a single trial
d <- simPWSurv(n=N, enrollRates = enrollRates,

failRates = fr$failRates,
dropoutRates = fr$dropoutRates)

# Get event count planned at each analyss
ev <- ceiling(sort(unique(x$bounds$Events)))
# Set place to save analyses
y <- NULL
mc <- NULL
# Set up rho, gamma combinations for MaxCombo
# logrank, (0, .5), (.5, .5)
rg <- tibble(rho=c(0,0,.5), gamma=c(0,.5,.5))



Do Interim and Final Analyses

Loop through analyses and accumulate results
for(Analysis in seq(ev)){

# Cut data for analysis and get counting process format
a <- d %>% cutDataAtCount(ev[Analysis]) %>%

tensurv(txval="Experimental")
# Do logrank
y <- rbind(y, a %>% tenFH(rg=tibble(rho=0, gamma=0)) %>%

mutate(Analysis = Analysis))
# At final analysis, compute MaxCombo
if(Analysis == length(ev)){

mc <- rbind(mc, a %>% tenFHcorr(rg))
}}



Interim and Final Analysis Results

Logrank
y %>% kable(digits=2)

rho gamma Z Analysis
0 0 -2.19 1
0 0 -3.32 2
0 0 -3.69 3



Component Tests of MaxCombo at Final Analysis

Weighted logrank Z-test often larger than logrank under delayed effect
mc %>% kable(digits=2)

rho gamma Z V1 V2 V3
0.0 0.0 -3.69 1.00 0.94 0.97
0.0 0.5 -4.37 0.94 1.00 0.96
0.5 0.5 -3.92 0.97 0.96 1.00

MaxCombo p-value (single analysis)
pMaxCombo(mc)

## [1] 6.079523e-06



Comparing Simulation Results to Group Sequential
Bounds

Reformat bounds
b <-
x$bounds %>% select(c(Analysis, Bound, Z)) %>%

tidyr::pivot_wider(names_from="Bound", values_from="Z")
b %>% kable(digits=2)

Analysis Upper Lower
1 2.50 0.62
2 2.22 1.38
3 2.05 2.05



Combine Bounds with Analyses

left_join(y, b, by = "Analysis") %>% kable(digits=2)

rho gamma Z Analysis Upper Lower
0 0 -2.19 1 2.50 0.62
0 0 -3.32 2 2.22 1.38
0 0 -3.69 3 2.05 2.05



Select Critical Analysis

Select first analysis with bound crossed or final analysis
left_join(y, b, by = "Analysis") %>%

mutate(Stop=(-Z>=Upper | -Z < Lower | Analysis == 4)) %>%
filter(Stop == TRUE) %>% slice(1) %>% kable(digits=3)

rho gamma Z Analysis Upper Lower Stop
0 0 -3.322 2 2.22 1.378 TRUE

Now we see where the critical analysis was for this simulation.
Do this repeatedly and you can summarize the group sequential
properties of design.



Group Sequential Design: Asymmetric Design
Example

Use a fixed lower bound
Futility only for safety at IA 1 (e.g., p=0.05 in wrong direction)
No futility bound after IA 1
Non-binding futility bound is default

Spending bound for upper bound
O’Brien-Fleming often urged by regulators
As before; no efficacy test at early safety analysis

lower <- gs_b # Fixed lower bound
# Futility testing only at early analysis
lpar <- c(qnorm(.05), rep(-Inf, 3))
# Efficacy testing only AFTER first analysis
test_upper <- c(FALSE, rep(TRUE, 3))
# Timing now set based on trial duration
analysisTimes <- c(12,20,28,36)



Group Sequential Spending Function Design

x <- gs_design_ahr(enrollRates, failRates,
alpha=0.025, beta=.1,
# calendar timing of all analyses
analysisTimes = analysisTimes,
# bounds from previous slides
upper=upper, upar=upar,
lower=lower, lpar=lpar,
test_upper=test_upper)



Bounds for Group Sequential Design

x$bounds %>% select(-c(theta,info,info0)) %>%
mutate(N=ceiling(N/2)*2,

Events=ceiling(Events)) %>%
kable(digits=c(rep(0,5),rep(2,3))) %>%
kable_styling(font_size = 8)

Analysis Bound Time N Events Z Probability AHR
1 Upper 12 468 101 Inf 0.00 0.84
2 Upper 20 468 195 2.60 0.31 0.74
3 Upper 28 468 262 2.22 0.74 0.70
4 Upper 36 468 310 2.05 0.90 0.68
1 Lower 12 468 101 -1.64 0.01 0.84
2 Lower 20 468 195 -Inf 0.01 0.74
3 Lower 28 468 262 -Inf 0.01 0.70
4 Lower 36 468 310 -Inf 0.01 0.68



Symmetric Design

In this case h1_spending=FALSE indicates lower spending under null
hypothesis

x <- gs_design_ahr(enrollRates, failRates,
alpha=0.025, beta=.1,
# For symmetric design, use binding bounds
binding = TRUE,
# calendar timing of all analyses
analysisTimes = c(20, 28, 36),
upper=upper, upar=upar,
# copied upper bound to lower bound
lower=upper, lpar=upar,
# use this for symmetric bound
h1_spending=FALSE)



Bounds for Symmetric Design

x$bounds %>%
mutate(N=ceiling(N/2)*2,

Events=ceiling(Events)) %>%
select(-c(theta,info,info0)) %>%
kable(digits=c(rep(0,5),rep(2,3))) %>%
kable_styling(font_size = 8)

Analysis Bound Time N Events Z Probability AHR
1 Upper 20 466 194 2.60 0.30 0.74
2 Upper 28 466 260 2.22 0.73 0.70
3 Upper 36 466 309 2.05 0.90 0.68
1 Lower 20 466 194 -2.60 0.00 0.74
2 Lower 28 466 260 -2.22 0.00 0.70
3 Lower 36 466 309 -2.05 0.00 0.68



8. Designing TTE Trial with MaxCombo
Test



Sample Size Calculation: Two Step Approach
(Roychoudhury et al. (2020))



Group Sequential Design with MaxCombo Test

Use of log-rank test for interim analysis and MaxCombo for final
analysis

To avoid the impact of shorter follow up time or trial duration in WLR
Well accepted by the regulators

Final success boundary needs multiplicity adjustment due to the
correlation between the LR test at interim and the MaxCombo test in
final analysis

We propose calculation of the final boundary using independent
increment of information from interim to final and asymptotic
normality

The impact on type-I error and power for interim analysis need to be
evaluated via simulation



9. Summary and Discussion



Summary - I

LR test and Cox regression are still gold standard

Use MaxCombo or modified MaxCombo for primary statistical testing:
a combination test based on FH-WLR tests

Extensive simulation study shows better statistical power of the
MaxCombo test over traditional LRT under various types of NPH
(especially for delayed treatment effect)
Maintains good statistical properties under PH

No single statistical measure can capture the time dependent nature
of treatment benefit

Proposed stepwise approach provides a complete summary



Summary - II

Under potential NPH, design should specify sample size and total
follow-up time to ensure adequate power and type-I error
Piecewise exponential approximation provides a flexible way to design
TTE trial under NPH
Efficient R packages are critical to implement the non-traditional
design in real-life: simtrial, gsdesign2

Simulation plays an important role
Design and analysis be pre-specified in the protocol and SAP to
comply with ICH-E9



Cross-Industry Working Group

NPH working group (WG) focused on statistical methods
Beyond LRT and Cox regression model in presence of NPH
Can be pre-specified in the statistical analysis plan (SAP)
Aids with interpretation of treatment benefit

First meeting in October 2016: ASA Regulatory-Industry workshop
Face to Face mid-point meeting June 2017: ASCO
Presentation of key findings and February 2018: Duke-Margolis
Workshop
Face to Face November 2019
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